Quantum Laplace Transforms for the Ulam–Hyers Stability of Certain q-Difference Equations of the Caputo-like Type
Abstract
1. Introduction
- The use of quantum Laplace transforms for the first time to prove the stability of solutions;
- The use of the q-Mittag–Leffler function to find the convergent series of the solutions;
- The easier application of series in quantum computing and their exact outputs in computer programming;
- The relation of the q-Gronwall inequality in the context of the stability of the fractional q-difference equations.
2. Preliminaries
2.1. Ulam–Hyers Stability
2.2. -Calculus
2.3. Quantum Laplace Transform
- ; particularly, we have .
- .
- .
- .
- .
- .
3. Ulam–Hyers Stability of Linear -Difference Equations
4. Stability of the Nonlinear -Cauchy IVP
- [C1]: is continuous.
- [C2]: s.t. .
- [C3]: s.t. .
- [C4]: Assume that is increasing. There is some such that
5. Example
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hyers, D.H. On the stability of the linear functional equations. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Xu, B.; Brzdek, J.; Zhang, W. Fixed-point results and the Hyers-Ulam stability of linear equations of higher orders. Pacific J. Math. 2015, 273, 483–498. [Google Scholar] [CrossRef]
- Liu, K.; Wang, J.; Zhou, Y.; O’Regan, D. Hyers-Ulam stability and existence of solutions for fractional differential equations with Mittag-Leffler kernel. Chaos Solitons Fractals 2020, 132, 109534. [Google Scholar] [CrossRef]
- Subramanian, M.; Aljoudi, S. Existence and Ulam-Hyers stability analysis for coupled differential equations of fractional-order with nonlocal generalized conditions via generalized Liouville–Caputo derivative. Fractal Fract. 2022, 6, 629. [Google Scholar] [CrossRef]
- Dai, Q.; Gao, R.; Li, Z.; Wang, C. Stability of Ulam-Hyers and Ulam-Hyers-Rassias for a class of fractional differential equations. Adv. Differ. Equ. 2020, 2020, 103. [Google Scholar] [CrossRef]
- Kiskinov, H.; Madamlieva, E.; Zahariev, A. Hyers-Ulam and Hyers-Ulam–Rassias stability for linear fractional systems with Riemann-Liouville derivatives and distributed delays. Axioms 2023, 12, 637. [Google Scholar] [CrossRef]
- Subramanian, M.; Murugesan, M.; Awadalla, M.; Unyong, B.; Egami, R.H. Ulam-Hyers stability and existence results for a coupled sequential Hilfer-Hadamard-type integrodifferential system. AIMS Math. 2024, 9, 16203–16233. [Google Scholar]
- Zada, A.; Alzabut, J.; Waheed, H.; Popa, I.L. Ulam-Hyers stability of impulsive integrodifferential equations with Riemann-Liouville boundary conditions. Adv. Differ. Equ. 2020, 2020, 64. [Google Scholar] [CrossRef]
- Nawaz, S.; Bariq, A.; Batool, A.; Akgul, A. Generalized Hyers-Ulam stability of ρ-functional inequalities. J. Inequal. Appl. 2023, 2023, 135. [Google Scholar] [CrossRef]
- Kadiev, R.; Ponosov, A. The W-transform in stability analysis for stochastic linear functional difference equations. J. Math. Anal. Appl. 2012, 389, 1239–1250. [Google Scholar] [CrossRef]
- Rezaei, H.; Jung, S.; Rassias, T. Laplace transform and Hyers-Ulam stability of linear differential equations. J. Math. Anal. Appl. 2013, 403, 244–251. [Google Scholar] [CrossRef]
- Rezaei, H.; Zafarasa, Z.; Karimi, L. Fourier transformation and stability of a differential equation on L1(R). Int. J. Math. Math. Sci. 2021, 2021, 5524430. [Google Scholar] [CrossRef]
- Wang, C.; Xu, T. Hyers-Ulam stability of fractional linear differential equations involving Caputo fractional derivatives. Appl. Math. 2015, 60, 383–393. [Google Scholar] [CrossRef]
- Liu, K.; Feckan, M.; O’Regan, D.; Wang, J. Hyers-Ulam stability and existence of solutions for differential equations with Caputo-Fabrizio fractional derivative. Mathematics 2019, 7, 333. [Google Scholar] [CrossRef]
- Ramdoss, M.; Selvan-Arumugam, P.; Park, C. Ulam stability of linear differential equations using Fourier transform. AIMS Math. 2020, 5, 766–780. [Google Scholar] [CrossRef]
- Rezapour, S.; Tellab, B.; Deressa, C.T.; Etemad, S.; Nonlaopon, K. H-U-type stability and numerical solutions for a nonlinear model of the coupled systems of Navier BVPs via the generalized differential transform method. Fractal Fract. 2021, 5, 166. [Google Scholar] [CrossRef]
- Etemad, S.; Tellab, B.; Alzabut, J.; Rezapour, S.; Abbas, M.I. Approximate solutions and Hyers-Ulam stability for a system of the coupled fractional thermostat control model via the generalized differential transform. Adv. Differ. Equ. 2021, 2021, 428. [Google Scholar] [CrossRef]
- Ganesh, A.; Deepa, S.; Baleanu, D.; Santra, S.S.; Moaaz, O.; Govindan, V.; Ali, R. Hyers-Ulam-Mittag-Leffler stability of fractional differential equations with two caputo derivative using fractional fourier transform. AIMS Math. 2022, 7, 1791–1810. [Google Scholar] [CrossRef]
