Heterogeneity of Micro- and Nanopore Structure of Lacustrine Shales with Complex Lamina Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fractal Dimension Calculation Method
2.2.1. Calculation Method from MICP
2.2.2. FHH Model from N2 Adsorption
2.2.3. A New Method Combined with MICP and N2 Adsorption
3. Results
3.1. Geochemical Parameters
3.2. Petrology Characteristics and Lithofacies Classification
3.3. Pore and Fracture Characteristics
4. Discussion
4.1. Heterogeneity of Pore Structure
4.2. Heterogeneity of Pore Structure of Shales with Complex Lamina Structure
4.3. The Influencing Factors of Heterogeneity and the Effects on Reservoir Properties and Seepage Ability
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jarvie, D.M. Shale Resource Systems for Oil and Gas: Part 2—Shale-Oil Resource Systems; American Association of Petroleum Geologists: Tulsa, OK, USA, 2012. [Google Scholar]
- Jia, C.; Zheng, M.; Zhang, Y. Unconventional hydrocarbon resources in China and the prospect of exploration and development. Pet. Explor. Dev. 2012, 39, 139–146. [Google Scholar] [CrossRef]
- Guan, M.; Liu, X.; Jin, Z.; Lai, J.; Liu, J.; Sun, B.; Liu, T.; Hua, Z.; Xu, W.; Shu, H.; et al. Quantitative characterization of various oil contents and spatial distribution in lacustrine shales: Insight from petroleum compositional characteristics derived from programed pyrolysis. Mar. Pet. Geol. 2022, 138, 105522. [Google Scholar] [CrossRef]
- Ma, X.; Xie, J.; Yong, R.; Zhu, Y. Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China. Pet. Explor. Dev. 2020, 47, 901–915. [Google Scholar] [CrossRef]
- Lu, S.; Li, J.; Zhang, P.; Xue, H.; Wang, G.; Zhang, J.; Liu, H.; Li, Z. Classification of microscopic pore-throats and the grading evaluation on shale oil reservoirs. Pet. Explor. Dev. 2018, 45, 436–444. [Google Scholar] [CrossRef]
- Zou, C.; Yang, Z.; Cui, J.; Zhu, R.; Hou, L.; Tao, S.; Yuan, X.; Wu, S.; Lin, S.; Wang, L.; et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China. Pet. Explor. Dev. 2013, 40, 15–27. [Google Scholar] [CrossRef]
- Hao, F.; Zou, H.; Lu, Y. Mechanisms of shale gas storage: Implications for shale gas exploration in China. AAPG Bull. 2013, 97, 1325–1346. [Google Scholar] [CrossRef]
- Sun, L.; Cui, B.; Zhu, R.; Wang, R.; Feng, Z.; Li, B.; Zhang, J.; Gao, B.; Wang, Q.; Zeng, H.; et al. Shale oil enrichment evaluation and production law in Gulong Sag, Songliao Basin, NE China. Pet. Explor. Dev. 2023, 50, 505–519. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Guo, S.-B. Study on the relationship between hydrocarbon generation and pore evolution in continental shale from the Ordos Basin, China. Pet. Sci. 2021, 18, 1305–1322. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, S.; Li, J.; Xue, H.; Li, W.; Zhang, P. Characterization of shale pore system: A case study of Paleogene Xin’gouzui Formation in the Jianghan basin, China. Mar. Pet. Geol. 2017, 79, 321–334. [Google Scholar] [CrossRef]
- Wang, M.; Ma, R.; Li, J.B.; Lu, S.F.; Li, C.M.; Guo, Z.L.; Li, Z. Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China. Pet. Explor. Dev. 2019, 46, 833–846. [Google Scholar] [CrossRef]
- Jarvie, D.M. Components and processes affecting producibility and commerciality of shale resource systems. Geol. Acta 2014, 12, 307–325. [Google Scholar] [CrossRef]
- Katz, B.; Lin, F. Lacustrine basin unconventional resource plays: Key differences. Mar. Pet. Geol. 2014, 56, 255–265. [Google Scholar] [CrossRef]
- Yang, R.; He, S.; Yi, J.; Hu, Q. Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin: Investigations using FE-SEM, gas adsorption and helium pycnometry. Mar. Pet. Geol. 2016, 70, 27–45. [Google Scholar] [CrossRef]
- Kuang, L.-C.; Hou, L.-H.; Wu, S.-T.; Cui, J.-W.; Tian, H.; Zhang, L.-J.; Zhao, Z.-Y.; Luo, X.; Jiang, X.-H. Organic matter occurrence and pore-forming mechanisms in lacustrine shales in China. Pet. Sci. 2022, 19, 1460–1472. [Google Scholar] [CrossRef]
- Li, Z.; Liu, D.; Cai, Y.; Ranjith, P.G.; Yao, Y. Multi-scale quantitative characterization of 3-D pore-fracture networks in bituminous and anthracite coals using FIB-SEM tomography and X-ray μ-CT. Fuel 2017, 209, 43–53. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Hammes, U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, S.; Li, J.; Zhang, J.; Xue, H.; Chen, C. Comparisons of SEM, Low-Field NMR, and Mercury Intrusion Capillary Pressure in Characterization of the Pore Size Distribution of Lacustrine Shale: A Case Study on the Dongying Depression, Bohai Bay Basin, China. Energy Fuels 2017, 31, 9232–9239. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, S.; Li, J.; Chen, C.; Xue, H.; Zhang, J. Petrophysical characterization of oil-bearing shales by low-field nuclear magnetic resonance (NMR). Mar. Pet. Geol. 2018, 89, 775–785. [Google Scholar] [CrossRef]
- Bernard, S.; Horsfield, B.; Schulz, H.-M.; Wirth, R.; Schreiber, A.; Sherwood, N. Geochemical evolution of organic-rich shales with increasing maturity: A STXM and TEM study of the Posidonia Shale (Lower Toarcian, northern Germany). Mar. Pet. Geol. 2012, 31, 70–89. [Google Scholar] [CrossRef]
- Desbois, G.; Urai, J.; Kukla, P.J.E.D. Morphology of the pore space in claystones–evidence from BIB/FIB ion beam sectioning and cryo-SEM observations. eEarth Discuss. 2009, 4, 15–22. [Google Scholar] [CrossRef]
- Dong, T.; Harris, N.B.; Ayranci, K.; Twemlow, C.E.; Nassichuk, B.R. Porosity characteristics of the Devonian Horn River shale, Canada: Insights from lithofacies classification and shale composition. Int. J. Coal Geol. 2015, 141–142, 74–90. [Google Scholar] [CrossRef]
- Klaver, J.; Desbois, G.; Littke, R.; Urai, J.L. BIB-SEM characterization of pore space morphology and distribution in postmature to overmature samples from the Haynesville and Bossier Shales. Mar. Pet. Geol. 2015, 59, 451–466. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Solano, N.; Bustin, R.M.; Bustin, A.M.M.; Chalmers, G.R.L.; He, L.; Melnichenko, Y.B.; Radliński, A.P.; Blach, T.P. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel 2013, 103, 606–616. [Google Scholar] [CrossRef]
