Application of Inverse Optimization Algorithms in Neural Network Models for Short-Term Stock Price Forecasting
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Review
2.2. Inverse Optimization Algorithms for Neural Network Training
2.2.1. Neural Network Model
2.2.2. Algorithm for Neural Network Training Using the Inverse Optimization Approach
- At each iteration, the target function value decreases with a certain step, ensuring minimization of the error function.
- At each iteration, only one weight coefficient is selected for modification with a specified probability. Then, its new value is determined to achieve the target function value by solving an equation. If the selected weight coefficient cannot achieve the target function value (no solution to the equation exists), another weight coefficient is chosen until all arguments have been considered. For illustration, Figure 3 shows a scenario where it is impossible to reach the target value y2 from point A by changing x1. Consequently, this argument is excluded from calculations, and the solution is found by modifying argument x2. Thus, each weight coefficient has two characteristics, namely, a selection probability and a usability indicator u, which takes the value 1 if the argument can be selected for solving the problem and 0 otherwise.
- If no weight coefficient allows the target function value to be reached, the step size for changing the target function value is reduced.
- All probabilities are equal (random choice (RC)), and the weight coefficient is selected randomly at each iteration.
- Probabilities are calculated based on the gradient: the higher the absolute gradient value for a specific weight coefficient is, the higher the probability that this coefficient will be selected for modification (derivative choice (DC)).
3. Experimental Results and Discussion
3.1. Forecasting the Closing Price of Gazprom PJSC Shares
- Row 2: Forecast 157.80—observing a downward trend from 158.68 to 158.01, expecting the decline to continue
- Row 3: Forecast 155.90—significant drop from 158.01 to 156.52, downward trend is accelerating
- Row 4: Forecast 151.50—sharp decline from 156.52 to 153.09, downward momentum persists
- Row 5: Forecast 154.20—slight upward correction from 153.09 to 153.56, potential rebound possible
3.2. Experiments Using Data from 40 Russian Companies
4. Conclusions and Suggestions for Future Work
- Integration of inverse optimization algorithms with other neural network architectures, particularly recurrent networks and transformers, which have shown promise in capturing temporal dependencies in financial data;
- Exploration of hybrid approaches that combine the strengths of inverse optimization with traditional algorithms or metaheuristics;
- Investigation of feature selection techniques to complement the proposed training algorithms and further enhance forecasting accuracy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
INPUT: |
- Training data (Price_prev, Price) |
- Network architecture (input_neurons, hidden_neurons) |
- Parameters: d (step divisor), q (step reduction coefficient), rmax (maximum threshold) |
OUTPUT: Optimized weights w0, w1 |
BEGIN |
