Solving a Nonlinear Fractional Differential Equation Using Fixed Point Results in Orthogonal Metric Spaces
Abstract
:1. Introduction
2. Preliminaries
- ()
- Θ is non-decreasing; i.e., implies ;
- ()
- For every sequence , we have if and only if
- ()
- There exists and such that
- ()
- is continuous on
3. Main Results
4. Applications
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. A new generalization of the Banach contraction principle. J. Inequal. Appl. 2014, 38, 1–8. [Google Scholar] [CrossRef]
- Hussain, N.; Parvaneh, V.; Samet, B.; Vetro, C. Some fixed point theorems for generalized contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2015, 185, 1–17. [Google Scholar] [CrossRef]
- Ahmad, J.; Al-Mazrooei, A.E.; Cho, Y.J.; Yang, Y.-O. Fixed point results for generalized Θ-contractions. J. Nonlinear Sci. Appl. 2017, 10, 2350–2358. [Google Scholar] [CrossRef]
- Imdad, M.; Alfaqih, W.M.; Khan, I.A. Weak θ-contractions and some fixed point results with applications to fractal theory. Adv. Differ. Equ. 2018, 439, 2018. [Google Scholar] [CrossRef]
- Ameer, E.; Aydi, H.; Arshad, M.; Hussain, A.; Khan, A.R. Ćirić type multi-valued α*-η*-Θ-contractions on b-meric spaces with Applications. Int. J. Nonlinear Anal. Appl. 2021, 12, 597–614. [Google Scholar]
- Ali, H.; Isik, H.; Aydi, H.; Ameer, E.; Lee, J.; Arshad, M. On multivalued Suzuki-type Θ-contractions and related applications. Open Math. 2020, 18, 386–399. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Imdad, M.; Saleh, H.N. On modified L-contraction via binary relation with an application. Fixed Point Theory 2022, 23, 267–278. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Sessa, S.; Imdad, M.; Alfaqih, W.M. Fixed point results for a selected class of multi-valued mappings under (θ,R)-contractions with an application. Mathematics 2020, 8, 695. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, S. Fixed point theorems of JS-quasi-contractions. Fixed Point Theory Appl. 2016, 40, 1–11. [Google Scholar] [CrossRef]
- Vetro, F. A generalization of Nadler fixed point theorem. Carpathian J. Math. 2015, 31, 403–410. [Google Scholar] [CrossRef]
- Gordji, M.E.; Rameani, D.; De La Sen, M.; Cho, Y.J. On orthogonal sets and Banach fixed point theorem. Fixed Point Theory Appl. 2017, 18, 569–578. [Google Scholar] [CrossRef]
- Baghani, H.; Gordji, M.E.; Ramezani, M. Orthogonal sets: The axiom of choice and proof of a fixed point theorem. J. Fixed Point Theory Appl. 2016, 18, 465–477. [Google Scholar] [CrossRef]
- Baghani, H.; Ramezani, M. Coincidence and fixed points for multivalued mappings in incomplete metric spaces with applications. Filomat 2019, 33, 13–26. [Google Scholar] [CrossRef]
- Baghani, H.; Agarwal, R.P.; Karapinar, E. On coincidence point and fixed point theorems for a general class of multivalued mappings in incomplete metric spaces with an application. Filomat 2019, 33, 4493–4508. [Google Scholar] [CrossRef]
- Hazarika, B. Applications of fixed point theorems and general convergence in orthogonal metric spaces. Adv. Summ. Approx. Theory 2018, 1, 23–51. [Google Scholar]
- Ahmadi, Z.; Lashkaripour, R.; Baghani, H.A. Fixed point problem with constraint inequalities via a contraction in incomplete metric spaces. Filomat 2018, 32, 3365–3379. [Google Scholar] [CrossRef]
- Nieto, J.J.; Rodrıguez-Lopez, R. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 2005, 22, 223–239. [Google Scholar] [CrossRef]
- Ramezani, M.; Ege, O.; De la Sen, M. A new fixed point theorem and a new generalized Hyers-Ulam-Rassias stability in incomplete normed spaces. Mathematics 2019, 7, 1117. [Google Scholar] [CrossRef]
- Ran, A.C.M.; Reuring, M.C.B. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 2004, 132, 1435–1443. [Google Scholar] [CrossRef]
- Browder, F.E. Fixed point theorems for noncompact mappings in Hilbert space. Proc. Natl. Acad. Sci. USA 1965, 53, 1272–1276. [Google Scholar] [CrossRef] [PubMed]
- Browder, F.E.; Petryshyn, W.V. Construction of fixed points of nonlinear mappings in Hilbert space. J. Math. Anal. Appl. 1967, 20, 197–228. [Google Scholar] [CrossRef]
- Agrawal, V.K.; Wadhwa, K.; Diwakar, A.K. Some result on fixed point theorem in Hilbert space. Math. Theory Model. 2016, 6, 1–5. [Google Scholar]
- Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α–ψ-contractive type mappings. Nonlinear Analysis. 2012, 75, 2154–2165. [Google Scholar] [CrossRef]
- Ramezani, M. Orthogonal metric space and convex contractions. Int. J. Nonlinear Anal. Appl. 2015, 6, 127–132. [Google Scholar]
- Ćirić, L. Generalized contractions and fixed-point theorems. Publ. Inst. Math. 1971, 12, 9–26. [Google Scholar]
- Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 1968, 60, 71–76. [Google Scholar]
- Chatterjea, S.K. Fixed point theorem. C. R. Acad. Bulg. Sci. 1972, 25, 727–730. [Google Scholar] [CrossRef]
- Reich, S. Kannan’s fixed point theorem. Boll. Un. Mat. Ital. 1971, 4, 1–11. [Google Scholar]
- Senapati, T.; Dey, L.K.; Damjanović, B.; Chanda, A. New fixed point results in orthogonal metric spaces with applications. Kragujev. J. Math. 2018, 42, 505–516. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdou, A.A.N. Solving a Nonlinear Fractional Differential Equation Using Fixed Point Results in Orthogonal Metric Spaces. Fractal Fract. 2023, 7, 817. https://doi.org/10.3390/fractalfract7110817
Abdou AAN. Solving a Nonlinear Fractional Differential Equation Using Fixed Point Results in Orthogonal Metric Spaces. Fractal and Fractional. 2023; 7(11):817. https://doi.org/10.3390/fractalfract7110817
Chicago/Turabian StyleAbdou, Afrah Ahmad Noman. 2023. "Solving a Nonlinear Fractional Differential Equation Using Fixed Point Results in Orthogonal Metric Spaces" Fractal and Fractional 7, no. 11: 817. https://doi.org/10.3390/fractalfract7110817
APA StyleAbdou, A. A. N. (2023). Solving a Nonlinear Fractional Differential Equation Using Fixed Point Results in Orthogonal Metric Spaces. Fractal and Fractional, 7(11), 817. https://doi.org/10.3390/fractalfract7110817