- Du, F.; Wang, K.; Zhang, G.; Zhang, Y.; Zhang, G.; Wang, G. Damage characteristics of coal under different loading modes based on CT three-dimensional reconstruction. Fuel 2022, 310, 122304. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, F.; Hu, T.; Chen, D.; Huang, L.; Jiang, Z.; Wang, X.; Liu, Z.; Wu, Y.; Lv, J.; et al. Oil occurrence state and quantity in alkaline lacustrine shale using a high-frequency NMR technique. Mar. Pet. Geol. 2023, 154, 106302. [Google Scholar] [CrossRef]
- Angulo, R.; Alvarado, V.; Gonzalez, H. Fractal Dimensions from Mercury Intrusion Capillary Tests. In Proceedings of the SPE Latin America Petroleum Engineering Conference, Caracas, Venezuela, 8–11 March 1992. [Google Scholar]
- Chalmers, G.R.; Bustin, R.M.; Power, I.M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bull. 2012, 96, 1099–1119. [Google Scholar] [CrossRef]
- Hemes, S.; Desbois, G.; Urai, J.L.; De Craen, M.; Honty, M. Variations in the morphology of porosity in the Boom Clay Formation: Insights from 2D high resolution BIB-SEM imaging and Mercury injection Porosimetry. Neth. J. Geosci. Geol. En Mijnb. 2014, 92, 275–300. [Google Scholar] [CrossRef]
- Ge, Z.; Shen, Y.; Gu, S. High-temperature selective catalytic reduction of NO with NH3: Optimization of ZrO2 and WO3 complex oxides. Fuel 2022, 310, 122261. [Google Scholar] [CrossRef]
- Bustin, R.M.; Bustin, A.M.M.; Cui, X.; Ross, D.J.K.; Pathi, V.S.M. Impact of Shale Properties on Pore Structure and Storage Characteristics. In Proceedings of the SPE Shale Gas Production Conference, Fort Worth, TX, USA, 16–18 November 2008. [Google Scholar]
- Lai, J.; Wang, G.; Wang, Z.; Chen, J.; Pang, X.; Wang, S.; Zhou, Z.; He, Z.; Qin, Z.; Fan, X. A review on pore structure characterization in tight sandstones. Earth-Sci. Rev. 2018, 177, 436–457. [Google Scholar] [CrossRef]
- Tian, H.; Pan, L.; Xiao, X.; Wilkins, R.W.T.; Meng, Z.; Huang, B. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt, southwestern China using low pressure N2 adsorption and FE-SEM methods. Mar. Pet. Geol. 2013, 48, 8–19. [Google Scholar] [CrossRef]
- Xu, J.-G.; Qiu, Z.-S.; Zhao, X.; Zhong, H.-Y.; Li, G.-R.; Huang, W.-A. Synthesis and characterization of shale stabilizer based on polyethylene glycol grafted nano-silica composite in water-based drilling fluids. J. Pet. Sci. Eng. 2018, 163, 371–377. [Google Scholar] [CrossRef]
