Next Article in Journal
Inequalities Pertaining Fractional Approach through Exponentially Convex Functions
Previous Article in Journal
A Criterion for Subfamilies of Multivalent Functions of Reciprocal Order with Respect to Symmetric Points
Open AccessArticle

Green’s Function Estimates for Time-Fractional Evolution Equations

by Ifan Johnston 1,*,† and Vassili Kolokoltsov 2,†
1
Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
2
Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Fractal Fract 2019, 3(2), 36; https://doi.org/10.3390/fractalfract3020036
Received: 3 June 2019 / Revised: 18 June 2019 / Accepted: 20 June 2019 / Published: 25 June 2019
We look at estimates for the Green’s function of time-fractional evolution equations of the form D 0 + ν u = L u , where D 0 + ν is a Caputo-type time-fractional derivative, depending on a Lévy kernel ν with variable coefficients, which is comparable to y 1 β for β ( 0 , 1 ) , and L is an operator acting on the spatial variable. First, we obtain global two-sided estimates for the Green’s function of D 0 β u = L u in the case that L is a second order elliptic operator in divergence form. Secondly, we obtain global upper bounds for the Green’s function of D 0 β u = Ψ ( i ) u where Ψ is a pseudo-differential operator with constant coefficients that is homogeneous of order α . Thirdly, we obtain local two-sided estimates for the Green’s function of D 0 β u = L u where L is a more general non-degenerate second order elliptic operator. Finally we look at the case of stable-like operator, extending the second result from a constant coefficient to variable coefficients. In each case, we also estimate the spatial derivatives of the Green’s functions. To obtain these bounds we use a particular form of the Mittag-Leffler functions, which allow us to use directly known estimates for the Green’s functions associated with L and Ψ , as well as estimates for stable densities. These estimates then allow us to estimate the solutions to a wide class of problems of the form D 0 ( ν , t ) u = L u , where D ( ν , t ) is a Caputo-type operator with variable coefficients. View Full-Text
Keywords: Caputo derivative; Green’s function; Aronson estimates; two-sided estimates; fractional evolution Caputo derivative; Green’s function; Aronson estimates; two-sided estimates; fractional evolution
MDPI and ACS Style

Johnston, I.; Kolokoltsov, V. Green’s Function Estimates for Time-Fractional Evolution Equations. Fractal Fract 2019, 3, 36.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop