The Effects of Stochastic Circular Pores on Splitting Tensile Behavior of Concrete Based on the Multifractal Theory
Abstract
:1. Introduction
2. Numerical Simulation Methods
2.1. Cohesive Element Model
2.2. Size Distribution and Generation of Coarse Aggregate
2.3. Size Distribution and Generation of Stochastic Circular Pores
2.4. Insertion Method of Cohesive Element
3. Validation of Numerical Simulation
3.1. Splitting Tensile Test of Single Circular Hole Concrete
3.2. Validation of the Cohesive Element Model
3.3. Element Size (Mesh Density)
4. Simulation Results and Discussion
4.1. Number of Monte Carlo Samples
4.2. Crack Patterns
4.3. Effect of Stochastic Pores Size Distribution on Tensile Strength
4.4. Effect the Spatial Distribution Uniformity of Stochastic Pores on Tensile Strength
4.4.1. An Indicator for Spatial Distribution Uniformity of Stochastic Pores
4.4.2. Effect of the Spatial Distribution Uniformity
5. Conclusions
- The multifractal spectrum width can effectively characterize the spatial distribution of stochastic circular pores, which provides an indicator for quantitative investigation of the uniform of pore spatial distribution. This paper obtains the area ‘W = 0.1’, which is an effective area to study the relationship between tensile strength and the multifractal spectrum width in the splitting tensile test. The tensile strength in this area is positively correlated with the uniformity of pore spatial distribution.
- Within the porosity range of 1~5 %, for pore size distribution ‘S’, ‘M’, and ‘L’, the relationship between tensile strength and porosity is σ = 4.031 − 0.141p, σ = 3.997 − 0.143p, and σ = 3.977 − 0.147p, respectively. The tensile strength of concrete decreases linearly with the increase of porosity. With the same porosity, the tensile strength decreases with the increase of pore size. The larger the pore size, the faster the tensile strength decreases.
- The pores change the position of crack initiation and crack path. There are three types of crack initiation positions in the splitting tensile test, i.e., center, eccentric, and loading end, resulting in three typical macro-crack patterns. The cracks occur at the loading end owing to the stress concentration caused by the circular pore.
- It is reasonable to have 30 Monte Carlo samples for splitting tensile test because the error range is between −0.23% and 0.12%.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Naderi, S.; Tu, W.L.; Zhang, M.Z. Meso-scale modelling of compressive fracture in concrete with irregularly shaped aggregates. Cem. Concr. Res. 2021, 140, 106317. [Google Scholar] [CrossRef]
- Pan, J.; Zhong, W.; Wang, J.; Zhang, C. Size effect on dynamic splitting tensile strength of concrete: Mesoscale modeling. Cem. Concr. Compos. 2022, 128, 104435. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, J.; Yu, H.; Fang, Q.; Ma, H. Specimen size effect on the splitting-tensile behavior of coral aggregate concrete: A 3D mesoscopic study. Eng. Fail. Anal. 2021, 127, 105395. [Google Scholar] [CrossRef]
- Meng, Q.X.; Wang, H.; Cai, M.; Xu, W.; Zhuang, X.; Rabczuk, T. Three-dimensional mesoscale computational modeling of soil-rock mixtures with concave particles. Eng. Geol. 2020, 277, 105802. [Google Scholar] [CrossRef]
- Naderi, S.; Zhang, M. Meso-scale modelling of static and dynamic tensile fracture of concrete accounting for real-shape aggregates. Cem. Concr. Compos. 2021, 116, 103889. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Z.; Yates, J.; Jivkov, A.; Zhang, C. Monte Carlo simulations of mesoscale fracture modelling of concrete with random aggregates and pores. Constr. Build. Mater. 2015, 75, 35–45. [Google Scholar] [CrossRef]
