A Novel Method of Blockchain Cryptocurrency Price Prediction Using Fractional Grey Model
Abstract
:1. Introduction
2. Methods
2.1. FGM (1,1)
2.2. PSO Algorithm
2.3. Accuracy Check
3. Experimental Analysis
3.1. Experiment 1: BTC Price Prediction
3.2. Experiment 2: ETH Price Prediction
3.3. Experiment 3: LTC Price Prediction
3.4. Additional Experiments: BTC, ETH, LTC Price Prediction
3.5. Comprehensive Analysis of BTC, ETH, and LTC Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Poongodi, M.; Sharma, A.; Vijayakumar, V.; Bhardwaj, V.; Sharma, A.P.; Iqbal, R.; Kumar, R. Prediction of the price of Ethereum blockchain cryptocurrency in an industrial finance system. Comput. Electr. Eng. 2020, 81, 106527. [Google Scholar]
- Kim, Y.; Byun, Y.C. Ultra-short-term continuous time series prediction of blockchain-based cryptocurrency using LSTM in the big data era. Appl. Sci. 2022, 12, 11080. [Google Scholar] [CrossRef]
- Li, T.R.; Chamrajnagar, A.S.; Fong, X.R.; Rizik, N.R.; Fu, F. Sentiment-based prediction of alternative cryptocurrency price fluctuations using gradient boosting tree model. Front. Phys. 2019, 7, 98. [Google Scholar] [CrossRef] [Green Version]
- Joo, M.H.; Nishikawa, Y.; Dandapani, K. Cryptocurrency, a successful application of blockchain technology. Manag. Financ. 2019, 46, 715–733. [Google Scholar]
- Zhong, Z.; Wei, S.; Xu, Y.; Zhao, Y.; Zhou, F.; Luo, F.; Shi, R. SilkViser: A Visual Explorer of Blockchain-Based Cryptocurrency Transaction Data. In Proceedings of the 15th IEEE Conference on Visual Analytics Science and Technology (VAST), Salt Lake City, UT, USA, 25–30 October 2020. [Google Scholar]
- Xu, L.; Chen, L.; Gao, Z.; Carranco, L.; Fan, X.; Shah, N.; Diallo, N.; Shi, W. Supporting blockchain-based cryptocurrency mobile payment with smart devices. IEEE Consum. Electron. Mag. 2020, 9, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.P.; Agrawal, K.K.; Bhati, B.S.; Al-Turjman, F.; Mostarda, L. Blockchain-based cryptocurrency regulation: An overview. Comput. Econ. 2022, 59, 1659–1675. [Google Scholar] [CrossRef]
- Koroma, J.; Rongting, Z.; Muhideen, S.; Akintunde, T.Y.; Amosun, T.S.; Dauda, S.J.; Sawaneh, I.A. Assessing citizens’ behavior towards blockchain cryptocurrency adoption in the Mano River Union States: Mediation, moderation role of trust and ethical issues. Technol. Soc. 2022, 68, 101885. [Google Scholar] [CrossRef]
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 8 January 2023).
