Generalized Integral Inequalities of Chebyshev Type
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Author Contributions
Conflicts of Interest
References
- Chebyshev, P.L. Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limites. Proc. Math. Soc. Charkov. 1882, 2, 93–98. [Google Scholar]
- Özdemir, M.E.; Set, E.; Akdemir, A.O.; Sarikaya, M.Z. Some new Chebyshev type inequalities for functions whose derivatives belongs to Lp spaces. Afrika Mat. 2015, 26, 1609–1619. [Google Scholar] [CrossRef]
- Set, E.; Choi, J.; Mumcu, İ. Chebyshev type inequalities involving generalized Katugampola fractional integral operators. Tamkang J. Math. 2019, 50, 381–390. [Google Scholar] [CrossRef]
- Set, E.; Dahmani, Z.; Mumcu, İ. New extensions of Chebyshev type inequalities using generalized Katugampola integrals via Pólya–Szegö inequality. IJOCTA 2018, 8, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematical Studies; Elsevier (North-Holland) Science Publishers: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Podlubny, I. Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Belarbi, S.; Dahmani, Z. On some new fractional integral inequalities. J. Inequal. Pure Appl. Math. 2009, 10, 1–12. [Google Scholar]
- Chen, F. Extensions of the Hermite-Hadamard inequality for convex functions via fractional integrals. J. Math. Inequal. 2016, 10, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Dahmani, Z. New inequalities in fractional integrals. Int. J. Nonlinear Sci. 2010, 9, 493–497. [Google Scholar]
- Gorenflo, R.; Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order; Springer: Vienna, Austria, 1997; pp. 223–276. [Google Scholar]
- İşcan, İ. Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals. Stud. Univ. Babes-Bolyai Math. 2015, 60, 355–366. [Google Scholar]
- Machado, J.T.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1140–1153. [Google Scholar] [CrossRef] [Green Version]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Set, E. New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals. Comput. Math. Appl. 2012, 63, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Set, E.; İşcan, İ.; Zehir, F. On some new inequalities of Hermite-Hadamard type involving harmonically convex functions via fractional integrals. Konuralp J. Math. 2015, 3, 42–55. [Google Scholar]
- Set, E.; Mumcu, İ.; Demirbaş, S. Conformable fractional integral inequalities of Chebyshev type. RACSAM 2019, 113, 2253–2259. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, T.U. Parameterized Hermite-Hadamard Type Inequalities For Fractional Integrals. Turkish J. Ineqal. 2017, 1, 26–37. [Google Scholar]
- Sarıkaya, M.Z.; Ertuğral, F. On the Generalized Hermite-Hadamard Inequalities. Available online: https://www.researchgate.net/publication/321760443 (accessed on 19 December 2019).
- Yaldız, H.; Akdemir, A.O. Katugampola Fractional Integrals within the Class of Convex Functions. Turk. J. Sci. 2018, 3, 40–50. [Google Scholar]
- Nisar, K.S.; Rahman, G.; Mehrez, K. Chebyshev type inequalities via generalized fractional conformable integrals. J. Inequal. Appl. 2019, 2019, 245. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzmán, P.M.; Kórus, P.; Nápoles Valdés, J.E. Generalized Integral Inequalities of Chebyshev Type. Fractal Fract. 2020, 4, 10. https://doi.org/10.3390/fractalfract4020010
Guzmán PM, Kórus P, Nápoles Valdés JE. Generalized Integral Inequalities of Chebyshev Type. Fractal and Fractional. 2020; 4(2):10. https://doi.org/10.3390/fractalfract4020010
Chicago/Turabian StyleGuzmán, Paulo M., Péter Kórus, and Juan E. Nápoles Valdés. 2020. "Generalized Integral Inequalities of Chebyshev Type" Fractal and Fractional 4, no. 2: 10. https://doi.org/10.3390/fractalfract4020010
APA StyleGuzmán, P. M., Kórus, P., & Nápoles Valdés, J. E. (2020). Generalized Integral Inequalities of Chebyshev Type. Fractal and Fractional, 4(2), 10. https://doi.org/10.3390/fractalfract4020010