- Xu, L.; Huang, Y.F. Effects of Voids on Concrete Tensile Fracturing: A Mesoscale Study. Adv. Mater. Sci. Eng. 2017, 2017, 7989346. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Zhang, J.; Yu, H.; Ma, H.; Fang, Q. 3D mesoscopic analysis on the compressive behavior of coral aggregate concrete accounting for coarse aggregate volume and maximum aggregate size. Compos. Struct. 2021, 273, 114271. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, J.; Yu, H.; Fang, Q.; Chen, L.; Yue, C. Experimental and mesoscopic investigation on the dynamic properties of coral aggregate concrete in compression. Sci. China-Technol. Sci. 2021, 64, 1153–1166. [Google Scholar] [CrossRef]
- Jin, L.; Yu, W.X.; Du, X.L. Size Effect on Static Splitting Tensile Strength of Concrete: Experimental and Numerical Studies. J. Mater. Civ. Eng. 2020, 32, 04020308. [Google Scholar] [CrossRef]
- Wang, J.; Jivkov, A.P.; Li, Q.; Engelberg, D. Experimental and numerical investigation of mortar and ITZ parameters in meso-scale models of concrete. Theor. Appl. Fract. Mech. 2020, 109, 102722. [Google Scholar] [CrossRef]
- Maleki, M.; Rasoolan, I.; Khajehdezfuly, A.; Jivkov, A.P. On the effect of ITZ thickness in meso-scale models of concrete. Constr. Build. Mater. 2020, 258, 119639. [Google Scholar] [CrossRef]
- Yue, J.; Sheng, J.; Wang, H.; Hu, Y.; Zhang, K.; Luo, Y.; Zhou, Q.; Zhan, M. Investigation on Pore Structure and Permeability of Concrete-Rock Interfacial Transition Zones Based on Fractal Theory. Fractal Fract. 2022, 6, 329. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, S.; Shi, Y.; Huang, Y.; Zhao, F.; Huo, T.; Tang, S. The Influence of Fly Ash Dosages on the Permeability, Pore Structure and Fractal Features of Face Slab Concrete. Fractal Fract. 2022, 6, 476. [Google Scholar] [CrossRef]
- Wang, K.; Guo, J.; Zhang, P.; Meng, Q. The Counterbalance of the Adverse Effect of Abrasion on the Properties of Concrete Incorporating Nano-SiO2 and Polypropylene Fiber Based on Pore Structure Fractal Characteristics. Fractal Fract. 2022, 6, 392. [Google Scholar] [CrossRef]
- Chung, S.Y.; Sikora, P.; Rucinska, T.; Stephan, D.; Elrahman, M.A. Comparison of the pore size distributions of concretes with different air-entraining admixture dosages using 2D and 3D imaging approaches. Mater. Charact. 2020, 162, 110182. [Google Scholar] [CrossRef]
- Qin, X.; Xu, Q. Statistical analysis of initial defects between concrete layers of dam using X-ray computed tomography. Constr. Build. Mater. 2016, 125, 1101–1113. [Google Scholar] [CrossRef]
- Guo, S.; Dai, Q.; Sun, X.; Sun, Y. Ultrasonic scattering measurement of air void size distribution in hardened concrete samples. Constr. Build. Mater. 2016, 113, 415–422. [Google Scholar] [CrossRef]
- Yang, Z.-J.; Li, B.-B.; Wu, J.-Y. X-ray computed tomography images based phase-field modeling of mesoscopic failure in concrete. Eng. Fract. Mech. 2019, 208, 151–170. [Google Scholar] [CrossRef]
- Ren, W.; Yang, Z.; Sharma, R.; Zhang, C.; Withers, P.J. Two-dimensional X-ray CT image based meso-scale fracture modelling of concrete. Eng. Fract. Mech. 2015, 133, 24–39. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, M.; Jivkov, A.P. Computational technology for analysis of 3D meso-structure effects on damage and failure of concrete. Int. J. Solids Struct. 2016, 80, 310–333. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Q.; Keer, L.M.; Yao, Y.; Huang, Y. The multi-factor effect of tensile strength of concrete in numerical simulation based on the Monte Carlo random aggregate distribution. Constr. Build. Mater. 2018, 165, 585–595. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, Z.; Ren, W.; Liu, G.; Zhang, C. 3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray Computed Tomography images using damage plasticity model. Int. J. Solids Struct. 2015, 67–68, 340–352. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Xia, X.; Wu, Z.; Zhang, Q. The Effect of Initial Defects on Overall Mechanical Properties of Concrete Material. CMC-Comput. Mater. Contin. 2020, 62, 413–442. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Bui, H.H.; Ngo, T.D.; Nguyen, G.D.; Kreher, M.U.; Darve, F. A micromechanical investigation for the effects of pore size and its distribution on geopolymer foam concrete under uniaxial compression. Eng. Fract. Mech. 2019, 209, 228–244. [Google Scholar] [CrossRef]
- Gao, Y.; Gu, Y.; Mu, S.; Jiang, J.; Liu, J. The multifractal property of heterogeneous microstructure in cement paste. Fractals 2021, 29, 2140006. [Google Scholar] [CrossRef]
- Gao, Y.; Jiang, J.; De Schutter, G.; Ye, G.; Sun, W. Fractal and multifractal analysis on pore structure in cement paste. Constr. Build. Mater. 2014, 69, 253–261. [Google Scholar] [CrossRef]
- Pan, L.; Carrillo, J.; Cao, M.; Sha, G. Multifractal-spectrum shape parameters for characterizing distribution and evolution of multiple cracks in concrete structures. Eng. Fract. Mech. 2022, 264, 108329. [Google Scholar] [CrossRef]
- Yin, Y.J.; Ren, Q.W.; Shen, L. Study on the effect of aggregate distribution on mechanical properties and damage cracks of concrete based on multifractal theory. Constr. Build. Mater. 2020, 262, 120086. [Google Scholar] [CrossRef]
- Sijilmassi, O.; Alonso, J.-M.L.; Sevilla, A.D.R.; Asensio, M.D.C.B. Multifractal analysis of embryonic eye structures from female mice with dietary folic acid deficiency. Part I: Fractal dimension, lacunarity, divergence, and multifractal spectrum. Chaos Solitons Fractals 2020, 138, 109885. [Google Scholar] [CrossRef]
- Wriggers, P.; Moftah, S.O. Mesoscale models for concrete: Homogenisation and damage behaviour. Finite Elem. Anal. Des. 2006, 42, 623–636. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, J.; Fang, Q.; Yu, H.; Haiyan, M. Mesoscopic modelling of concrete material under static and dynamic loadings: A review. Constr. Build. Mater. 2021, 278, 122419. [Google Scholar] [CrossRef]
- Lammi, C.J.; Li, H.; McDowell, D.L.; Zhou, M. Dynamic Fracture and Dissipation Behaviors of Concrete at the Mesoscale. Int. J. Appl. Mech. 2015, 7, 1550038. [Google Scholar] [CrossRef]
- Rocco, C.; Guinea, G.; Planas, J.; Elices, M. Review of the splitting-test standards from a fracture mechanics point of view. Cem. Concr. Res. 2001, 31, 73–82. [Google Scholar] [CrossRef]
- Xu, Y.; Dai, F.; Zhao, T.; Xu, N.-W.; Liu, Y. Fracture Toughness Determination of Cracked Chevron Notched Brazilian Disc Rock Specimen via Griffith Energy Criterion Incorporating Realistic Fracture Profiles. Rock Mech. Rock Eng. 2016, 49, 3083–3093. [Google Scholar] [CrossRef]
- Wang, J.; Tao, J. Determination of Tensile Strength at Crack Initiation in Dynamic Brazilian Disc Test for Concrete-like Materials. Buildings 2022, 12, 797. [Google Scholar] [CrossRef]
- GB/T 50081-2002; Standard for Test Method of Mechanical Properties of Ordinary Concrete. China Architecture and Building Press: Beijing, China, 2002.
- Wang, X.; Yang, Z.; Jivkov, A.P. Monte Carlo simulations of mesoscale fracture of concrete with random aggregates and pores: A size effect study. Constr. Build. Mater. 2015, 80, 262–272. [Google Scholar] [CrossRef]
- Wu, Z.; Cui, W.; Fan, L.; Liu, Q. Mesomechanism of the dynamic tensile fracture and fragmentation behaviour of concrete with heterogeneous mesostructure. Constr. Build. Mater. 2019, 217, 573–591. [Google Scholar] [CrossRef]