- Islam, M.R.; Rashid, M.M.; Rahman, M.A.; Mohamad, M.H.S.B.; Embong, A.H.B. A comprehensive analysis of blockchain-based cryptocurrency mining impact on energy consumption. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 590–598. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, H.N.; Zhou, J.; Mondal, S.K.; García, M.M.; Wang, H. Forecasting cryptocurrency price using convolutional neural networks with weighted and attentive memory channels. Expert Syst. Appl. 2021, 183, 115378. [Google Scholar] [CrossRef]
- Parekh, R.; Patel, N.P.; Thakkar, N.; Gupta, R.; Tanwar, S.; Sharma, G.; Davidson, I.E.; Sharma, R. DL-GuesS: Deep learning and sentiment analysis-based cryptocurrency price prediction. IEEE Access 2022, 10, 35398–35409. [Google Scholar] [CrossRef]
- Sun, X.; Liu, M.; Sima, Z. A novel cryptocurrency price trend forecasting model based on LightGBM. Finance Res. Lett. 2020, 32, 101084. [Google Scholar] [CrossRef]
- Malsa, N.; Vyas, V.; Gautam, J. RMSE calculation of LSTM models for predicting prices of different cryptocurrencies. Int. J. Syst. Assur. Eng. Manag. 2021. [Google Scholar] [CrossRef]
- Nasirtafreshi, I. Forecasting cryptocurrency prices using recurrent neural network and long short-term memory. Data Knowl. Eng. 2022, 139, 102009. [Google Scholar] [CrossRef]
- Alahmari, S.A. Using machine learning ARIMA to predict the price of cryptocurrencies. ISeCure 2019, 11, 139–144. [Google Scholar]
- Ammer, M.A.; Aldhyani, T.H.H. Deep learning algorithm to predict cryptocurrency fluctuation prices: Increasing investment awareness. Electronics 2022, 11, 2349. [Google Scholar] [CrossRef]
- Livieris, I.E.; Stavroyiannis, S.; Pintelas, E.; Kotsilieris, T.; Pintelas, P. A dropout weight-constrained recurrent neural network model for forecasting the price of major cryptocurrencies and CCi30 index. Evol. Syst. 2022, 13, 85–100. [Google Scholar] [CrossRef]
- Jay, P.; Kalariya, V.; Parmar, P.; Tanwar, S.; Kumar, N.; Alazab, M. Stochastic neural networks for cryptocurrency price prediction. IEEE Access 2020, 8, 82804–82818. [Google Scholar] [CrossRef]
- Tanwar, S.; Patel, N.P.; Patel, S.N.; Patel, J.R.; Sharma, G.; Davidson, I.E. Deep learning-based cryptocurrency price prediction scheme with inter-dependent relations. IEEE Access 2021, 9, 138633–138646. [Google Scholar] [CrossRef]
- Wołk, K. Advanced social media sentiment analysis for short-term cryptocurrency price prediction. Expert Syst. 2020, 37, e12493. [Google Scholar] [CrossRef]
- Patel, M.M.; Tanwar, S.; Gupta, R.; Kumar, N. A deep learning-based cryptocurrency price prediction scheme for financial institutions. J. Inf. Secur. Appl. 2020, 55, 102583. [Google Scholar] [CrossRef]
- Deng, J. Control problems of grey systems. Syst. Control. Lett. 1982, 1, 288–294. [Google Scholar]
- Zhang, X.; Wang, J.; Wu, L.; Cheng, M.; Zhang, D. Prediction of the total output value of China’s construction industry based on FGM (1,1) model. Axioms 2022, 11, 450. [Google Scholar] [CrossRef]