1. INITIALIZATION |
Initialize weights w0, w1 randomly |
Set r = 1, u = 1 for all weights |
// Compute initial error function using Equation (1) |
z = f2(w1 × f1(w0 × Price_prev)) |
Jprev = Σ(Price − z)2 |
// Set initial step size |
step = Jprev/d |
2. MAIN LOOP |
WHILE r ≤ rmax DO |
2.1. TARGET REDUCTION |
// Apply stepwise reduction using Equation (2) |
Jtarget = Jprev − step/r |
2.2. WEIGHT SELECTION |
// Calculate selection probabilities for RC method |
total_usable = Σ ui for all weights |
IF total_usable = 0 THEN |
r = r × q |
Set u = 1 for all weights |
total_usable = total number of weights |
END IF |
FOR each weight i with ui = 1 DO |
// Equal probabilities |
βi = 1/total_usable |
END FOR |
// Select weight index p based on probability β |
p = RandomSelection(β) |
2.3. LAYER DETERMINATION |
IF p ≥ (input_neurons + 1) × hidden_neurons THEN |
GO TO STEP 3 (Second Layer Modification) |
ELSE |
GO TO STEP 4 (First Layer Modification) |
END IF |
3. SECOND LAYER MODIFICATION |
3.1. COEFFICIENT INDEX CALCULATION |
v = p − (input_neurons + 1) × hidden_neurons |
3.2. NEWTON’S METHOD ITERATION |
Copy w1 to w1* |
REPEAT |
// Compute hidden layer output with bias |
// Append bias |
hbias = [f1(w0 × Price_prev); 1] |
// Compute gradient g1 using Equation (2) |
δ2 = (z − Price) ⊙ f2’(w1 × hbias) |
g1 = hbiasT × δ2 |
// Newton update |
w1*v = w1*v − (J(w*) − Jtarget)/ 2g1v |
// Recalculate J(w*) and gradient using Equations (1) and (2) |
znew = f2(w1*× hbias) |
Jnew = Σ(Price − znew)2 |
UNTIL convergence or max_iterations |
3.3. ACCEPTANCE CHECK |
IF Jnew < Jprev THEN |
w1 = w1* |
u = 1 for all weights |
Jprev = Jnew |
GO TO STEP 2 |
ELSE |
up = 0 |
GO TO STEP 2 |
END IF |
4. FIRST LAYER MODIFICATION |
4.1. MATRIX INDICES CALCULATION |
v = p mod hidden_neurons |
b = ⌊p/hidden_neurons⌋ |
4.2. NEWTON’S METHOD ITERATION |
Copy w0 to w0* |
REPEAT |
// Compute hidden layer error using Equation (3) |
h = f1(w0 × Price_prev) |
δ2 = (z − Price) ⊙ f2’(w1 × [h; 1]) |
// Exclude bias weights |
w1_no_bias = w1[1:hidden_neurons, :] |
δ1 = (w1_no_biasT × δ2) ⊙ f1’(w0 × Price_prev) |
// Compute gradient g0 using Equation (3) |
g0 = Price_prevT × δ1 |
// Newton update |
w0*b,v = w0*b,v − (J(w*) − Jtarget)/4g0b,v |
// Recalculate J(w*) and gradient using Equations (1) and (3) |
hnew = f1(w0* ×Price_prev) |
znew = f2(w1 × [hnew; 1]) |
Jnew = Σ(Price − znew)2 |
UNTIL convergence or max_iterations |
4.3. ACCEPTANCE CHECK |
IF Jnew < Jprev THEN |
w0 = w0* |
u = 1 for all weights |
Jprev = Jnew |
GO TO STEP 2 |
ELSE |
up = 0 |
GO TO STEP 2 |
END IF |
END WHILE |
5. RETURN optimized weights w0, w1 |
END |
References
- Chang, P.C.; Liu, C.H.; Lin, J.L.; Fan, C.Y.; Ng, C.S.P. A neural network with a case based dynamic window for stock trading prediction. Expert Syst. Appl. 2009, 36, 6889–6898. [Google Scholar] [CrossRef]
- Rouf, N.; Malik, M.B.; Arif, T.; Sharma, S.; Singh, S.; Aich, S.; Kim, H.-C. Stock Market Prediction Using Machine Learning Techniques: A Decade Survey on Methodologies, Recent Developments, and Future Directions. Electronics 2021, 10, 2717. [Google Scholar] [CrossRef]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Box, G.E.P.; Jenkins, G.M. Time Series Analysis, Forecasting and Control; Holden Day: San Francisco, CA, USA, 1976. [Google Scholar]
