Parameter Estimation in Rough Bessel Model
Abstract
:1. Introduction
- In order to estimate H and , we use the standard technique based on quadratic variations of fractional Brownian motion. The main challenge arises in the limit : when , Corollary 3.3 of [32] only guarantees its continuity in t almost everywhere with respect to the Lebesgue measure. It is not enough for the analysis of quadratic variations of , so we prove that is continuous at every and utilize this fact to obtain consistent estimators of H and .
- Our estimator of a is, in turn, based on the unconventional technique tailored for our specific model. The problem here is that it is currently not known whether the fractional Bessel process exhibits any ergodic properties typically utilized for drift parameter estimation. In our analysis, we exploit the explicit dynamics of instead to compare the behavior of and when .
2. Rough Bessel Processes
- (1)
- The limit (9) is finite, i.e., with probability 1,for all ;
- (2)
- With probability 1, for all and, moreover, for almost all .
- (2)
- Let be such that . Then, there exists a neighborhood such that, for all , , i.e.,
- 1.
- The process defined by (12) is non-decreasing.
- 2.
- The processes and have continuous paths.
3. Estimation of Hurst Index and Volatility Coefficient
3.1. Estimation of H
3.2. Estimation of
4. Drift Parameter Estimation
5. Simulations
5.1. Simulation of and
5.2. Simulation of
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Finiteness of Rough Bessel Processes
- (1)
- If for all , then
- (2)
- If for all , then, just like in Case 1 above,
References
- Bray, A.J. Random walks in logarithmic and power-law potentials, nonuniversal persistence, and vortex dynamics in the two-dimensional XY model. Phys. Rev. E 2000, 62, 103–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guarnieri, F.; Moon, W.; Wettlaufer, J.S. Solution of the Fokker-Planck equation with a logarithmic potential and mixed eigenvalue spectrum. J. Math. Phys. 2017, 58, 093301. [Google Scholar] [CrossRef] [Green Version]
- Horibe, M.; Hosoya, A.; Sakamoto, J. Stochastic quantization and the Gribov problem in non-abelian gauge theories. Prog. Theor. Phys. 1983, 70, 1636–1647. [Google Scholar] [CrossRef] [Green Version]
- Valenti, D.; Chichigina, O.A.; Dubkov, A.A.; Spagnolo, B. Stochastic acceleration in generalized squared Bessel processes. J. Stat. Mech. Theory Exp. 2015, 2015, P02012. [Google Scholar] [CrossRef]
- Cox, J.C.; Ingersoll, J.E.; Ross, S.A. A re-examination of traditional hypotheses about the term structure of interest rates. J. Financ. 1981, 36, 769–799. [Google Scholar] [CrossRef]
- Cox, J.C.; Ingersoll, J.E.; Ross, S.A. An intertemporal general equilibrium model of asset prices. Econom. J. Econom. Soc. 1985, 53, 363. [Google Scholar] [CrossRef] [Green Version]
- Cox, J.C.; Ingersoll, J.E.; Ross, S.A. A theory of the term structure of interest rates. Econom. J. Econom. Soc. 1985, 53, 385. [Google Scholar] [CrossRef]
- Heston, S.L. A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 1993, 6, 327–343. [Google Scholar] [CrossRef] [Green Version]
- Cherny, A.S. On the strong and weak solutions of stochastic differential equations governing Bessel processes. Stochastics Stochastics Rep. 2000, 70, 213–219. [Google Scholar] [CrossRef]
- Mishura, Y.; Yurchenko-Tytarenko, A. Standard and fractional reflected Ornstein–Uhlenbeck processes as the limits of square roots of Cox–Ingersoll–Ross processes. Stochastics. Int. J. Probab. Stoch. Process. 2022, 95, 99–117. [Google Scholar] [CrossRef]
- Revuz, D.; Yor, M. Continuous Martingales and Brownian Motion; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Cherny, A.S.; Engelbert, H.J. Singular Stochastic Differential Equations; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Bertoin, J. Complements on the Hilbert transform and the fractional derivative of Brownian local times. Kyoto J. Math. 1990, 30, 651–670. [Google Scholar] [CrossRef]
- Bertoin, J. Excursions of a BES0(d) and its drift term (0 < d < 1). Probab. Theory Relat. Fields 1990, 84, 231–250. [Google Scholar] [CrossRef]
- Mishura, Y.; Pilipenko, A.; Yurchenko-Tytarenko, A. Low-dimensional Cox-Ingersoll-Ross process. arXiv 2023, arXiv:2303.12911. [Google Scholar] [CrossRef]
- Bollerslev, T.; Ole Mikkelsen, H. Modeling and pricing long memory in stock market volatility. J. Econom. 1996, 73, 151–184. [Google Scholar] [CrossRef]
- Breidt, F.J.; Crato, N.; de Lima, P. The detection and estimation of long memory in stochastic volatility. J. Econom. 1998, 83, 325–348. [Google Scholar] [CrossRef] [Green Version]
- Cont, R. Long range dependence in financial markets. In Fractals in Engineering; Springer: London, UK, 2005; pp. 159–179. [Google Scholar]