- Wang, J.; Sun, C.; Sun, Q.; Yan, H. Gear Fault Trend Prediction Based On FGM (1,1) Model. In Proceedings of the 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC), Hefei, China, 19–21 May 2017. [Google Scholar]
- Salookolaei, D.D.; Babaei, P.; Gorji, S.H. Prediction of renewable energy production using grey systems theory. Int. J. Nonlinear Anal. Appl. 2019, 10, 39–51. [Google Scholar]
- Xiong, C.; Wu, L. Prediction of China’s express business volume based on FGM (1,1) model. J. Math. 2021, 2021, 8585238. [Google Scholar] [CrossRef]
- Pei, L.; Liu, J. A predictive analysis of the business environment of economies along the belt and road using the fractional-order grey model. J. Math. 2021, 2021, 3153731. [Google Scholar] [CrossRef]
- Wu, L.; Liu, S.; Yao, L.; Yan, S.; Liu, D. Grey system model with the fractional order accumulation. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 1775–1785. [Google Scholar] [CrossRef]
- Wu, L.; Guo, X.; Chen, Y. Grey relational entropy calculation and fractional prediction of water and economy in the Beijing-Tianjin-Hebei Region. J. Math. 2021, 2021, 4418260. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Dai, W.; Wu, L. Prediction of the share of solar power in China based on FGM (1,1) model. Axioms 2022, 11, 581. [Google Scholar] [CrossRef]
- Khan, A.M.; Osińska, M. How to predict energy consumption in BRICS countries? Energies 2021, 14, 2749. [Google Scholar] [CrossRef]
- Gu, H.; Yin, K. Forecasting algae and shellfish carbon sink capability on fractional order accumulation grey model. Math. Biosci. Eng. 2022, 19, 5409–5427. [Google Scholar] [CrossRef]
- Gatabazi, P.; Mba, J.C.; Pindza, E.; Labuschagne, C. Grey Lotka–Volterra models with application to cryptocurrencies adoption. Chaos Solitons Fractals 2019, 122, 47–57. [Google Scholar] [CrossRef]
- Gatabazi, P.; Mba, J.C.; Pindza, E. Modeling cryptocurrencies transaction counts using variable-order fractional grey-Lotka-Volterra dynamical system. Chaos Solitons Fractals 2019, 127, 283–290. [Google Scholar] [CrossRef]
- Gatabazi, P.; Mba, J.C.; Pindza, E. Fractional gray Lotka-Volterra models with application to cryptocurrencies adoption. Chaos 2019, 29, 73116. [Google Scholar] [CrossRef] [PubMed]
- Jalali, M.F.M.; Heidari, H. Predicting changes in Bitcoin price using grey system theory. Financ. Innov. 2020, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Meng, W.; Zeng, B.; Li, S. A novel fractional-order grey prediction model and its modeling error analysis. Information 2019, 10, 167. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Lim, S.T.; Wang, K. Prediction of farmers’ income in Hebei Province based on the Fractional Grey Model (1,1). J. Math. 2021, 2021, 4869135. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the Icnn95-international Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995. [Google Scholar]
- Ghannadi, P.; Kourehli, S.S.; Mirjalili, S. The application of PSO in structural damage detection: An analysis of the previously released publications (2005–2020). Frat. Ed Integrità Strutt. 2022, 16, 460–489. [Google Scholar] [CrossRef]
