Instantaneous and Non-Instantaneous Impulsive Boundary Value Problem Involving the Generalized ψ-Caputo Fractional Derivative
Abstract
:1. Introduction
2. Fractional Integrals and Derivatives
3. Proof of Theorems
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and applications of fractional differential equations. In North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherland, 2006; pp. 2453–2461. [Google Scholar]
- Teodoro, G.; Machado, J.; Oliveira, E. A review of definitions of fractional derivatives and other operators. J. Comput. Phys. 2019, 388, 195–208. [Google Scholar] [CrossRef]
- Diethelm, K. The Analysis of Fractional Differential Equations; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Zeng, G.; Chen, J.; Dai, Y.; Li, L.; Zheng, C.; Chen, M. Design of fractional order PID controller for automatic regulator voltage system based on multi-objective extremal optimization. Neurocomputing 2015, 160, 173–184. [Google Scholar] [CrossRef]
- Gómez-Aguilar, J.; López-López, M.; Alvarado-Martínez, V.; Reyes-Reyes, J.; Adam-Medina, M. Modeling diffusive transport with a fractional derivative without singular kernel. Phys. A 2016, 447, 467–481. [Google Scholar] [CrossRef]
- Yu, Y.; Perdikaris, P.; Karniadakis, G. Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms. J. Comput. Phys. 2016, 323, 219–242. [Google Scholar] [CrossRef] [Green Version]
- Osler, T. Fractional derivatives of a composite function. SIAM J. Math. Anal. 1970, 1, 288–293. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T. Generalized fractional derivatives and Laplace transform. Discret. Contin. Dyn. Syst. 2020, 13, 709–722. [Google Scholar] [CrossRef] [Green Version]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef] [Green Version]
- Almeida, R.; Malinowska, A.; Monteiro, M. Fractional differential equations with a Caputo derivative with respect to a Kernel function and their applications. Math. Meth. Appl. Sci. 2017, 41, 336–352. [Google Scholar] [CrossRef] [Green Version]
- Khaliq, A.; Mujeeb, R. Existence of weak solutions for Ψ-Caputo fractional boundary value problem via variational methods. J. Appl. Anal.Comput. 2021, 11, 768–1778. [Google Scholar] [CrossRef]
- Adjabi, Y.; Jarad, F.; Baleanu, D.; Abdeljawad, T. On Cauchy problems with Caputo Hadamard fractional derivatives. J. Comput. Anal. Appl. 2016, 21, 661–681. [Google Scholar]
- Min, D.; Chen, F. Variational methods to the p-Laplacian type nonlinear fractional order impulsive differential equations with Sturm-Liouville boundary-value problem. Fract. Calc. Appl. Anal. 2021, 24, 1069–1093. [Google Scholar] [CrossRef]
- Shah, K.; Abdalla, B.; Abdeljawad, T.; Gul, R. Analysis of multipoint impulsive problem of fractional-order differential equations. Bound. Value Probl. 2023, 2023, 1. [Google Scholar] [CrossRef]
- Lv, Z.; Ahmad, I.; Xu, J.; Zada, A. Analysis of a Hybrid coupled system of psi-Caputo fractional derivatives with generalized Slit-Strips-type integral boundary conditions and Impulses. Fractal Fract. 2022, 10, 618. [Google Scholar] [CrossRef]
- Hernádez, E.; O’Regan, D. On a new class of abstract implusive differential equations. Proc. Am. Math. Soc. 2013, 141, 1641–1649. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wei, W.; Xu, W. Approximate controllability of non-Instantaneous impulsive stochastic evolution systems driven by fractional brownian motion with hurst parameter h is an element of (0,12). Fractal Fract. 2022, 8, 440. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.; Wu, H.; Deng, H. Existence of solutions for fractional instantaneous and non-Instantaneous impulsive differential equations with perturbation. Discret. Cont. Dyn. Syst. 2022, 7, 1767–1776. [Google Scholar] [CrossRef]
- Li, D.; Chen, F.; Wu, Y.; An, Y. Multiple solutions for a class of p-Laplacian type fractional boundary value problems with instantaneous and non-instantaneous impulses. Appl. Math. Lett. 2020, 106, 106352. [Google Scholar] [CrossRef]
- Salem, A.; Abdullah, S. Non-instantaneous impulsive BVPs involving generalized Liouville-Caputo derivative. Mathematics 2022, 3, 291. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, M. Variational method to differential equations with instantaneous and non-instantaneous impulses. Appl. Math. Lett. 2019, 94, 160–165. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, W. Variational approach to fractional dirichlet problem with instantaneous and non-instantaneous impulses. Appl. Math. Lett. 2020, 99, 105993. [Google Scholar] [CrossRef]
- Bonanno, G.; Marano, S. On the structure of the critical set of non-differentiable functions with a weak compactness condition. Appl. Anal. 2010, 89, 1–10. [Google Scholar] [CrossRef]
- Zeidler, E. Nonlinear Functional Analysis and Its Applications; Springer: Berlin, Germany, 1990; Volume 2. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Li, Y.; Chen, F.; Feng, X. Instantaneous and Non-Instantaneous Impulsive Boundary Value Problem Involving the Generalized ψ-Caputo Fractional Derivative. Fractal Fract. 2023, 7, 206. https://doi.org/10.3390/fractalfract7030206
Li D, Li Y, Chen F, Feng X. Instantaneous and Non-Instantaneous Impulsive Boundary Value Problem Involving the Generalized ψ-Caputo Fractional Derivative. Fractal and Fractional. 2023; 7(3):206. https://doi.org/10.3390/fractalfract7030206
Chicago/Turabian StyleLi, Dongping, Yankai Li, Fangqi Chen, and Xiaozhou Feng. 2023. "Instantaneous and Non-Instantaneous Impulsive Boundary Value Problem Involving the Generalized ψ-Caputo Fractional Derivative" Fractal and Fractional 7, no. 3: 206. https://doi.org/10.3390/fractalfract7030206
APA StyleLi, D., Li, Y., Chen, F., & Feng, X. (2023). Instantaneous and Non-Instantaneous Impulsive Boundary Value Problem Involving the Generalized ψ-Caputo Fractional Derivative. Fractal and Fractional, 7(3), 206. https://doi.org/10.3390/fractalfract7030206