- Engle, R.F. Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econom. J. Econom. Soc. 1982, 50, 987–1007. [Google Scholar] [CrossRef]
- Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. J. Econom. 1986, 31, 307–327. [Google Scholar] [CrossRef]
- Engle, R.F.; Bollerslev, T. Modelling the persistence of conditional variances. Econom. Rev. 1986, 5, 1–50. [Google Scholar] [CrossRef]
- Nelson, D.B. Conditional heteroskedasticity in asset returns: A new approach. Econometrica 1991, 59, 347–370. [Google Scholar] [CrossRef]
- Glosten, L.R.; Jagannathan, R.; Runkle, D.E. On the relation between the expected value and the volatility of the nominal excess return on stocks. J. Financ. 1993, 48, 1779–1801. [Google Scholar] [CrossRef]
- Zakoian, J.-M. Threshold heteroskedastic models. J. Econ. Dyn. Control 1994, 18, 931–955. [Google Scholar] [CrossRef]
- Vukovic, D.; Spitsyna, L.Y.; Gribanova, E.; Spitsin, V.; Lyzin, I. Predicting the Performance of Retail Market Firms: Regression and Machine Learning Methods. Mathematics 2023, 11, 1916. [Google Scholar] [CrossRef]
- Sarve, Y.A.; Phadke, A.C. A Survey on Data-Driven Techniques of Remaining Useful Life Assessment for Predictive Maintenance of the System. J. Sustain. Innov. 2025, 2, 58–71. [Google Scholar] [CrossRef]
- Lv, P.; Wu, Q.; Xu, J.; Shu, Y. Stock Index Prediction Based on Time Series Decomposition and Hybrid Model. Entropy 2022, 24, 146. [Google Scholar] [CrossRef]
- Zhao, C.; Hu, P.; Liu, X.; Lan, X.; Zhang, H. Stock Market Analysis Using Time Series Relational Models for Stock Price Prediction. Mathematics 2023, 11, 1130. [Google Scholar] [CrossRef]
- Liu, Q.; Tao, Z.; Tse, Y.; Wang, C. Stock market prediction with deep learning: The case of China. Financ. Res. Lett. 2021, 46, 102209. [Google Scholar] [CrossRef]
- Gomes, G.S.-D.-S.; Ludermir, T.B.; Leyla, M.M.; Lima, R. Comparison of new activation functions in neural network for forecasting financial time series. Neural Comput. Appl. 2011, 20, 417–439. [Google Scholar] [CrossRef]
- Akter, S.; Haider, M.R. mTanh: A Low-Cost Inkjet-Printed Vanishing Gradient Tolerant Activation Function. J. Low Power Electron. Appl. 2025, 15, 27. [Google Scholar] [CrossRef]
- Dubey, S.R.; Singh, S.K.; Chaudhuri, B.B. Activation functions in deep learning: A comprehensive survey and benchmark. Neurocomputing 2022, 503, 92–108. [Google Scholar] [CrossRef]
- Misra, D. Mish: A Self Regularized Non-Monotonic Activation Function. In Proceedings of the 31th British Machine Vision Conference, Manchester, UK, 7–11 September 2020; Volume 1. [Google Scholar]
- Khang, W.G.; Sugiyarto, S.; Firza Afiatin, M.Y.; Robiatul Mahmudah, K.; Nursyiva, I.; Mesith, C.; Choo, W.O. Comparison of Activation Functions in Convolutional Neural Network for Poisson Noisy Image Classification. Emerg. Sci. J. 2024, 8, 592–602. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, J.; Zhao, H. Deep Network Approximation: Beyond ReLU to Diverse Activation Functions. J. Mach. Learn. Res. 2023, 25, 1687–1725. [Google Scholar]