- Shin, J.J.; Bang, H. UAV path planning under dynamic threats using an improved PSO algorithm. Int. J. Aerosp. Eng. 2020, 2020, 8820284. [Google Scholar] [CrossRef]
- Agrawal, A.; Tripathi, S. Particle swarm optimization with adaptive inertia weight based on cumulative binomial probability. Evol. Intell. 2021, 14, 305–313. [Google Scholar] [CrossRef]
- Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, L.; Cheng, M.; Zhang, D. Prediction of whole social electricity consumption in Jiangsu province based on metabolic FGM (1,1) model. Mathematics 2022, 10, 1791. [Google Scholar] [CrossRef]
- Wang, J.; Cao, J.; Yuan, S. Shear wave velocity prediction based on adaptive particle swarm optimization optimized recurrent neural network. J. Pet. Sci. Eng. 2020, 194, 107466. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, Q.; Mao, W.; Liu, S.; Dou, Z.; Liu, G. Hybrid particle swarm and grey wolf optimizer and its application to clustering optimization. Appl. Soft Comput. 2021, 101, 107061. [Google Scholar] [CrossRef]
- Venkatesan, C.; Kannadasan, R.; Alsharif, M.H.; Kim, M.K.; Nebhen, J. A novel multiobjective hybrid technique for siting and sizing of distributed generation and capacitor banks in radial distribution systems. Sustainability 2021, 13, 3308. [Google Scholar] [CrossRef]
- Duan, H.; Huang, J.; Wang, S.; He, C. A novel grey model of impulse delay and its application in forecasting stock price. J. Intell Fuzzy Syst. 2021, 41, 3395–3413. [Google Scholar] [CrossRef]
- Marasco, A.; Picucci, A.; Romano, A. Market share dynamics using Lotka–Volterra models. Technol. Forecast. Soc. Chang. 2016, 105, 49–62. [Google Scholar] [CrossRef]
MAPE (100%) | Predictive Precision |
---|---|
<10 | Highly accurate |
10–20 | Good |
20–50 | Reasonable |
>50 | Inaccurate |
Date | Actual Values | GM (1,1) | FGM (1,1) | ||
---|---|---|---|---|---|
Values | APE (%) | Values | APE (%) | ||
2022.9.11 | 21,834.9000 | 21,834.9000 | 0.0000 | 21,834.9000 | 0.0000 |
2022.9.12 | 22,395.3000 | 21,205.8070 | 5.3114 | 20,850.1884 | 6.8993 |
2022.9.13 | 20,175.5000 | 20,900.8779 | 3.5953 | 20,424.5093 | 1.2342 |
2022.9.14 | 20,222.5000 | 20,600.3336 | 1.8684 | 20,156.7299 | 0.3252 |
2022.9.15 | 19,701.7000 | 20,304.1110 | 3.0577 | 19,957.9444 | 1.3006 |
2022.9.16 | 19,802.4000 | 20,012.1479 | 1.0592 | 19,796.4922 | 0.0298 |
2022.9.17 | 20,113.5000 | 19,724.3831 | 1.9346 | 19,658.3355 | 2.2630 |
2022.9.18 | 19,418.8000 | 19,440.7562 | 0.1131 | 19,536.3364 | 0.6053 |
2022.9.19 | 19,538.9000 | 19,161.2077 | 1.9330 | 19,426.4718 | 0.5754 |
2022.9.20 | 18,872.4000 | 18,885.6790 | 0.0704 | 19,326.2674 | 2.4049 |
MAPE (%) | 1.8943 | 1.5638 | |||
MAE | 390.6908 | 326.1040 | |||
RMSE | 527.7727 | 543.9690 | |||
2022.9.21 | 18,489.0000 | 186,14.1122 | 0.6767 | 19,234.0777 | 4.0298 |
2022.9.22 | 19,404.0000 | 183,46.4505 | 5.4502 | 19,148.7311 | 1.3155 |
