Green’s Function Estimates for Time-Fractional Evolution Equations
Abstract
:1. Introduction
- Theorem 1: When the spatial operator is given by a second order uniformly elliptic operator in divergence form,
- Theorem 3: A general second order elliptic operator L with variable coefficients of the form
- Theorem 6: A non-isotropic pseudo-differential operator with variable coefficients, with homogeneous symbol of the form
2. Preliminaries
2.1. Estimates and Stable Processes
2.2. Fractional Derivatives and Their Extensions
3. Global Estimates
3.1. Time-Fractional Diffusion Equation: Divergence Structure
- For ,
- For ,
- For ,
- For ,
3.2. Time-Fractional Pseudo-Differential Evolution: Constant Coefficients
- The function belongs to .
- The spectral measure has a density which is strictly positive (see (9)).
- ,
- For ,
- For ,
- For ,
- For ,
4. Local Estimates
4.1. Time-Fractional Diffusion Equation: General Non-Degenerate
- For ,
- For ,
- For ,
- For ,
- For ,
- For ,
- For ,
4.2. Time-Fractional Pseudo-Differential Evolution: Variable Coefficients
- For ,
- For ,
- For ,
- For ,
- For ,
- For ,
- For ,
5. Generalised Evolution Equations
6. Conclusions
Funding
Conflicts of Interest
Appendix A. Asymptotic Methods
References
- Barlow, M.T.; Černıy, J. Convergence to fractional kinetics for random walks associated with unbounded conductances. Probab. Theory Relat. Fields 2011, 149, 675–677. [Google Scholar] [CrossRef]
- Meerschaert, M.M.; Sikorskii, A. Stochastic Models for Fractional Calculus; Walter de Gruyter: Berlin, Germany, 2012; Volume 43. [Google Scholar]
- Leonenko, N.N.; Meerschaert, M.M.; Sikorskii, A. Correlation structure of fractional Pearson diffusions. Comput. Math. Appl. 2013, 66, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Hairer, M.; Iyer, G.; Koralov, L.; Novikov, A.; Pajor-Gyulai, Z. A fractional kinetic process describing the intermediate time behaviour of cellular flows. Ann. Probab. 2018, 46, 897–955. [Google Scholar] [CrossRef] [Green Version]
- Richard, H. Fractional Calculus: An Introduction for Physicists; World Scientific: New York, NY, USA, 2014. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; World Scientific: New York, NY, USA, 2010. [Google Scholar]
- Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer Science & Business Media: Berlin, Germany, 2011. [Google Scholar]
- Scalas, E.; Gorenflo, R.; Mainardi, F. Fractional calculus and continuous-time finance. Phys. A Stat. Mech. Its Appl. 2000, 284, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Mainardi, F.; Raberto, M.; Gorenflo, R.; Scalas, E. Fractional calculus and continuous-time finance II: the waiting-time distribution. Phys. A Stat. Mech. Its Appl. 2000, 287, 468–481. [Google Scholar] [CrossRef] [Green Version]
- Gorenflo, R.; Mainardi, F.; Scalas, E.; Raberto, M. Fractional calculus and continuous-time finance III: The diffusion limit. In Mathematical Finance; Springer: New York, NY, USA, 2001; pp. 171–180. [Google Scholar]
- Chen, Z.Q.; Kim, P.; Kumagai, T.; Wang, J. Heat kernel estimates for time fractional equations. Forum Math. 2018, 30, 1163–1192. [Google Scholar] [CrossRef] [Green Version]
- Grigoryan, A.; Kumagai, T. On the dichotomy in the heat kernel two sided estimates. In Analysis on Graphs and its Applications; Exner, P., Keating, J.P., Kuchment, P., Teplyaev, A., Sunada, T., Eds.; American Mathematica Society: Providence, RI, USA, 2008; Volume 77, pp. 199–210. [Google Scholar]
- Deng, C.S.; Schilling, R.L. Exact Asymptotic Formulas for the Heat Kernels of Space and Time-Fractional Equations. arXiv 2018, arXiv:1803.11435. [Google Scholar]
- Kelbert, M.; Konakov, V.; Menozzi, S. Weak error for continuous time markov chains related to fractional in time P (I) DEs. Stoch. Process. Their Appl. 2016, 126, 1145–1183. [Google Scholar] [CrossRef]
- Eidelman, S.; Kochubei, A. Cauchy problem for fractional diffusion equations. J. Differ. Eq. 2004, 199, 211–255. [Google Scholar] [CrossRef] [Green Version]
- Kochubei, A.N.; Kondratiev, Y.; da Silva, J.L. Random Time Change and Related Evolution Equations. arXiv 2019, arXiv:1901.10015. [Google Scholar]
- Kochubei, A.; Kondratiev, Y.; da Silva, J. From Random Times to Fractional Kinetics. arXiv 2018, arXiv:1811.10531. [Google Scholar]
- Cheng, X.; Li, Z.; Yamamoto, M. Asymptotic behavior of solutions to space-time fractional diffusion-reaction equations. Math. Methods Appl. Sci. 2017, 40, 1019–1031. [Google Scholar] [CrossRef]
- Kemppainen, J.; Siljander, J.; Zacher, R. Representation of solutions and large-time behavior for fully nonlocal diffusion equations. J. Differ. Eq. 2017, 263, 149–201. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Lim, S. Asymptotic behaviors of fundamental solution and its derivatives to fractional diffusion-wave equations. J. Korean Math. Soc. 2016, 53, 929–967. [Google Scholar] [CrossRef]
