Advances in Fractional-Order Neural Networks, Volume II
Conflicts of Interest
List of Contributions
- Wang, L.; Yang, X.; Liu, H.; Chen, X. Synchronization in Finite Time of Fractional-Order Complex-Valued Delayed Gene Regulatory Networks. Fractal Fract. 2023, 7, 347. https://doi.org/10.3390/fractalfract7050347.
- He, X.; Li, T.; Liu, D. Asymptotic Synchronization of Fractional-Order Complex Dynamical Networks with Different Structures and Parameter Uncertainties. Fractal Fract. 2022, 6, 441. https://doi.org/10.3390/fractalfract6080441.
- Song, C.; Cao, J.; Abdel-Aty, M. New Results on Robust Synchronization for Memristive Neural Networks with Fractional Derivatives via Linear Matrix Inequality. Fractal Fract. 2022, 6, 585. https://doi.org/10.3390/fractalfract6100585.
- Chen, L.; Gong, M.; Zhao, Y.; Liu, X. Finite-Time Synchronization for Stochastic Fractional-Order Memristive BAM Neural Networks with Multiple Delays. Fractal Fract. 2023, 7, 678. https://doi.org/10.3390/fractalfract7090678.
- Karoun, R.C.; Ouannas, A.; Horani, M.A.; Grassi, G. The Effect of Caputo Fractional Variable Difference Operator on a Discrete-Time Hopfield Neural Network with Non-Commensurate Order. Fractal Fract. 2022, 6, 575. https://doi.org/10.3390/fractalfract6100575.
- Alsaade, F.W.; Al-zahrani, M.S.; Yao, Q.; Jahanshahi, H. A Model-Free Finite-Time Control Technique for Synchronization of Variable-Order Fractional Hopfield-like Neural Network. Fractal Fract. 2023, 7, 349. https://doi.org/10.3390/fractalfract7050349.
- Feckan, M.; Danca, M.-F. Non-Periodicity of Complex Caputo Like Fractional Differences. Fractal Fract. 2023, 7, 68. https://doi.org/10.3390/fractalfract701006.
- Stamov, T.; Stamov, G.; Stamova, I. Fractional-Order Impulsive Delayed Reaction-Diffusion Gene Regulatory Networks: Almost Periodic Solutions. Fractal Fract. 2023, 7, 384. https://doi.org/10.3390/fractalfract7050384.
- Zhao, Y. Split-Plot Designs with Few Whole Plot Factors Containing Clear Effects. Fractal Fract. 2022, 6, 453. https://doi.org/10.3390/fractalfract6080453.
- Xu, B.; Li, B. Dynamic Event-Triggered Consensus for Fractional-Order Multi-Agent Systems without Intergroup Balance Condition. Fractal Fract. 2023, 7, 268. https://doi.org/10.3390/fractalfract7030268.
- Wei, Y.; Zhao, L.; Zhao, X.; Cao, J. Enhancing the Mathematical Theory of Nabla Tempered Fractional Calculus: Several Useful Equations. Fractal Fract. 2023, 7, 330. https://doi.org/10.3390/fractalfract7040330.
- Wang, M.; Wang, Y.; Chu, R. Dynamical Analysis of the Incommensurate Fractional-Order Hopfield Neural Network System and Its Digital Circuit Realization. Fractal Fract. 2023, 7, 474. https://doi.org/10.3390/fractalfract7060474.
References
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and Numerical Methods, 1st ed.; World Scientific: Singapore, 2012; ISBN 978-981-4355-20-9. [Google Scholar]
- Magin, R. Fractional Calculus in Bioengineering, 1st ed.; Begell House: Redding, CA, USA, 2006; ISBN 978-1567002157. [Google Scholar]
- Petráš, I. Fractional-Order Nonlinear Systems, 1st ed.; Springer: Heidelberg/Dordrecht, Germany; London, UK; New York, NY, USA, 2011; ISBN 978-3-642-18101-6. [Google Scholar]
- Sandev, T.; Tomovski, Z. Fractional Equations and Models. Theory and Applications, 1st ed.; Springer: Cham, Switzerland, 2019; ISBN 978-3-030-29616-2. [Google Scholar]
- Tarasov, V.E. Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, 1st ed.; Springer: Beijing, China, 2015; ISBN 978-3-642-14003-7. [Google Scholar]
- Almeida, R.; Tavares, D.; Torres, D.F.M. The Variable-Order Fractional Calculus of Variations, 1st ed.; Springer: Cham, Switzerland, 2019; ISBN 978-3-319-94005-2. [Google Scholar]
- Li, X.; Song, S. Impulsive Systems with Delays: Stability and Control, 1st ed.; Science Press & Springer: Singapore, 2022; ISBN 978-981-16-4686-7. [Google Scholar]
- Ostalczyk, P. Discrete Fractional Calculus: Applications in Control and Image Processing, 1st ed.; World Scientific: Singapore, 2015; ISBN 978-9814725668. [Google Scholar]
- Stamova, I.M.; Stamov, G.T. Functional and Impulsive Differential Equations of Fractional Order: Qualitative Analysis and Applications, 1st ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2017; ISBN 9781498764834. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stamova, I.; Stamov, G.; Li, X. Advances in Fractional-Order Neural Networks, Volume II. Fractal Fract. 2023, 7, 845. https://doi.org/10.3390/fractalfract7120845
Stamova I, Stamov G, Li X. Advances in Fractional-Order Neural Networks, Volume II. Fractal and Fractional. 2023; 7(12):845. https://doi.org/10.3390/fractalfract7120845
Chicago/Turabian StyleStamova, Ivanka, Gani Stamov, and Xiaodi Li. 2023. "Advances in Fractional-Order Neural Networks, Volume II" Fractal and Fractional 7, no. 12: 845. https://doi.org/10.3390/fractalfract7120845
APA StyleStamova, I., Stamov, G., & Li, X. (2023). Advances in Fractional-Order Neural Networks, Volume II. Fractal and Fractional, 7(12), 845. https://doi.org/10.3390/fractalfract7120845