2022.9.23 | 19,293.5000 | 180,82.6375 | 6.2760 | 19,069.3431 | 1.1618 |
2022.9.24 | 18,925.2000 | 178,22.6181 | 5.8260 | 18,995.2140 | 0.3700 |
2022.9.25 | 18,803.2000 | 175,66.3377 | 6.5779 | 18,925.7699 | 0.6519 |
MAPE (%) | 4.9614 | 1.5058 | |||
MAE | 946.5937 | 283.4175 | |||
RMSE | 1033.9988 | 371.6113 |
Date | Actual Values | GM (1,1) | FGM (1,1) | ||
---|---|---|---|---|---|
Values | APE (%) | Values | APE (%) | ||
2022.9.11 | 1766.9300 | 1766.9300 | 0.0000 | 1766.9300 | 0.0000 |
2022.9.12 | 1716.4200 | 1675.8491 | 2.3637 | 1690.0567 | 1.5359 |
2022.9.13 | 1574.4700 | 1623.7468 | 3.1297 | 1622.8950 | 3.0756 |
2022.9.14 | 1637.9200 | 1573.2643 | 3.9474 | 1558.4134 | 4.8541 |
2022.9.15 | 1472.6400 | 1524.3514 | 3.5115 | 1502.6382 | 2.0370 |
2022.9.16 | 1434.0100 | 1476.9591 | 2.9950 | 1456.0791 | 1.5390 |
2022.9.17 | 1468.7900 | 1431.0403 | 2.5701 | 1417.3088 | 3.5050 |
2022.9.18 | 1335.0100 | 1386.5492 | 3.8606 | 1384.6678 | 3.7197 |
2022.9.19 | 1376.0000 | 1343.4412 | 2.3662 | 1356.7640 | 1.3980 |
2022.9.20 | 1323.3300 | 1301.6735 | 1.6365 | 1332.5384 | 0.6958 |
MAPE (%) | 2.6381 | 2.2360 | |||
MAE | 39.2668 | 33.5946 | |||
RMSE | 42.8762 | 40.3971 | |||
2022.9.21 | 1247.7400 | 1261.2043 | 1.0791 | 1311.2092 | 5.0867 |
2022.9.22 | 1326.4400 | 1221.9934 | 7.8742 | 1292.2011 | 2.5813 |
2022.9.23 | 1327.9600 | 1184.0015 | 10.8406 | 1275.0856 | 3.9816 |
2022.9.24 | 1317.0000 | 1147.1908 | 12.8936 | 1259.5389 | 4.3630 |
2022.9.25 | 1294.2600 | 1111.5245 | 14.1189 | 1245.3116 | 3.7820 |
MAPE (%) | 9.3613 | 3.9589 | |||
MAE | 122.8828 | 51.3984 | |||
RMSE | 137.1436 | 52.3337 |
Date | Actual Values | GM (1,1) | FGM (1,1) | ||
---|---|---|---|---|---|
Values | APE (%) | Values | APE (%) | ||
2022.9.11 | 62.2100 | 62.2100 | 0.0000 | 62.2100 | 0.0000 |
2022.9.12 | 61.3700 | 61.1800 | 0.3096 | 60.7332 | 1.0376 |
2022.9.13 | 59.1000 | 59.9561 | 1.4486 | 59.9475 | 1.4340 |
2022.9.14 | 60.1800 | 58.7566 | 2.3652 | 58.8233 | 2.2544 |
2022.9.15 | 56.3300 | 57.5812 | 2.2212 | 57.5584 | 2.1807 |
2022.9.16 | 55.9500 | 56.4293 | 0.8567 | 56.3071 | 0.6382 |
2022.9.17 | 57.8200 | 55.3004 | 4.3577 | 55.1421 | 4.6314 |
2022.9.18 | 52.6300 | 54.1941 | 2.9719 | 54.0873 | 2.7690 |
2022.9.19 | 52.8900 | 53.1099 | 0.4158 | 53.1431 | 0.4785 |
2022.9.20 | 52.3000 | 52.0474 | 0.4830 | 52.2998 | 0.0004 |
MAPE (%) | 1.5429 | 1.5424 | |||
MAE | 0.8756 | 0.8815 | |||
RMSE | 1.1618 | 1.1815 | |||
2022.9.21 | 51.1400 | 51.0062 | 0.2616 | 51.5450 | 0.7919 |
2022.9.22 | 53.5500 | 49.9858 | 6.6558 | 50.8659 | 5.0123 |
2022.9.23 | 55.2900 | 48.9858 | 11.4021 | 50.2515 | 9.1129 |
2022.9.24 | 53.4300 | 48.0059 | 10.1518 | 49.6920 | 6.9961 |
2022.9.25 | 52.5200 | 47.0455 | 10.4236 | 49.1795 | 6.3604 |
MAPE (%) | 7.7790 | 5.6547 | |||
MAE | 4.1802 | 3.0412 | |||
RMSE | 4.7298 | 3.4025 |
Date | BTC | ETH | LTC | ||||||
---|---|---|---|---|---|---|---|---|---|
X(0) | GM (1,1) | FGM (1,1) | X(0) | GM (1,1) | FGM (1,1) | X(0) | GM (1,1) | FGM (1,1) | |
2022.4.13 | 41,133.00 | 41,133.00 | 41,133.00 | 3116.92 | 3116.92 | 3116.92 | 110.50 | 110.50 | 110.50 |