- Wang, G.; Ju, Y. Organic shale micropore and mesopore structure characterization by ultra-low pressure N2 physisorption: Experimental procedure and interpretation model. J. Nat. Gas Sci. Eng. 2015, 27, 452–465. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, S.; Li, J. Characterization of pore size distributions of shale oil reservoirs: A case study from Dongying sag, Bohai Bay basin, China. Mar. Pet. Geol. 2019, 100, 297–308. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Marc Bustin, R. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Pet. Geol. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- Zargari, S.; Canter, K.L.; Prasad, M. Porosity evolution in oil-prone source rocks. Fuel 2015, 153, 110–117. [Google Scholar] [CrossRef]
- Zou, C.; Ma, F.; Pan, S.; Zhang, X.; Wu, S.; Fu, G.; Wang, H.; Yang, Z. Formation and distribution potential of global shale oil and the developments of continental shale oil theory and technology in China. Earth Sci. Front. 2023, 30, 128–142. [Google Scholar]
- Lin, Z.-Z.; Li, J.-Q.; Lu, S.-F.; Hu, Q.-H.; Zhang, P.-F.; Wang, J.-J.; Zhi, Q.; Huang, H.-S.; Yin, N.; Wang, Y.; et al. The occurrence characteristics of oil in shales matrix from organic geochemical screening data and pore structure properties: An experimental study. Pet. Sci. 2023, 21, 1–13. [Google Scholar] [CrossRef]
- Jiang, Z.; Tang, X.; Li, Z.; Huang, H.; Yang, P.; Yang, X.; Li, W.; Hao, J. The whole-aperture pore structure characteristics and its effect on gas content of the Longmaxi Formation shale in the southeastern Sichuan basin. Earth Sci. Front. 2016, 23, 126–134. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature; WH Freeman: New York, NY, USA, 1983; Volume 1. [Google Scholar]
- Avnir, D.; Jaroniec, M.J.L. An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials. Langmuir 1989, 5, 1431–1433. [Google Scholar] [CrossRef]
- Bernal, J.L.P.; Bello, M.A. Fractal geometry and mercury porosimetry—Comparison and application of proposed models on building stones. Appl. Surf. Sci. 2001, 185, 99–107. [Google Scholar] [CrossRef]
- Ge, X.; Li, J.; Lu, S.; Chen, F.; Yang, D.; Wang, Q. Fractal characteristics of tight sandstone reservoir using mercury intrusion capillary pressure:a case of tight sandstone reservoir in Jizhong Depression. Lithol. Reserv. 2017, 29, 106–112. [Google Scholar]
- Krohn, C.E.J.J.o.G.R.S.E. Fractal measurements of sandstones, shales, and carbonates. J. Geophys. Res. Solid Earth 1988, 93, 3297–3305. [Google Scholar] [CrossRef]
- Pfeifer, P.; Wu, Y.J.; Cole, M.W.; Krim, J. Multilayer adsorption on a fractally rough surface. Phys. Rev. Lett. 1989, 62, 1997–2000. [Google Scholar] [CrossRef] [PubMed]
- Mahamud, M.M.; Novo, M.F. The use of fractal analysis in the textural characterization of coals. Fuel 2008, 87, 222–231. [Google Scholar] [CrossRef]
- Yang, F.; Ning, Z.; Wang, Q.; Kong, D.; Peng, K.; Xiao, L. Fractal Characteristics of Nanopore in Shales. Nat. Gas Geosci. 2014, 25, 618–623. [Google Scholar]
- Chen, Y.; Zou, C.; Maria, M.; Zhu, R.; Bai, B.; Yang, Z. Porosity and Fractal Characteristics of Shale across a Maturation Gradient. Nat. Gas Geosci. 2015, 26, 1646–1656. [Google Scholar]