- Ding, Z.; Granger, C.W.J. Modeling volatility persistence of speculative returns: A new approach. J. Econom. 1996, 73, 185–215. [Google Scholar] [CrossRef]
- Ding, Z.; Granger, C.W.J.; Engle, R.F. A long memory property of stock market returns and a new model. J. Empir. Financ. 1993, 1, 83–106. [Google Scholar] [CrossRef]
- Alòs, E.; León, J.A.; Vives, J. On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility. Financ. Stochastics 2007, 11, 571–589. [Google Scholar] [CrossRef] [Green Version]
- Fukasawa, M. Volatility has to be rough. Quant. Financ. 2021, 21, 1–8. [Google Scholar] [CrossRef]
- Fukasawa, M.; Takabatake, T.; Westphal, R. Is Volatility Rough? arXiv 2019, arXiv:1905.04852. [Google Scholar] [CrossRef]
- Gatheral, J.; Jaisson, T.; Rosenbaum, M. Volatility is rough. Quant. Financ. 2018, 18, 933–949. [Google Scholar] [CrossRef]
- Jeanblanc, M.; Yor, M.; Chesney, M. Mathematical Methods for Financial Markets; Springer: London, UK, 2009. [Google Scholar]
- Essaky, E.H.; Nualart, D. On the 1/H-variation of the divergence integral with respect to fractional Brownian motion with Hurst parameter H<1/2. Stoch. Process. Their Appl. 2015, 125, 4117–4141. [Google Scholar] [CrossRef]
- Guerra, J.M.E.; Nualart, D. The 1/H-variation of the divergence integral with respect to the fractional Brownian motion for H>1/2 and fractional Bessel processes. Stoch. Process. Their Appl. 2005, 115, 91–115. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Nualart, D. Some processes associated with fractional Bessel processes. J. Theor. Probab. 2005, 18, 377–397. [Google Scholar] [CrossRef] [Green Version]
- Di Nunno, G.; Mishura, Y.; Yurchenko-Tytarenko, A. Sandwiched SDEs with unbounded drift driven by Hölder noises. Adv. Appl. Probab. Appear. 2023, 55, 1–38. [Google Scholar] [CrossRef]
- Mishura, Y.; Ralchenko, K. Fractional diffusion Bessel processes with Hurst index H∈(0,12). arXiv 2023, arXiv:2304.06328. [Google Scholar] [CrossRef]
- Mishura, Y.; Yurchenko-Tytarenko, A. Fractional Cox–Ingersoll–Ross process with non-zero “mean”. Mod. Stochastics Theory Appl. 2018, 5, 99–111. [Google Scholar] [CrossRef]
- Mishura, Y.; Yurchenko-Tytarenko, A. Fractional Cox–Ingersoll–Ross process with small Hurst indices. Mod. Stochastics Theory Appl. 2018, 6, 13–39. [Google Scholar] [CrossRef]
- Azmoodeh, E.; Sottinen, T.; Viitasaari, L.; Yazigi, A. Necessary and sufficient conditions for Hölder continuity of Gaussian processes. Statist. Probab. Lett. 2014, 94, 230–235. [Google Scholar] [CrossRef] [Green Version]
- Kubilius, K.; Mishura, Y.; Ralchenko, K. Parameter Estimation in Fractional Diffusion Models; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Viitasaari, L. Necessary and sufficient conditions for limit theorems for quadratic variations of Gaussian sequences. Probab. Surv. 2019, 16, 62–98. [Google Scholar] [CrossRef]
- Kozachenko, Y.; Melnikov, A.; Mishura, Y. On drift parameter estimation in models with fractional Brownian motion. Statistics 2015, 49, 35–62. [Google Scholar] [CrossRef] [Green Version]
n = 10,000 | n = 100,000 | |||
---|---|---|---|---|
Mean | 0.3074612 | 0.3018724 | 0.299684 | 0.2999879 |
Variance | 0.007608759 | 0.0006979747 | 0.00007438351 | 0.000007596678 |
CV | 0.2837047 | 0.08751781 | 0.02877894 | 0.009187727 |
n = 10,000 | n = 100,000 | |||
---|---|---|---|---|
Mean | 0.9964649 | 0.9999765 | 0.9996666 | 0.9999794 |
Variance | 0.005895953 | 0.0006022594 | 0.00005529735 | 0.000005777412 |
CV | 0.07705752 | 0.02454155 | 0.007438699 | 0.002403674 |
n = 10,000 | n = 100,000 | |||
---|---|---|---|---|
Mean | 1.098972 | 1.021549 | 0.9991251 | 1.001703 |
Variance | 0.1783677 | 0.03501052 | 0.006181774 | 0.000860674 |
CV | 0.3843009 | 0.183164 | 0.0786931 | 0.02928738 |
Mean | 3.872642 | 2.409692 | 2.109389 | 2.029289 |
Variance | 4.09064 | 0.5914294 | 0.1749705 | 0.06310528 |
CV | 0.5222618 | 0.3191463 | 0.1983014 | 0.1237909 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishura, Y.; Yurchenko-Tytarenko, A. Parameter Estimation in Rough Bessel Model. Fractal Fract. 2023, 7, 508. https://doi.org/10.3390/fractalfract7070508
Mishura Y, Yurchenko-Tytarenko A. Parameter Estimation in Rough Bessel Model. Fractal and Fractional. 2023; 7(7):508. https://doi.org/10.3390/fractalfract7070508
Chicago/Turabian StyleMishura, Yuliya, and Anton Yurchenko-Tytarenko. 2023. "Parameter Estimation in Rough Bessel Model" Fractal and Fractional 7, no. 7: 508. https://doi.org/10.3390/fractalfract7070508
APA StyleMishura, Y., & Yurchenko-Tytarenko, A. (2023). Parameter Estimation in Rough Bessel Model. Fractal and Fractional, 7(7), 508. https://doi.org/10.3390/fractalfract7070508