2022.4.14 | 39,936.00 | 40,320.16 | 39,936.12 | 3021.93 | 3049.92 | 3013.08 | 107.40 | 111.38 | 107.40 |
2022.4.15 | 40,560.00 | 40,363.51 | 40,186.51 | 3042.01 | 3045.56 | 3031.15 | 110.90 | 111.05 | 110.87 |
2022.4.16 | 40,382.00 | 40,406.91 | 40,493.27 | 3058.96 | 3041.21 | 3051.17 | 114.30 | 110.73 | 112.38 |
2022.4.17 | 39,703.00 | 40,450.35 | 40,674.82 | 2989.05 | 3036.87 | 3059.27 | 108.80 | 110.40 | 112.66 |
2022.4.18 | 40,803.00 | 40,493.84 | 40,720.79 | 3055.64 | 3032.53 | 3055.63 | 111.30 | 110.07 | 112.15 |
2022.4.19 | 41,503.00 | 40,537.38 | 40,655.19 | 3102.01 | 3028.19 | 3042.88 | 113.80 | 109.75 | 111.11 |
2022.4.20 | 41,368.00 | 40,580.96 | 40,506.15 | 3076.38 | 3023.87 | 3023.68 | 111.90 | 109.43 | 109.69 |
2022.4.21 | 40,482.00 | 40,624.59 | 40,298.31 | 2983.95 | 3019.55 | 3000.26 | 106.90 | 109.11 | 108.01 |
2022.4.22 | 39,709.00 | 40,668.27 | 40,051.34 | 2963.00 | 3015.23 | 2974.29 | 105.40 | 108.78 | 106.13 |
MAPE (%) | 1.1145 | 0.9288 | 1.1022 | 0.7801 | 2.0580 | 1.2088 | |||
MAE | 451.6590 | 377.4600 | 33.4380 | 23.7160 | 2.2640 | 1.3400 | |||
RMSE | 577.3478 | 521.1117 | 40.1671 | 34.4310 | 2.6738 | 1.8219 | |||
2022.4.23 | 39,418.00 | 40,712.00 | 39,780.21 | 2931.90 | 3010.92 | 2947.02 | 105.00 | 108.46 | 104.12 |
2022.4.24 | 39,464.00 | 40,755.77 | 39,496.04 | 2922.03 | 3006.62 | 2919.32 | 104.50 | 108.15 | 102.02 |
2022.4.25 | 40,427.00 | 40,799.59 | 39,206.87 | 3006.04 | 3002.32 | 2891.78 | 104.50 | 107.83 | 99.85 |
2022.4.26 | 38,113.00 | 40,843.45 | 38,918.41 | 2810.42 | 2998.03 | 2864.82 | 98.60 | 107.51 | 97.63 |
2022.4.27 | 39,243.00 | 40,887.37 | 38,634.58 | 2888.99 | 2993.75 | 2838.70 | 100.60 | 107.19 | 95.40 |
MAPE (%) | 3.7664 | 1.5364 | 3.2031 | 1.6172 | 5.1124 | 2.7628 | |||
MAE | 1466.6360 | 605.6420 | 91.9400 | 47.3560 | 5.1880 | 2.8360 | |||
RMSE | 1651.7408 | 726.6086 | 109.1656 | 61.2858 | 5.6427 | 3.3624 |
Date | BTC | ETH | LTC | ||||||
---|---|---|---|---|---|---|---|---|---|
X(0) | GM (1,1) | FGM (1,1) | X(0) | GM (1,1) | FGM (1,1) | X(0) | GM (1,1) | FGM (1,1) | |
2023.6.16 | 26,341.30 | 26,341.30 | 26,341.30 | 1717.92 | 1717.92 | 1717.92 | 76.12 | 76.12 | 76.12 |
2023.6.17 | 26,515.00 | 26,424.51 | 25,647.88 | 1727.79 | 1722.82 | 1698.68 | 76.87 | 76.10 | 75.11 |
2023.6.18 | 26,339.70 | 26,998.68 | 26,719.30 | 1720.98 | 1747.01 | 1735.85 | 77.20 | 77.87 | 77.48 |
2023.6.19 | 26,845.90 | 27,585.33 | 27,809.49 | 1737.06 | 1771.53 | 1776.42 | 77.51 | 79.68 | 80.08 |
2023.6.20 | 28,307.70 | 28,184.73 | 28,707.35 | 1791.61 | 1796.41 | 1811.83 | 80.31 | 81.53 | 82.41 |
2023.6.21 | 29,996.90 | 28,797.16 | 29,393.97 | 1889.87 | 1821.63 | 1840.53 | 85.12 | 83.42 | 84.37 |
2023.6.22 | 29,890.50 | 29,422.89 | 29,890.51 | 1872.32 | 1847.21 | 1862.78 | 85.97 | 85.36 | 85.97 |
2023.6.23 | 30,679.40 | 30,062.22 | 30,225.90 | 1891.97 | 1873.14 | 1879.34 | 91.27 | 87.35 | 87.24 |
2023.6.24 | 30,533.60 | 30,715.44 | 30,428.16 | 1875.00 | 1899.44 | 1891.08 | 89.67 | 89.37 | 88.22 |
