Nonlocal Coupled System for (k,φ)-Hilfer Fractional Differential Equations
Abstract
:1. Introduction
2. Preliminaries
3. Existence and Uniqueness Results
3.1. Existence of a Unique Solution
3.2. Existence Results
- There exist continuous nonnegative functions P and such that
4. Illustrative Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diethelm, K. The Analysis of Fractional Differential Equations; Lecture Notes in Mathematics; Springer: New York, NY, USA, 2010. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of the Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Lakshmikantham, V.; Leela, S.; Devi, J.V. Theory of Fractional Dynamic Systems; Cambridge Scientific Publishers: Cambridge, UK, 2009. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Differential Equations; John Wiley: New York, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science: Yverdon, Switzerland, 1993. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K. Nonlocal Nonlinear Fractional-Order Boundary Value Problems; World Scientific: Singapore, 2021. [Google Scholar]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
- Mubeen, S.; Habibullah, G.M. k–fractional integrals and applications. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
- Dorrego, G.A. An alternative definition for the k-Riemann-Liouville fractional derivative. Appl. Math. Sci. 2015, 9, 481–491. [Google Scholar] [CrossRef] [Green Version]
- Mittal, E.; Joshi, S. Note on k-generalized fractional derivative. Discrete Contin. Dyn. Syst. 2020, 13, 797–804. [Google Scholar]
- Magar, S.K.; Dole, P.V.; Ghadle, K.P. Pranhakar and Hilfer-Prabhakar fractional derivatives in the setting of ψ-fractional calculus and its applications. Krak. J. Math. 2024, 48, 515–533. [Google Scholar]
- Agarwal, P.; Tariboon, J.; Ntouyas, S.K. Some generalized Riemann-Liouville k-fractional integral inequalities. J. Ineq. Appl. 2016, 2016, 122. [Google Scholar] [CrossRef] [Green Version]
- Farid, G.; Javed, A.; Rehman, A.U. On Hadamard inequalities for n-times differentiable functions which are relative convex via Caputo k-fractional derivatives. Nonlinear Anal. Forum 2017, 22, 17–28. [Google Scholar]
- Azam, M.K.; Farid, G.; Rehman, M.A. Study of generalized type k-fractional derivatives. Adv. Differ. Equ. 2017, 2017, 249. [Google Scholar] [CrossRef]
- Romero, L.G.; Luque, L.L.; Dorrego, G.A.; Cerutti, R.A. On the k-Riemann-Liouville fractional derivative. Int. J. Contemp. Math. Sci. 2013, 8, 41–51. [Google Scholar] [CrossRef]
- Sousa, J.V.d.; de Oliveira, E.C. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Kwun, Y.C.; Farid, G.; Nazeer, W.; Ullah, S.; Kang, S.M. Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities. IEEE Access 2018, 6, 64946–64953. [Google Scholar] [CrossRef]
- Kucche, K.D.; Mali, A.D. On the nonlinear (k,ψ)-Hilfer fractional differential equations. Chaos Solitons Fractals 2021, 152, 111335. [Google Scholar] [CrossRef]
- Tariboon, J.; Samadi, A.; Ntouyas, S.K. Multi-point boundary value problems for (k,ϕ)-Hilfer fractional differential equations and inclusions. Axioms 2022, 11, 110. [Google Scholar] [CrossRef]
- Diaz, R.; Pariguan, E. On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 2007, 2, 179–192. [Google Scholar]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef] [Green Version]
- Deimling, K. Nonlinear Functional Analysis; Springer: New York, NY, USA, 1985. [Google Scholar]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2005. [Google Scholar]
- Krasnosel’skiĭ, M.A. Two remarks on the method of successive approximations. Uspekhi Mat. Nauk 1955, 10, 123–127. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samadi, A.; Ntouyas, S.K.; Tariboon, J. Nonlocal Coupled System for (k,φ)-Hilfer Fractional Differential Equations. Fractal Fract. 2022, 6, 234. https://doi.org/10.3390/fractalfract6050234
Samadi A, Ntouyas SK, Tariboon J. Nonlocal Coupled System for (k,φ)-Hilfer Fractional Differential Equations. Fractal and Fractional. 2022; 6(5):234. https://doi.org/10.3390/fractalfract6050234
Chicago/Turabian StyleSamadi, Ayub, Sotiris K. Ntouyas, and Jessada Tariboon. 2022. "Nonlocal Coupled System for (k,φ)-Hilfer Fractional Differential Equations" Fractal and Fractional 6, no. 5: 234. https://doi.org/10.3390/fractalfract6050234
APA StyleSamadi, A., Ntouyas, S. K., & Tariboon, J. (2022). Nonlocal Coupled System for (k,φ)-Hilfer Fractional Differential Equations. Fractal and Fractional, 6(5), 234. https://doi.org/10.3390/fractalfract6050234