- Dathe, A.; Eins, S.; Niemeyer, J.; Gerold, G. The surface fractal dimension of the soil-pore interface as measured by image analysis. Geoderma 2001, 103, 203–229. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Sandoval-Díaz, L.-E.; Aragon-Quiroz, J.-A.; Ruíz-Cardona, Y.-S.; Domínguez-Monterroza, A.-R.; Trujillo, C.-A. Fractal analysis at mesopore scale of modified USY zeolites by nitrogen adsorption: A classical thermodynamic approach. Microporous Mesoporous Mater. 2017, 237, 260–267. [Google Scholar] [CrossRef]
- Jaroniec, M.J.L. Evaluation of the fractal dimension from a single adsorption isotherm. Langmuir 1995, 11, 2316–2317. [Google Scholar] [CrossRef]
- Tatlıer, M.; Erdem-Şenatalar, A.J.T.J.o.P.C.B. Method to evaluate the fractal dimensions of solid adsorbents. J. Phys. Chem. B 1999, 103, 4360–4365. [Google Scholar] [CrossRef]
- Rouquerol, J.; Avnir, D.; Fairbridge, C.W.; Everett, D.H.; Haynes, J.; Pernicone, N.; Ramsay, J.D.; Sing, K.S.W.; Unger, K.K.J.P.; Physical Chemistry Division. Recommendations for the characterization of porous solids (Technical Report). Pure Appl. Chem. 1994, 66, 1739–1758. [Google Scholar] [CrossRef]
- Wong, P.; Howard, J.; Lin, J.S. Surface roughening and the fractal nature of rocks. Phys. Rev. Lett. 1986, 57, 637–640. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Yang, Z.; Zhu, R.; Zhang, G.; Hou, L.; Wu, S.; Tao, S.; Yuan, X.; Dong, D.; Wang, Y.; et al. Progress in China’s Unconventional Oil & Gas Exploration and Development and Theoretical Technologies. Acta Geol. Sin. 2015, 89, 979–1007. [Google Scholar]
- Zou, C.; Yang, Z.; Zhang, G.; Zhu, R.; Tao, S.; Yuan, X.; Hou, L.; Dong, D.; Guo, Q.; Song, Y.; et al. Theory, Technology and Practice of Unconventional Petroleum Geology. Earth Sci. 2023, 48, 2376–2397. [Google Scholar] [CrossRef]
- Li, J.; Lu, S.; Cai, J.; Zhang, P.; Xue, H.; Zhao, X. Adsorbed and Free Oil in Lacustrine Nanoporous Shale: A Theoretical Model and a Case Study. Energy Fuels 2018, 32, 12247–12258. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, S.; Li, J.; Wang, J.; Zhang, J. Oil occurrence mechanism in nanoporous shales: A theoretical and experimental study. Mar. Pet. Geol. 2023, 156, 106422. [Google Scholar] [CrossRef]
- Brauer, A.; Casanova, J. Chronology and depositional processes of the laminated sediment record from Lac d'Annecy, French Alps. J. Paleolimnol. 2001, 25, 163–177. [Google Scholar] [CrossRef]
- Zhang, C.; Guan, P.; Zhang, J.; Liang, X.; Ding, X.; You, Y. A Review of the Progress on Fractal Theory to Characterize the Pore Structure of Unconventional Oil and Gas Reservoirs. Acta Sci. Nat. Univ. Pekin. 2023, 59, 897–908. [Google Scholar]
- Wang, X.; Qi, M.; Hu, Y.; Qiu, Y. Analysis of the shale pore structures by the combination of high-pressure mercury injection and fractal theory. Pet. Geol. Oilfield Dev. Daqing 2015, 34, 165–169. [Google Scholar]