2023.6.25 | 30,465.30 | 31,382.85 | 30,522.00 | 1898.80 | 1926.11 | 1898.81 | 88.22 | 91.45 | 88.95 |
MAPE (%) | 1.7215 | 1.3732 | 1.2741 | 1.0589 | 1.7173 | 1.6337 | |||
MAE | 499.5790 | 382.8540 | 23.4200 | 19.1160 | 1.4580 | 1.3680 | |||
RMSE | 625.9578 | 506.7286 | 29.8302 | 24.4338 | 1.9073 | 1.8348 | |||
2023.6.26 | 30,267.00 | 32,064.77 | 30,528.53 | 1859.00 | 1953.15 | 1903.23 | 87.19 | 93.58 | 89.47 |
2023.6.27 | 30,689.10 | 32,761.50 | 30,465.38 | 1889.51 | 1980.58 | 1904.99 | 88.07 | 95.75 | 89.81 |
2023.6.28 | 30,078.60 | 33,473.37 | 30,347.22 | 1827.95 | 2008.39 | 1904.58 | 82.98 | 97.98 | 90.01 |
2023.6.29 | 30,445.70 | 34,200.71 | 30,186.13 | 1851.92 | 2036.58 | 1902.47 | 84.71 | 100.25 | 90.09 |
2023.6.30 | 30,472.90 | 34,943.86 | 29,992.06 | 1933.80 | 2065.18 | 1899.00 | 108.66 | 102.58 | 90.06 |
MAPE (%) | 10.1969 | 0.9833 | 7.3041 | 2.3840 | 11.6132 | 7.3063 | |||
MAE | 3098.1820 | 298.8560 | 136.3400 | 44.3380 | 10.1380 | 7.0060 | |||
RMSE | 3260.0879 | 312.7903 | 142.1806 | 48.6506 | 10.9843 | 9.3011 |
Model | Blockchain Cryptocurrency | MAPE | MAE | RMSE |
---|---|---|---|---|
GM (1,1) | BTC | 2.9167 | 575.9917 | 686.6783 |
ETH | 4.8791 | 67.1388 | 86.5739 | |
LTC | 3.6216 | 1.9771 | 2.8908 | |
FGM (1,1) | BTC | 1.5445 | 311.8751 | 493.2543 |
ETH | 2.8103 | 39.5292 | 44.4148 | |
LTC | 2.9132 | 1.6014 | 2.1886 |
Model | Blockchain Cryptocurrency | MAPE | MAE | RMSE |
---|---|---|---|---|
GM (1,1) | BTC | 1.9985 | 789.9847 | 1063.7839 |
ETH | 1.8025 | 52.9387 | 71.0491 | |
LTC | 3.0762 | 3.2387 | 3.9217 | |
FGM (1,1) | BTC | 1.1313 | 453.5207 | 597.5157 |
ETH | 1.0591 | 31.5960 | 45.1919 | |
LTC | 1.7268 | 1.8387 | 2.4871 |
Model | Blockchain Cryptocurrency | MAPE | MAE | RMSE |
---|---|---|---|---|
GM (1,1) | BTC | 4.5466 | 1365.7800 | 1950.3691 |
ETH | 3.2841 | 61.0600 | 85.6251 | |
LTC | 5.0159 | 4.3513 | 6.5302 | |
FGM (1,1) | BTC | 1.2433 | 354.8547 | 451.4368 |
ETH | 1.5006 | 27.5233 | 34.4524 | |
LTC | 3.5245 | 3.2473 | 5.5750 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Xiong, J.; Zhao, L.; Wang, X.; Hua, L.; Wu, L. A Novel Method of Blockchain Cryptocurrency Price Prediction Using Fractional Grey Model. Fractal Fract. 2023, 7, 547. https://doi.org/10.3390/fractalfract7070547
Yang Y, Xiong J, Zhao L, Wang X, Hua L, Wu L. A Novel Method of Blockchain Cryptocurrency Price Prediction Using Fractional Grey Model. Fractal and Fractional. 2023; 7(7):547. https://doi.org/10.3390/fractalfract7070547
Chicago/Turabian StyleYang, Yunfei, Jiamei Xiong, Lei Zhao, Xiaomei Wang, Lianlian Hua, and Lifeng Wu. 2023. "A Novel Method of Blockchain Cryptocurrency Price Prediction Using Fractional Grey Model" Fractal and Fractional 7, no. 7: 547. https://doi.org/10.3390/fractalfract7070547
APA StyleYang, Y., Xiong, J., Zhao, L., Wang, X., Hua, L., & Wu, L. (2023). A Novel Method of Blockchain Cryptocurrency Price Prediction Using Fractional Grey Model. Fractal and Fractional, 7(7), 547. https://doi.org/10.3390/fractalfract7070547