- Pinelas, S.; Selvam, A.; Sabarinathan, S. Ulam-Hyers stability of linear differential equation with general transform. Symmetry 2023, 15, 2023. [Google Scholar] [CrossRef]
- Jafari, H. A new general integral transform for solving integral equations. J. Adv. Res. 2021, 32, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Jackson, F.H. On a q-definite integrals. Quart. J. Pure. Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Jackson, F.H. q-difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Fock, V. Zur Theorie des Wasserstoffatoms. Z. Physik. 1935, 98, 145–154. [Google Scholar] [CrossRef]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K. A study of second-order q-difference equations with boundary conditions. Adv. Differ. Equ. 2012, 2012, 35. [Google Scholar] [CrossRef][Green Version]
- Boutiara, A.; Benbachir, M.; Kaabar, M.K.A.; Martinez, F.; Samei, M.E.; Kaplan, M. Explicit iteration and unbounded solutions for fractional q-difference equations with boundary conditions on an infinite interval. J. Inequal. Appl. 2022, 2022, 29. [Google Scholar] [CrossRef]
- Butt, S.I.; Budak, H.; Nonlaopon, K. New variants of quantum midpoint-type inequalities. Symmetry 2022, 14, 2599. [Google Scholar] [CrossRef]
- Alzabut, J.; Houas, M.; Abbas, M.I. Application of fractional quantum calculus on coupled hybrid differential systems within the sequential Caputo fractional q-derivatives. Demonstrat. Math. 2023, 56, 20220205. [Google Scholar] [CrossRef]
- Wannalookkhee, F.; Nonlaopon, K.; Sarikaya, M.Z.; Budak, H.; Ali, M.A. On some new quantum trapezoid-type inequalities for q-differentiable coordinated convex functions. J. Inequal. Appl. 2023, 2023, 5. [Google Scholar] [CrossRef]
- Rezapour, S.; Imran, A.; Hussain, A.; Martinez, F.; Etemad, S.; Kaabar, M.K.A. Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPs. Symmetry 2021, 13, 469. [Google Scholar] [CrossRef]
- Houas, M.; Samei, M.E. Existence and stability of solutions for linear and nonlinear damping of q-fractional Duffing–Rayleigh problem. Mediterr. J. Math. 2023, 20, 148. [Google Scholar] [CrossRef]
- Chung, W.S.; Kim, T.; Kwon, H.I. On the q-analog of the Laplace transform. Russ. J. Math. Phys. 2014, 21, 156–168. [Google Scholar] [CrossRef]
- Rajkovic, P.M.; Marinkovic, S.D.; Stankovic, M.S. Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete Math. 2007, 1, 311–323. [Google Scholar]
- Adams, C.R. The general theory of a class of linear partial q-difference equations. Trans. Am. Math. Soc. 1924, 26, 283–312. [Google Scholar] [CrossRef]
- Graef, J.R.; Kong, L. Positive solutions for a class of higher order boundary value problems with fractional q-derivatives. Appl. Math. Comput. 2012, 218, 9682–9689. [Google Scholar] [CrossRef]
- Ferreira, R.A.C. Positive solutions for a class of boundary value problems with fractional q-differences. Comput. Math. Appl. 2011, 61, 367–373. [Google Scholar] [CrossRef]
- Andrews, G.; Askey, R.; Roy, R. Special Functions; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Abdeljawad, T.; Baleanu, D. Caputo q-fractional initial value problems and a q-analogue Mittag-Leffler function. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 4682–4688. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Alzabut, J.; Baleanu, D. A generalized q-fractional Gronwall inequality and its applications to nonlinear delay q-fractional difference systems. J. Inequal. Appl. 2016, 2016, 240. [Google Scholar] [CrossRef]
- Annaby, M.H.; Mansour, Z.S. q-Fractional Calculus and Equations; Springer: New York, NY, USA, 2012. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Etemad, S.; Stamova, I.; Ntouyas, S.K.; Tariboon, J. Quantum Laplace Transforms for the Ulam–Hyers Stability of Certain q-Difference Equations of the Caputo-like Type. Fractal Fract. 2024, 8, 443. https://doi.org/10.3390/fractalfract8080443
Etemad S, Stamova I, Ntouyas SK, Tariboon J. Quantum Laplace Transforms for the Ulam–Hyers Stability of Certain q-Difference Equations of the Caputo-like Type. Fractal and Fractional. 2024; 8(8):443. https://doi.org/10.3390/fractalfract8080443
Chicago/Turabian StyleEtemad, Sina, Ivanka Stamova, Sotiris K. Ntouyas, and Jessada Tariboon. 2024. "Quantum Laplace Transforms for the Ulam–Hyers Stability of Certain q-Difference Equations of the Caputo-like Type" Fractal and Fractional 8, no. 8: 443. https://doi.org/10.3390/fractalfract8080443
APA StyleEtemad, S., Stamova, I., Ntouyas, S. K., & Tariboon, J. (2024). Quantum Laplace Transforms for the Ulam–Hyers Stability of Certain q-Difference Equations of the Caputo-like Type. Fractal and Fractional, 8(8), 443. https://doi.org/10.3390/fractalfract8080443

