Some New Fractional Trapezium-Type Inequalities for Preinvex Functions
Abstract
:1. Introduction
2. Main Results
3. Applications to Special Means
- The arithmetic mean:
- The harmonic mean:
- The logarithmic mean:
- The generalized log-mean:
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Aslani, S.M.; Delavar, M.R.; Vaezpour, S.M. Inequalities of Fejér type related to generalized convex functions with applications. Int. J. Anal. Appl. 2018, 16, 38–49. [Google Scholar]
- Chen, F.X.; Wu, S.H. Several complementary inequalities to inequalities of Hermite–Hadamard type for s-convex functions. J. Nonlinear Sci. Appl. 2016, 9, 705–716. [Google Scholar] [CrossRef]
- Chu, Y.-M.; Khan, M.A.; Khan, T.U.; Ali, T. Generalizations of Hermite–Hadamard type inequalities for MT-convex functions. J. Nonlinear Sci. Appl. 2016, 9, 4305–4316. [Google Scholar] [CrossRef]
- Dahmani, Z. On Minkowski and Hermite–Hadamard integral inequalities via fractional integration. Ann. Funct. Anal. 2010, 1, 51–58. [Google Scholar] [CrossRef]
- Delavar, M.R.; Dragomir, S.S. On η-convexity. Math. Inequal. Appl. 2017, 20, 203–216. [Google Scholar] [CrossRef]
- Delavar, M.R.; de la Sen, M. Some generalizations of Hermite–Hadamard type inequalities. SpringerPlus 2016, 5, 1661. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef]
- Du, T.S.; Liao, J.G.; Li, Y.J. Properties and integral inequalities of Hadamard–Simpson type for the generalized (s,m)-preinvex functions. J. Nonlinear Sci. Appl. 2016, 9, 3112–3126. [Google Scholar] [CrossRef]
- Farid, G.; Rehman, A.U. Generalizations of some integral inequalities for fractional integrals. Ann. Math. Silesianae 2017, 31, 1–14. [Google Scholar] [CrossRef]
- Hristov, J. Response functions in linear viscoelastic constitutive equations and related fractional operators. Math. Model. Nat. Phenom. 2019, 14, 1–34. [Google Scholar] [CrossRef]
- Katugampola, U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218, 860–865. [Google Scholar] [CrossRef]
- Kashuri, A.; Liko, R. Hermite–Hadamard type fractional integral inequalities for generalized (r;s,m,φ)-preinvex functions. Eur. J. Pure Appl. Math. 2017, 10, 495–505. [Google Scholar]
- Kashuri, A.; Liko, R. Hermite–Hadamard type inequalities for generalized (s,m,φ)-preinvex functions via k-fractional integrals. Tbil. Math. J. 2017, 10, 73–82. [Google Scholar] [CrossRef]
- Kashuri, A.; Liko, R. Hermite–Hadamard type fractional integral inequalities for MT(m,φ)-preinvex functions. Stud. Univ. Babeş-Bolyai Math. 2017, 62, 439–450. [Google Scholar] [CrossRef]
- Kashuri, A.; Liko, R.; Dragomir, S.S. Some new Gauss-Jacobi and Hermite–Hadamard type inequalities concerning (n+1)-differentiable generalized ((h1p,h2q);(η1,η2))-convex mappings. Tamkang J. Math. 2018, 49, 317–337. [Google Scholar] [CrossRef]
- Khan, M.A.; Chu, Y.-M.; Kashuri, A.; Liko, R. Hermite–Hadamard type fractional integral inequalities for MT(r;g,m,ϕ)-preinvex functions. J. Comput. Anal. Appl. 2019, 26, 1487–1503. [Google Scholar]
- Khan, M.A.; Chu, Y.-M.; Kashuri, A.; Liko, R.; Ali, G. New Hermite–Hadamard inequalities for conformable fractional integrals. J. Funct. Sp. 2018, 2018, 6928130. [Google Scholar]
- Khan, M.A.; Khurshid, Y.; Ali, T. Hermite–Hadamard inequality for fractional integrals via η-convex functions. Acta Math. Univ. Comenianae 2017, 79, 153–164. [Google Scholar]
- Liu, W.J. Some Simpson type inequalities for h-convex and (α,m)-convex functions. J. Comput. Anal. Appl. 2014, 16, 1005–1012. [Google Scholar]