- Zeng, H.; Wang, F.; Luo, J.; Tao, T.; Wu, S. Characteristics of pore structure of intersalt shale oil reservoir by low temperature nitrogen adsorption and high pressure mercury pressure methods in Qianjiang Sag. Bull. Geol. Sci. Technol. 2021, 40, 242–252. [Google Scholar]
- Yu, K.; Cao, Y.; Qiu, L.; Sun, P.; Jia, X.; Wan, M. Geochemical characteristics and origin of sodium carbonates in a closed alkaline basin: The Lower Permian Fengcheng Formation in the Mahu Sag, northwestern Junggar Basin, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 511, 506–531. [Google Scholar] [CrossRef]
- Kelly, S.; El-Sobky, H.; Torres-Verdín, C.; Balhoff, M.T. Assessing the utility of FIB-SEM images for shale digital rock physics. Adv. Water Resour. 2016, 95, 302–316. [Google Scholar] [CrossRef]
- Zhang, S.; Meng, Z.; Guo, Z.; Zhang, M.; Han, C. Characteristics and major controlling factors of shale reservoirsin the Longmaxi Fm, Fuling area, Sichuan Basin. Nat. Gas Ind. 2014, 34, 16–24. [Google Scholar]
Well | Sample ID | Depth | Lithology | TOC | S1 | S2 | Tmax | Ro | Quartz | Feldspar | Calcite | Dolomite | Clay | Pyrite |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(m) | (wt.%) | (mg/g) | (mg/g) | (%) | (%) | (wt.%) | (wt.%) | (wt.%) | (wt.%) | (wt.%) | (wt.%) | |||
A | A-1 | 3737.20 | Organic-containing layered mixed shale | 1.99 | 5.14 | 5.55 | 441 | 0.80 | 22.7 | 2 | 40.5 | - | 23.1 | 3.60 |
B | B-2 | 3216.60 | 1.84 | 1.48 | 7.45 | 441 | 0.74 | 22.3 | 7.5 | 17.5 | - | 44.5 | 3.50 | |
A | A-2 | 3637.80 | Organic-rich layered mixed shale | 7.00 | 5.14 | 6.55 | 443 | 0.79 | 25.8 | 4.3 | 19.4 | - | 38.6 | 6.40 |
A | A-3 | 3667.00 | 4.48 | 16.82 | 18.48 | 449 | 0.74 | 22.3 | 3.4 | 20.3 | - | 34.3 | 3.70 | |
C | C-7 | 3343.90 | Organic-rich layered calcareous shale | 5.22 | 4.78 | 20.11 | 437 | 0.71 | 17.1 | 1.1 | 49.1 | 9.70 | 19.6 | 3.40 |
E | E-1 | 3784.35 | 3.36 | 2.24 | 9.79 | 445 | 0.76 | 10.9 | 3.7 | 72.7 | 3.80 | 8.6 | 0.30 | |
C | C-8 | 3334.65 | Organic-rich laminated calcareous shale | 3.44 | 1.46 | 15 | 439 | 0.72 | 18.1 | 3.2 | 44.1 | 8.60 | 22.5 | 3.50 |
C | C-9 | 3336.25 | 5.17 | 2.19 | 22.79 | 436 | 0.70 | 13 | 1.5 | 58 | - | 19.2 | 3.30 | |
D | D-1 | 3537.10 | 7.73 | 7.25 | 40.46 | 446 | 0.73 | 15.9 | 2.5 | 45.2 | 7.80 | 21.6 | 5.80 | |
C | C-14 | 3609.50 | Organic-containing laminated calcareous shale | 2.00 | 0.9 | 6.43 | 440 | 0.73 | 4.7 | 1.1 | 18.5 | 67.30 | 7.8 | 0.60 |
C | C-13 | 3335.60 | 0.69 | 0.42 | 1.32 | 440 | 0.73 | 5.9 | 0.9 | 22.2 | 58.80 | 10.4 | 1.80 | |
C | C-1 | 3347.07 | Organic-rich laminated mixed shale | 8.60 | 4.23 | 36.08 | 438 | 0.72 | 28.7 | 3.1 | 21.2 | - | 41 | 3.70 |
C | C-16 | 3344.60 | 2.44 | 0.85 | 7.55 | 443 | 0.75 | 22.4 | 5.5 | 35.8 | 7.10 | 25.6 | 3.60 | |
F | F-1 | 3087.60 | 7.90 | 8.16 | 43.5 | 440 | 0.73 | 22.6 | 5.7 | 26.6 | 18.80 | 21.4 | 4.90 | |
C | C-15 | 3351.10 | 4.74 | 2.8 | 20.98 | 437 | 0.71 | 18.9 | 1.6 | 35.8 | - | 28 | 4.90 | |