- Bouraya, S.; Belangour, A. A comparative analysis of activation functions in neural networks: Unveiling categories. Bull. Electr. Eng. Inform. 2024, 13, 3301–3308. [Google Scholar] [CrossRef]
- Han, F.; Jiang, J.; Ling, Q.H.; Su, B.Y. A survey on metaheuristic optimization for random single-hidden layer feedforward neural network. Neurocomputing 2019, 335, 261–273. [Google Scholar] [CrossRef]
- Ojha, V.K.; Abraham, A.; Snášel, V. Metaheuristic design of feedforward neural networks: A review of two decades of research. Eng. Appl. Artif. Intell. 2017, 60, 97–116. [Google Scholar] [CrossRef]
- Darwish, A.; Hassanien, A.E.; Das, S. A survey of swarm and evolutionary computing approaches for deep learning. Artif. Intell. Rev. 2020, 53, 1767–1812. [Google Scholar] [CrossRef]
- Shen, L.; Chen, C.; Zou, F.; Jie, Z.; Sun, J.; Liu, W. A Unified Analysis of AdaGrad With Weighted Aggregation and Momentum Acceleration. IEEE Trans. Neural Netw. Learn. Syst. 2023, 35, 14482–14490. [Google Scholar] [CrossRef] [PubMed]
- Mandasari, S.; Irfan, D.; Wanayumini; Rosnelly, R. Comparison of sgd, adadelta, adam optimization in gender classification using cnn. JURTEKSI (J. Teknol. Dan Sist. Inf.) 2023, 9, 345–354. [Google Scholar] [CrossRef]
- Elshamy, R.; Abu-Elnasr, O.; Elhoseny, M.; Elmougy, S. Improving the efficiency of RMSProp optimizer by utilizing Nestrove in deep learning. Dent. Sci. Rep. 2023, 13, 8814. [Google Scholar] [CrossRef]
- Reyad, M.; Sarhan, A.M.; Arafa, M. A modified Adam algorithm for deep neural network optimization. Neural Comput. Appl. 2023, 35, 17095–17112. [Google Scholar] [CrossRef]
- Nutakki, M.; Mandava, S. Optimizing home energy management: Robust and efficient solutions powered by attention networks. Heliyon 2024, 10, E26397. [Google Scholar] [CrossRef]
- Lantian, L.; Weizhi, X.; Hui, Y. Character-level neural network model based on Nadam optimization and its application in clinical concept extraction. Neurocomputing 2020, 414, 182–190. [Google Scholar] [CrossRef]
- Bai, L.; Liming, N. Gradient based invasive weed optimization algorithm for the training of deep neural network. Multimed. Tools Appl. 2021, 80, 22795–22819. [Google Scholar] [CrossRef]
- Liu, Z.; Tilman, H.; Masahito, U. Neural Networks Fail to Learn Periodic Functions and How to Fix It. In Proceedings of the 34th Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 1–12 December 2020. [Google Scholar]
- Sohail, A. Genetic Algorithms in the Fields of Artificial Intelligence and Data Sciences. Ann. Data. Sci. 2023, 10, 1007–1018. [Google Scholar] [CrossRef]
- Ozsoydan, F.B.; Gölcük, I. A hyper-heuristic based reinforcement-learning algorithm to train feedforward neural networks. Eng. Sci. Technol. Int. J. 2022, 35, 101261. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.J.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Biswas, S.; Singh, G.; Maiti, B.; Ezugwu, A.E.-S.; Saleem, K.; Smerat, A.; Abualigah, L.; Bera, U.K. Integrating Differential Evolution into Gazelle Optimization for advanced global optimization and engineering applications. Comput. Methods Appl. Mech. Eng. 2025, 434, 117588. [Google Scholar] [CrossRef]