- Zhou, W.; Yuan, W.; Ma, G.; Chang, X.-L. Combined finite-discrete element method modeling of rockslides. Eng. Comput. 2016, 33, 1530–1559. [Google Scholar] [CrossRef]
- Akazawa, T. New test method for evaluating internal stress due to compression of concrete (the splitting tension test) (part 1). J. Jpn. Soc. Civ. Eng. 1943, 29, 777–787. [Google Scholar]
- Li, D.Y.; Wong, L.N.Y. The Brazilian Disc Test for Rock Mechanics Applications: Review and New Insights. Rock Mech. Rock Eng. 2013, 46, 269–287. [Google Scholar] [CrossRef]
Cement | Sand | Coarse Aggregate | Water |
---|---|---|---|
454 | 617 | 1121 | 209 |
Parameters | Value | ||
---|---|---|---|
Aggregate | Mortar | ITZ | |
Solid elements [39] | |||
density, (kg/m3) | 2500 | 2200 | |
Young’s modulus, E (GPa) | 47.2 | 29.2 | |
Poisson’s ratio, | 0.2 | 0.2 | |
Cohesive elements | |||
(MPa) | 16 | 4.2 | 2.1 |
(MPa) | 45 | 36 | 18 |
Mode I fracture energy, GI (N/mm) | 0.16 | 0.054 | 0.027 |
Mode II fracture energy, GII (N/mm) | 0.45 | 0.36 | 0.18 |
Initial normal stiffness, kn (MPa/mm) | 6.0 × 105 | 6.0 × 105 | 6.0 × 105 |
Initial shear stiffness, ks (MPa/mm) | 2.5 × 105 | 2.5 × 105 | 2.5 × 105 |
Specimen Types | Mean Tensile Strength of Experiment (MPa) | Tensile Strength of Numerical Simulation (MPa) | Error (%) |
---|---|---|---|
Intact | 4.00 | 4.09 | 2.25 |
10 mm-hole | 3.25 | 3.10 | −4.61 |
16 mm-hole | 2.48 | 2.58 | 4.03 |
Porosity | Tensile Strength (MPa) | ||
---|---|---|---|
S | M | L | |
1% | 3.90 | 3.87 | 3.85 |
2% | 3.74 | 3.70 | 3.68 |
3% | 3.59 | 3.55 | 3.51 |
4% | 3.49 | 3.43 | 3.37 |
5% | 3.32 | 3.29 | 3.27 |
Number | W = 0.1 | W = 0.2 | W = 0.3 | W = 0.4 | W = 0.6 | W = 0.8 | W = 1.0 |
---|---|---|---|---|---|---|---|
P01-S | −0.073 | −0.024 | −0.035 | −0.025 | 0.014 | 0.027 | −0.022 |
P01-M | −0.135 | −0.072 | −0.013 | −0.100 | −0.112 | −0.082 | −0.105 |
P01-L | −0.087 | −0.080 | −0.065 | 0.018 | −0.018 | 0.020 | 0.008 |
P02-S | −0.088 | 0.047 | 0.097 | 0.100 | 0.023 | 0.065 | 0.061 |
P02-M | −0.037 | −0.042 | −0.050 | −0.033 | −0.011 | −0.009 | 0.009 |
P02-L | −0.071 | 0.079 | 0.068 | 0.088 | 0.081 | 0.098 | 0.116 |
P03-S | −0.015 | 0.087 | 0.038 | −0.059 | −0.046 | −0.044 | 0.006 |
P03-M | −0.087 | −0.064 | −0.191 | −0.085 | −0.077 | −0.023 | −0.059 |
P03-L | −0.020 | −0.023 | −0.009 | −0.067 | 0.018 | −0.035 | −0.003 |
P04-S | −0.102 | 0.055 | −0.021 | 0.026 | 0.014 | −0.035 | 0.025 |
P04-M | −0.047 | 0.006 | 0.059 | 0.048 | 0.019 | 0.002 | −0.004 |
P04-L | −0.052 | −0.099 | 0.011 | 0.021 | 0.063 | 0.027 | 0.013 |
P05-S | −0.013 | 0.129 | −0.041 | 0.004 | −0.023 | 0.014 | 0.031 |
P05-M | −0.013 | −0.030 | −0.015 | −0.003 | −0.035 | −0.063 | −0.069 |
P05-L | −0.029 | −0.035 | −0.019 | −0.071 | 0.062 | 0.035 | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wang, M.; Tao, J. The Effects of Stochastic Circular Pores on Splitting Tensile Behavior of Concrete Based on the Multifractal Theory. Fractal Fract. 2023, 7, 507. https://doi.org/10.3390/fractalfract7070507
Wang J, Wang M, Tao J. The Effects of Stochastic Circular Pores on Splitting Tensile Behavior of Concrete Based on the Multifractal Theory. Fractal and Fractional. 2023; 7(7):507. https://doi.org/10.3390/fractalfract7070507
Chicago/Turabian StyleWang, Jie, Mingyang Wang, and Junlin Tao. 2023. "The Effects of Stochastic Circular Pores on Splitting Tensile Behavior of Concrete Based on the Multifractal Theory" Fractal and Fractional 7, no. 7: 507. https://doi.org/10.3390/fractalfract7070507
APA StyleWang, J., Wang, M., & Tao, J. (2023). The Effects of Stochastic Circular Pores on Splitting Tensile Behavior of Concrete Based on the Multifractal Theory. Fractal and Fractional, 7(7), 507. https://doi.org/10.3390/fractalfract7070507