- Cabezas, M. Sub-Gaussian bound for the one-dimensional Bouchaud trap model. Braz. J. Probab. Stat. 2015, 29, 112–131. [Google Scholar] [CrossRef]
- Aronson, D.G. Bounds for the fundamental solution of a parabolic equation. Bull. Am. Math. Soc. 1967, 73, 890–897. [Google Scholar] [CrossRef]
- Stroock, D.W. Diffusion semigroups corresponding to uniformly elliptic divergence form operators. In Séminaire de Probabilités XXII; Springer: New York, NY, USA, 1988; pp. 316–347. [Google Scholar] [Green Version]
- Kolokoltsov, V.N. Differential Equations on Measures and Functional Spaces; Birkhäuser: Berlin, Germany, 2019. [Google Scholar]
- Eidelman, S.D.; Ivasyshen, S.D.; Kochubei, A.N. Analytic Methods in the Theory of Differential and Pseudo-Differential Equations of Parabolic Type; Springer Science & Business Media: Berlin, Germany, 2004; Volume 152. [Google Scholar]
- De Bruijn, N.G. Asymptotic Methods in Analysis; Dover Publications: New York, NY, USA, 1970; Volume 4. [Google Scholar]
- Porper, F.; Èidel’man, S.D. Two-sided estimates of fundamental solutions of second-order parabolic equations, and some applications. Russ. Math. Surv. 1984, 39, 119–178. [Google Scholar] [CrossRef]
- Evans, L.C. Partial Differential Equations; Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 2010. [Google Scholar]
- Zolotarev, V.M. One-Dimensional Stable Distributions; American Mathematical Society: Providence, RI, USA, 1986; Volume 65. [Google Scholar]
- Kolokoltsov, V.N. Markov Processes, Semigroups, and Generators; Walter de Gruyter: Berlin, Germany, 2011; Volume 38. [Google Scholar]
- Uchaikin, V.V.; Zolotarev, V.M. Chance and Stability: Stable Distributions and Their Applications; Walter de Gruyter: Berlin, Germany, 2011. [Google Scholar]
- Kolokoltsov, V.N. Symmetric stable laws and stable-like jump-diffusions. Proc. London Math Soc. 2000, 80, 725–768. [Google Scholar] [CrossRef]
- Kolokoltsov, V.N. On fully mixed and multidimensional extensions of the Caputo and Riemann-Liouville derivatives, related Markov processes and fractional differential equations. Fract. Calc. Appl. Anal. 2015, 18, 1039–1073. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Yverdon, Switzerland, 1993. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type; Springer: New York, NY, USA, 2010. [Google Scholar]
- Kilbas, A.A.A.; Srivastava, H.M.; Trujillo, J.J. Theory And Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999; Volume 198. [Google Scholar]
- Kolokoltsov, V. The probabilistic point of view on the generalized fractional PDEs. Fract. Calc. Appl. Anal. 2019. submitted. [Google Scholar]
- Schilling, R.L.; Song, R.; Vondracek, Z. Bernstein Functions: Theory and Applications; Walter de Gruyter: Berlin, Germany, 2012; Volume 37. [Google Scholar]
- Van Den Berg, C.; Forst, G. Potential Theory on Locally Compact Abelian Groups; Springer Science & Business Media: Berlin, Germany, 2012; Volume 87. [Google Scholar]
- Feller, W. An Introduction to Probability Theory and Its Applications, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1971. [Google Scholar]
- Kolokoltsov, V. Chronological operator-valued Feynman-Kac formulae for generalized fractional evolutions. arXiv 2017, arXiv:1705.08157. [Google Scholar]
- Kolokoltsov, V.; Veretennikova, M. Well-posedness and regularity of the Cauchy problem for nonlinear fractional in time and space equations. Fract. Differ. Calc. 2014, 4, 1–30. [Google Scholar] [CrossRef]
- Zolotarev, V.M. Mellin-Stieltjes transforms in probability theory. Theory Probab. Its Appl. 1957, 2, 433–460. [Google Scholar] [CrossRef]
- Zolotarev, V.M. On analytic properties of stable distribution laws. Sel. Transl. Math. Stat. Probab. 1961, 1, 202–211. [Google Scholar]
- Pollard, H. The completely monotonic character of the Mittag-Leffler function Eα(−x). Bull. Am. Math. Soc. 1948, 54, 1115–1116. [Google Scholar] [CrossRef]
- Murray, J.D. Asymptotic Analysis; Springer Science & Business Media: Berlin, Germany, 2012; Volume 48. [Google Scholar]
- Fedorjuk, M.V. Asymptotics, Integrals and Series; Nauka: Moscow, Russia, 1987. (In Russian) [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnston, I.; Kolokoltsov, V. Green’s Function Estimates for Time-Fractional Evolution Equations. Fractal Fract. 2019, 3, 36. https://doi.org/10.3390/fractalfract3020036
Johnston I, Kolokoltsov V. Green’s Function Estimates for Time-Fractional Evolution Equations. Fractal and Fractional. 2019; 3(2):36. https://doi.org/10.3390/fractalfract3020036
Chicago/Turabian StyleJohnston, Ifan, and Vassili Kolokoltsov. 2019. "Green’s Function Estimates for Time-Fractional Evolution Equations" Fractal and Fractional 3, no. 2: 36. https://doi.org/10.3390/fractalfract3020036
APA StyleJohnston, I., & Kolokoltsov, V. (2019). Green’s Function Estimates for Time-Fractional Evolution Equations. Fractal and Fractional, 3(2), 36. https://doi.org/10.3390/fractalfract3020036