- Liu, W.; Wen, W.; Park, J. Hermite–Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals. J. Nonlinear Sci. Appl. 2016, 9, 766–777. [Google Scholar] [CrossRef]
- Luo, C.; Du, T.S.; Khan, M.A.; Kashuri, A.; Shen, Y. Some k-fractional integrals inequalities through generalized λϕm-MT-preinvexity. J. Comput. Anal. Appl. 2019, 27, 690–705. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Mubeen, S.; Habibullah, G.M. k-Fractional integrals and applications. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Awan, M.U.; Khan, S. Hermite–Hadamard inequalities for s-Godunova–Levin preinvex functions. J. Adv. Math. Stud. 2014, 7, 12–19. [Google Scholar]
- Omotoyinbo, O.; Mogbodemu, A. Some new Hermite–Hadamard integral inequalities for convex functions. Int. J. Sci. Innov. Technol. 2014, 1, 1–12. [Google Scholar]
- Özdemir, M.E.; Dragomir, S.S.; Yildiz, C. The Hadamard’s inequality for convex function via fractional integrals. Acta Mathematica Scientia 2013, 33, 153–164. [Google Scholar] [CrossRef]
- Dos Santos, M.A.F. Fractional Prabhakar Derivative in Diffusion Equation with Non-Static Stochastic Resetting. Physics 2019, 1, 5. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Ertuğral, F. On the generalized Hermite–Hadamard inequalities. Available online: https://www.researchgate.net/publication/321760443 (accessed on 21 March 2019).
- Set, E.; Noor, M.A.; Awan, M.U.; Gözpinar, A. Generalized Hermite–Hadamard type inequalities involving fractional integral operators. J. Inequal. Appl. 2017, 1, 169. [Google Scholar] [CrossRef]
- Shi, H.N. Two Schur-convex functions related to Hadamard-type integral inequalities. Publ. Math. Debr. 2011, 78, 393–403. [Google Scholar] [CrossRef]
- Wang, H.; Du, T.S.; Zhang, Y. k-fractional integral trapezium-like inequalities through (h,m)-convex and (α,m)-convex mappings. J. Inequal. Appl. 2017, 1, 311. [Google Scholar] [CrossRef]
- Zhang, X.M.; Chu, Y.-M.; Zhang, X.H. The Hermite–Hadamard type inequality of GA-convex functions and its applications. J. Inequal. Appl. 2010, 1, 507560. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, T.S.; Wang, H.; Shen, Y.J.; Kashuri, A. Extensions of different type parameterized inequalities for generalized (m,h)-preinvex mappings via k-fractional integrals. J. Inequal. Appl. 2018, 1, 49. [Google Scholar] [CrossRef] [PubMed]
- Weir, T.; Mond, B. Preinvex functions in multiple objective optimization. J. Math. Anal. Appl. 1998, 136, 29–38. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Yildirim, H. On generalization of the Riesz potential. Indian J. Math. Math. Sci. 2007, 3, 231–235. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kashuri, A.; Set, E.; Liko, R. Some New Fractional Trapezium-Type Inequalities for Preinvex Functions. Fractal Fract. 2019, 3, 12. https://doi.org/10.3390/fractalfract3010012
Kashuri A, Set E, Liko R. Some New Fractional Trapezium-Type Inequalities for Preinvex Functions. Fractal and Fractional. 2019; 3(1):12. https://doi.org/10.3390/fractalfract3010012
Chicago/Turabian StyleKashuri, Artion, Erhan Set, and Rozana Liko. 2019. "Some New Fractional Trapezium-Type Inequalities for Preinvex Functions" Fractal and Fractional 3, no. 1: 12. https://doi.org/10.3390/fractalfract3010012
APA StyleKashuri, A., Set, E., & Liko, R. (2019). Some New Fractional Trapezium-Type Inequalities for Preinvex Functions. Fractal and Fractional, 3(1), 12. https://doi.org/10.3390/fractalfract3010012