- Huang, Y.; Capretz, L.F.; Ho, D. Machine Learning for Stock Prediction Based on Fundamental Analysis. In Proceedings of the IEEE Symposium Series on Computational Intelligence (SSCI), Orlando, FL, USA, 5–7 December 2021; pp. 1–10. [Google Scholar] [CrossRef]
- Oyewole, A.T.; Adeoye, O.B.; Addy, W.A.; Okoye, C.C.; Ofodile, O.C.; Ugochukwu, C.E. Predicting stock market movements using neural networks: A review and application study. Comput. Sci. IT Res. J. 2024, 5, 651–670. [Google Scholar] [CrossRef]
- Zaheer, S.; Anjum, N.; Hussain, S.; Algarni, A.D.; Iqbal, J.; Bourouis, S. A Multi Parameter Forecasting for Stock Time Series Data Using LSTM and Deep Learning Model. Mathematics 2023, 11, 590. [Google Scholar] [CrossRef]
- Wolff, D.; Echterling, F. Stock picking with machine learning. J. Forecast. 2023, 43, 81–102. [Google Scholar] [CrossRef]
- Kaveh, M.; Mesgari, M.S. Application of Meta-Heuristic Algorithms for Training Neural Networks and Deep Learning Architectures: A Comprehensive Review. Neural Process. Lett. 2023, 55, 4519–4622. [Google Scholar] [CrossRef] [PubMed]
- Xu, A.; Chang, H.; Xu, Y.; Li, R.; Li, X.; Zhao, Y. Applying artificial neural networks (ANNs) to solve solid waste-related issues: A critical review. Waste Manag. 2021, 124, 385–402. [Google Scholar] [CrossRef]
- Lollia, F.; Gamberini, R.; Regattieri, A.; Balugani, E.; Gatos, T.; Gucci, S. Single-hidden layer neural networks for forecasting intermittent demand. Int. J. Prod. Econ. 2017, 183, 116–128. [Google Scholar] [CrossRef]
- Luo, Y.; Hu, J.; Zhang, G.; Zhang, P.; Xie, Y.; Kuang, Z.; Zeng, X.; Li, S. A dissolved oxygen levels prediction method based on single-hidden layer feedforward neural network using neighborhood information metric. Appl. Soft Comput. 2024, 167, 112328. [Google Scholar] [CrossRef]
- Gribanova, E. Development of iterative algorithms for solving the inverse problem using inverse calculations. East.-Eur. J. Enterp. Technol. 2020, 4, 27–34. [Google Scholar] [CrossRef]
- Gribanova, E.; Savitsky, A. Algorithm for Estimating the Time of Posting Messages on Vkontakte Online Social Network. Int. J. Inf. Technol. Secur. 2020, 12, 3–14. [Google Scholar]
- Gribanova, E. Elaboration of an Algorithm for Solving Hierarchical Inverse Problems in Applied Economics. Mathematics 2022, 10, 2779. [Google Scholar] [CrossRef]
- Pelster, M.; Val, J. Can ChatGPT assist in picking stocks? Financ. Res. Lett. 2023, 59, 104786. [Google Scholar] [CrossRef]
- Ko, H.; Lee, J. Can ChatGPT improve investment decisions? From a portfolio management perspective. Financ. Res. Lett. 2024, 64, 105433. [Google Scholar] [CrossRef]
Activation Function | MSE | MAE | ||||||
---|---|---|---|---|---|---|---|---|
Adam | SGD | RC | DC | Adam | SGD | RC | DC | |
linear | 0.0074 | 0.0106 | 0.005 | 0.0034 | 0.0671 | 0.0814 | 0.0552 | 0.0452 |
snake (0.5) | 0.0075 | 0.0095 | 0.0074 | 0.0065 | 0.0667 | 0.0763 | 0.0687 | 0.0656 |
arctg | 0.0087 | 0.0158 | 0.0046 | 0.005 | 0.0749 | 0.1049 | 0.0532 | 0.0543 |
sincos | 0.05 | 0.05 | 0.1278 | 0.2632 | 0.1622 | 0.1622 | 0.3304 | 0.4737 |
invers | 0.008 | 0.0143 | 0.0047 | 0.0042 | 0.0712 | 0.0984 | 0.0533 | 0.0508 |
softs | 0.0257 | 0.0323 | 0.0336 | 0.0331 | 0.1171 | 0.1192 | 0.1351 | 0.1355 |