B | B-1 | 3442.00 | Organic-containing laminated mixed shale | 1.26 | 1.59 | 4.09 | 441 | 0.74 | 22.7 | 18.6 | 13.7 | 12.80 | 31.2 | 1.00 |
Sample ID | DH1 | RH12 | DH2 | RH22 | DH3 | RH32 | DH4 | RH42 | DN1 | RN12 | DN2 | RN22 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A-1 | 2.740 | 0.948 | 2.059 | 0.985 | 2.938 | 0.987 | 2.238 | 0.990 | 2.401 | 0.995 | 2.451 | 0.999 |
B-2 | 2.781 | 0.998 | 2.082 | 0.996 | 2.260 | 0.931 | 2.920 | 0.984 | 1.974 | 0.921 | 2.414 | 0.997 |
A-2 | 2.765 | 0.933 | 2.104 | 0.986 | 2.366 | 0.980 | 3.247 | 0.999 | 2.037 | 0.925 | 2.416 | 0.996 |
A-3 | 2.753 | 0.987 | 2.146 | 0.977 | 2.309 | 0.962 | 2.833 | 0.979 | 2.033 | 0.935 | 2.439 | 0.998 |
C-7 | 2.698 | 0.988 | 2.048 | 0.984 | 2.955 | 0.993 | 2.719 | 0.997 | 2.398 | 0.990 | 2.689 | 0.975 |
E-1 | 2.838 | 0.940 | 2.087 | 0.934 | 2.834 | 0.993 | 2.767 | 0.998 | 2.383 | 0.978 | 2.677 | 0.982 |
C-8 | 2.792 | 0.976 | 2.107 | 0.970 | 2.283 | 0.964 | 2.727 | 0.984 | 2.358 | 0.988 | 2.438 | 0.998 |
C-9 | 2.798 | 0.978 | 2.079 | 0.952 | 2.533 | 0.964 | 2.944 | 0.999 | 2.419 | 0.996 | 2.462 | 0.999 |
D-1 | 2.766 | 0.980 | 2.048 | 0.979 | 2.773 | 0.981 | 3.004 | 0.999 | 2.368 | 0.988 | 2.443 | 0.996 |
C-14 | 2.633 | 0.955 | 2.192 | 0.952 | 2.378 | 0.978 | 2.456 | 0.998 | 1.895 | 0.924 | 2.431 | 0.993 |
C-13 | 2.794 | 0.974 | 2.046 | 0.978 | 2.749 | 0.992 | 2.477 | 0.990 | 1.938 | 0.813 | 2.508 | 0.988 |
C-1 | 2.782 | 0.857 | 2.098 | 0.969 | 2.349 | 0.994 | 2.768 | 0.999 | 2.097 | 0.938 | 2.450 | 0.999 |
C-16 | 2.709 | 0.952 | 2.129 | 0.939 | 2.331 | 0.991 | 2.816 | 0.982 | 2.418 | 0.995 | 2.474 | 0.999 |
F-1 | 2.729 | 0.994 | 2.086 | 0.942 | 2.508 | 0.968 | 2.801 | 0.988 | 2.449 | 0.998 | 2.504 | 0.999 |
C-15 | 2.724 | 0.972 | 2.055 | 0.985 | 2.710 | 0.972 | 2.904 | 0.995 | 2.394 | 0.992 | 2.422 | 0.999 |
B-1 | 2.577 | 0.992 | 2.100 | 0.956 | 2.596 | 0.980 | 2.946 | 0.956 | 2.405 | 0.996 | 2.440 | 0.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Qiao, J.; Zeng, J.; Li, C.; Liu, Y.; Kong, Z.; Liu, X. Heterogeneity of Micro- and Nanopore Structure of Lacustrine Shales with Complex Lamina Structure. Fractal Fract. 2024, 8, 245. https://doi.org/10.3390/fractalfract8040245
Liu S, Qiao J, Zeng J, Li C, Liu Y, Kong Z, Liu X. Heterogeneity of Micro- and Nanopore Structure of Lacustrine Shales with Complex Lamina Structure. Fractal and Fractional. 2024; 8(4):245. https://doi.org/10.3390/fractalfract8040245
Chicago/Turabian StyleLiu, Shuning, Juncheng Qiao, Jianhui Zeng, Chuanming Li, Yazhou Liu, Zheng Kong, and Xinlong Liu. 2024. "Heterogeneity of Micro- and Nanopore Structure of Lacustrine Shales with Complex Lamina Structure" Fractal and Fractional 8, no. 4: 245. https://doi.org/10.3390/fractalfract8040245
APA StyleLiu, S., Qiao, J., Zeng, J., Li, C., Liu, Y., Kong, Z., & Liu, X. (2024). Heterogeneity of Micro- and Nanopore Structure of Lacustrine Shales with Complex Lamina Structure. Fractal and Fractional, 8(4), 245. https://doi.org/10.3390/fractalfract8040245