On Some Generalized Fractional Integral Inequalities for p-Convex Functions
Abstract
:1. Introduction
- The Gamma Function:The Gamma functions are defined byThe gamma function is a natural extension of the factorial from integers n to real numbers .
- The Beta Function:
- The Hypergeometric Function:
2. Main Results
Author Contributions
Funding
Conflicts of Interest
References
- Dragomir, S.S.; Pĕarce, C.E.M. Selected Topics on Hermite–Hadamard Inequalities and Applications. Available online: https://rgmia.org/papers/monographs/Master.pdf (accessed on 13 May 2019).
- Balarbi, S.; Dahmani, Z. On some new fractional integral inequalities. J. Inequal. Pure Appl. Math. 2009, 10, 86. [Google Scholar]
- Set, E.; Özdemir, M.E.; Sarikaya, M.Z. Inequaities of Hermite–Hadamards type for functions whose derivatives absolute values are m-convex. AIP Conf. Proc. 2010, 1309, 861. [Google Scholar] [CrossRef]
- Sarıkaya, M.Z.; Set, E.; Yaldız, H.; Basak, N. Hermite–Hadamards inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar]
- Set, E.; Özdemir, M.E.; Dragomir, S.S. On the Hermite–Hadamard inequality and other integral inequalities involving two functions. J. Inequal. Appl. 2010, 9, 148102. [Google Scholar] [CrossRef]
- Set, E.; Sarıkaya, M.Z.; Özdemir, M.E.; Yıldırım, H. The Hermite–Hadamard’s inequality for some convex functions via fractional integrals and related result. J. Appl. Math. Stat. Inform. 2014, 10, 69–83. [Google Scholar] [CrossRef]
- Yaldız, H.; Sarikaya, M.Z. On the Hermite–Hadamard type inequalities for fractional integral operator. 2016. Available online: https://www.researchgate.net/publication/309824275 (accessed on 20 May 2019).
- Zhang, K.S.; Wan, J.P. p-convex functions and their properties. Pure Appl. Math. 2007, 23, 130–133. [Google Scholar]
- Işcan, I. Ostrowski type inequalities for p-convex functions. New Trends Math. Sci. 2016, 4, 140–150. [Google Scholar]
- Işcan, I. Hermite–Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar]
- Fang, Z.B.; Shi, R. On the (p,h)-convex function and some integral inequalities. J. Inequal. Appl. 2014, 45. [Google Scholar] [CrossRef]
- Toplu, T. Hermite–Hadamard Type Inequality For p-Convex Functions via Katugampola Fractional Integrals. Available online: https://www.researchgate.net/publication/322551131 (accessed on 9 May 2019).
- Kunt, M.; Işcan, I. Hermite–Hadamard Fejér Type Inequalities for p-Convex Functions via Fractional Integrals. Iranian J. Sci. Tech. Trans. A-Sci. 2018, 42, 2079–2089. [Google Scholar] [CrossRef]
- Kunt, M.; Işcan, I. Hermite–Hadamard Fejér Type Inequalities for p-Convex Functions via Fractional Integrals. Commun. Math. Model. Appl. 2017, 2, 1–5. [Google Scholar] [CrossRef]
- Kunt, M.; Işcan, I. Hermite–Hadamard type inequalities for p-convex functions via fractional integrals. Moroccan J. Pure Appl. Anal. 2017, 3, 22–35. [Google Scholar] [CrossRef]
- Kunt, M.; Işcan, I. Hermite–Hadamard Fejér Type Ineaqualities for p-Convex. Arab J. Math. 2017, 23, 215–230. [Google Scholar]
- Noor, M.A.; Noor, K.J.; Iftikhar, S. Nonconvex Functions and Integral Inequalities. Punjab Univ.J. Math. 2015, 47, 19–27. [Google Scholar]
- Noor, M.A.; Noor, K.J.; Noor, K.I.; Mihai, M.H.; Awan, M.U. Hermite–Hadamard inequalities for differantiable p-convex functions using hypergeometric funtions. Available online: https://www.researchgate.net/publication/282912282 (accessed on 9 May 2019).
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differantial Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Srinivasan, G.K. The gamma function: An eclectic tour. Am. Math. Mon. 2007, 114, 297–315. [Google Scholar] [CrossRef]
- Dahmani, Z. New inequalities in fractional integrals. Int. J. Nonlinear Sci. 2010, 9, 493–497. [Google Scholar]
- Gorenflo, R.; Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order; Springer: Wien, Austria, 1997; pp. 223–276. [Google Scholar]
- Set, E. New inequalities of Ostrowski Type for mappings whose derivatives are s-convex in the second sense via fractional integrals. Comput. Math. Appl. 2012, 63, 1147–1154. [Google Scholar] [CrossRef]
- Set, E.; Işcan, I.; Zehir, F. On some new inequalities of Hermite–Hadamard type involving harmonically convex functions via fractional integrals. Konuralp J. Math. 2015, 3, 42–55. [Google Scholar]
- Raina, R.K. On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 2005, 21, 191–203. [Google Scholar]
- Agarwal, R.P.; Lun, M.J.; Raina, R.K. On Ostrowski type inequalities. Fasc. Math. 2016, 204, 5–27. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salaş, S.; Erdaş, Y.; Toplu, T.; Set, E. On Some Generalized Fractional Integral Inequalities for p-Convex Functions. Fractal Fract. 2019, 3, 29. https://doi.org/10.3390/fractalfract3020029
Salaş S, Erdaş Y, Toplu T, Set E. On Some Generalized Fractional Integral Inequalities for p-Convex Functions. Fractal and Fractional. 2019; 3(2):29. https://doi.org/10.3390/fractalfract3020029
Chicago/Turabian StyleSalaş, Seren, Yeter Erdaş, Tekin Toplu, and Erhan Set. 2019. "On Some Generalized Fractional Integral Inequalities for p-Convex Functions" Fractal and Fractional 3, no. 2: 29. https://doi.org/10.3390/fractalfract3020029
APA StyleSalaş, S., Erdaş, Y., Toplu, T., & Set, E. (2019). On Some Generalized Fractional Integral Inequalities for p-Convex Functions. Fractal and Fractional, 3(2), 29. https://doi.org/10.3390/fractalfract3020029