tanh | 0.0088 | 0.0104 | 0.0056 | 0.0057 | 0.0743 | 0.1106 | 0.0596 | 0.0597 |
softplus | 0.0646 | 0.0347 | 0.0084 | 0.0089 | 0.2416 | 0.1700 | 0.0778 | 0.0769 |
mish | 0.0066 | 0.0098 | 0.0079 | 0.0057 | 0.0695 | 0.0734 | 0.0726 | 0.0586 |
cloglogm | 0.0067 | 0.008 | 0.0035 | 0.0029 | 0.064 | 0.064 | 0.0462 | 0.041 |
cloglog | 0.0138 | 0.011 | 0.0075 | 0.0054 | 0.0976 | 0.0804 | 0.0728 | 0.0587 |
logsigm | 0.0047 | 0.0603 | 0.0037 | 0.0033 | 0.0519 | 0.225 | 0.0488 | 0.0444 |
rootsig | 0.0133 | 0.0138 | 0.0117 | 0.0071 | 0.0933 | 0.0965 | 0.0862 | 0.0649 |
α | Test Set | |||||||
---|---|---|---|---|---|---|---|---|
MSE | MAE | |||||||
Adam | SGD | RC | DC | Adam | SGD | RC | DC | |
1 | 0.0101 | 1.19 × 1012 | 0.0050 | 0.0034 | 0.0841 | 1,016,380 | 0.0552 | 0.0452 |
0.1 | 0.0074 | 5.21 × 1010 | 0.0671 | 213,836.4 | ||||
0.01 | 0.0099 | 9.1 × 1011 | 0.0782 | 889,434.8 | ||||
0.001 | 0.0121 | 2.68 × 1010 | 0.0869 | 151,634.9 | ||||
0.0001 | 0.2020 | 0.0106 | 0.3911 | 0.0814 | ||||
0.00001 | 0.2940 | 0.0126 | 0.4798 | 0.0888 |
Activation Function | MSE | MAE | ||||||
---|---|---|---|---|---|---|---|---|
Adam | SGD | RC | DC | Adam | SGD | RC | DC | |
linear | 0.0099 | 0.0274 | 0.0020 | 0.0419 | 0.0862 | 0.1425 | 0.0323 | 0.1684 |
snake (0.5) | 0.0078 | 0.0814 | 0.0474 | 0.037 | 0.0668 | 0.2639 | 0.1861 | 0.156 |
arctg | 0.0431 | 0.0161 | 0.0079 | 0.0554 | 0.1788 | 0.1046 | 0.0558 | 0.2052 |
sincos | 0.0273 | 0.0165 | 0.0023 | 0.1082 | 0.1325 | 0.0947 | 0.0351 | 0.3127 |
sigmoid | 0.0902 | 0.1627 | 0.1699 | 0.137 | 0.2191 | 0.3769 | 0.1636 | 0.3503 |
invers | 0.0431 | 0.0152 | 0.0034 | 0.0532 | 0.1792 | 0.1003 | 0.0395 | 0.1975 |
softs | 0.0407 | 0.0486 | 0.0051 | 0.039 | 0.1569 | 0.1965 | 0.0519 | 0.1624 |
tanh | 0.0477 | 0.0167 | 0.0060 | 0.0582 | 0.1897 | 0.1082 | 0.0463 | 0.2117 |
mish | 0.0582 | 0.1308 | 0.0026 | 0.1096 | 0.1095 | 0.3373 | 0.0390 | 0.3042 |
cloglogm | 0.0369 | 0.0245 | 0.0146 | 0.037 | 0.1544 | 0.1326 | 0.0574 | 0.1451 |
logsigm | 0.0902 | 0.1627 | 0.1699 | 0.1369 | 0.2191 | 0.3769 | 0.1636 | 0.3503 |
sinc | 0.1026 | 0.1708 | 0.0033 | 0.0871 | 0.2406 | 0.3862 | 0.0439 | 0.2777 |
wave | 0.1105 | 0.0754 | 0.0363 | 0.1014 | 0.2668 | 0.2352 | 0.1529 | 0.3022 |
Activation Function | MSE | MAE | ||||||
---|---|---|---|---|---|---|---|---|
Adam | SGD | RC | DC | Adam | SGD | RC | DC | |
linear | 0.0082 | 0.0102 | 0.0022 | 0.0356 | 0.0774 | 0.0755 | 0.0343 | 0.1502 |
snake (0.5) | 0.0077 | 0.0274 | 0.0028 | 0.0216 | 0.0707 | 0.1322 | 0.0409 | 0.115 |
arctg | 0.0092 | 0.0099 | 0.0022 | 0.0364 | 0.0750 | 0.0749 | 0.0353 | 0.1562 |
sincos | 0.0497 | 0.0430 | 0.0035 | 0.0267 | 0.1758 | 0.1800 | 0.0467 | 0.1273 |
sigmoid | 0.0490 | 0.0535 | 0.0383 | 0.157 | 0.1557 | 0.2094 | 0.0826 | 0.3706 |
invers | 0.0124 | 0.0099 | 0.0104 | 0.0385 | 0.0910 | 0.0743 | 0.0619 | 0.1544 |
softs | 0.0317 | 0.0140 | 0.0044 | 0.1067 | 0.1290 | 0.0995 | 0.0519 | 0.301 |
tanh | 0.0148 | 0.0098 | 0.0090 | 0.0385 | 0.0936 | 0.0745 | 0.0747 | 0.1593 |
mish | 0.0113 | 0.0139 | 0.0199 | 0.0751 | 0.0794 | 0.0885 | 0.0932 | 0.2486 |
cloglogm | 0.0144 | 0.0125 | 0.0031 | 0.0675 | 0.0964 | 0.0857 | 0.0430 | 0.2329 |
logsigm | 0.0490 | 0.0535 | 0.0420 | 0.157 | 0.1557 | 0.2094 | 0.0848 | 0.3706 |
sinc | 0.0168 | 0.0343 | 0.0036 | 0.1689 | 0.0959 | 0.1381 | 0.0417 | 0.3839` |
wave | 0.0111 | 0.0108 | 0.0046 | 0.1882 | 0.0770 | 0.0752 | 0.0483 | 0.408 |
Activation Function | MSE | MAE | ||||||
---|---|---|---|---|---|---|---|---|
Adam | SGD | RC | DC | Adam | SGD | RC | DC | |
linear | 0.0118 | 0.0100 | 0.0025 | 0.0739 | 0.0789 | 0.0819 | 0.0361 | 0.2301 |
snake (0.5) | 0.0070 | 0.0132 | 0.0083 | 0.0296 | 0.0614 | 0.0941 | 0.0670 | 0.1447 |
arctg | 0.0112 | 0.0125 | 0.0197 | 0.0238 | 0.0889 | 0.0879 | 0.1015 | 0.1124 |
sincos | 0.0263 | 0.0625 | 0.0384 | 0.2386 | 0.1292 | 0.2267 | 0.1602 | 0.4606 |
sigmoid | 0.0149 | 0.0373 | 0.0552 | 0.1485 | 0.1041 | 0.1669 | 0.1360 | 0.3612 |
invers | 0.0106 | 0.0117 | 0.0081 | 0.1818 | 0.0846 | 0.0844 | 0.0563 | 0.3895 |
softs | 0.0155 | 0.0111 | 0.0071 | 0.012 | 0.1072 | 0.0820 | 0.0669 | 0.09 |
tanh | 0.0083 | 0.0138 | 0.0140 | 0.0265 | 0.0776 | 0.0883 | 0.0976 | 0.1349 |
mish | 0.0107 | 0.0128 | 0.0164 | 0.0195 | 0.0734 | 0.0831 | 0.1080 | 0.1063 |
cloglogm | 0.0109 | 0.0115 | 0.0161 | 0.0188 | 0.0866 | 0.0789 | 0.1015 | 0.1021 |
logsigm | 0.0149 | 0.0373 | 0.0414 | 0.1485 | 0.1041 | 0.1669 | 0.1230 | 0.3612 |
sinc | 0.0222 | 0.1674 | 0.0056 | 0.184 | 0.1273 | 0.3830 | 0.0552 | 0.4 |
wave | 0.0177 | 0.0195 | 2334324 | 0.4522 | 0.0993 | 0.1002 | 202.1322 | 0.6271 |
Pricet−1 | Pricet−2 | Pricet−3 | Pricet−4 | Pricet−5 | Pricet−6 | Pricet−7 | Pricet−8 | … | Pricet−30 |
---|---|---|---|---|---|---|---|---|---|
158.01 | 158.68 | 159.19 | 158.18 | 159.87 | 160.14 | 160.87 | 158.1 | … | 163.52 |
156.52 | 158.01 | 158.68 | 159.19 | 158.18 | 159.87 | 160.14 | 160.87 | 162.51 | |
… | … | … | … | … | … | … | … | … | … |
Activation Function | Period Window = 5 | Period Window = 30 | ||||||
---|---|---|---|---|---|---|---|---|
Adam | SGD | Adam | SGD | Adam | SGD | Adam | SGD | |
arctg | 18 | 10 | 2 | 10 | 8 | 4 | 9 | 19 |
cloglog | 7 | 11 | 13 | 9 | 7 | 16 | 7 | 10 |
cloglogm | 19 | 3 | 9 | 9 | 1 | 1 | 17 | 21 |
invers | 21 | 7 | 4 | 8 | 6 | 2 | 12 | 20 |
linear | 16 | 0 | 10 | 14 | 2 | 0 | 5 | 33 |
logsigm | 9 | 8 | 15 | 8 | 3 | 6 | 16 | 15 |
mish | 21 | 6 | 6 | 7 | 3 | 4 | 12 | 21 |
rootsig | 13 | 15 | 8 | 4 | 10 | 6 | 13 | 11 |
sincos | 0 | 1 | 14 | 25 | 1 | 7 | 17 | 15 |
snake | 21 | 4 | 5 | 10 | 7 | 2 | 6 | 25 |
softplus | 11 | 21 | 3 | 5 | 8 | 17 | 6 | 9 |
softs | 12 | 18 | 6 | 4 | 26 | 3 | 5 | 6 |
tang | 17 | 10 | 9 | 4 | 10 | 5 | 8 | 17 |
Total | 185 | 114 | 104 | 117 | 92 | 73 | 133 | 222 |
Activation Function | 2 Neurons in the Hidden Layer | 8 Neurons in the Hidden Layer | 16 Neurons in the Hidden Layer | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Adam | SGD | RC50 | RC80 | Adam | SGD | RC50 | RC80 | Adam | SGD | RC50 | RC80 | |
arctg | 2 | 1 | 35 | 2 | 10 | 4 | 25 | 1 | 14 | 20 | 2 | 4 |
cloglogm | 3 | 2 | 32 | 3 | 6 | 5 | 27 | 2 | 7 | 25 | 2 | 6 |
invers | 1 | 4 | 34 | 1 | 3 | 3 | 33 | 1 | 8 | 21 | 4 | 7 |
linear | 0 | 0 | 40 | 0 | 0 | 0 | 40 | 0 | 1 | 0 | 39 | 0 |
logsigm | 18 | 5 | 10 | 7 | 5 | 9 | 24 | 2 | 25 | 2 | 13 | 0 |
mish | 5 | 0 | 33 | 2 | 33 | 3 | 4 | 0 | 26 | 3 | 11 | 0 |
sigmoid | 17 | 5 | 10 | 8 | 5 | 7 | 25 | 3 | 23 | 2 | 15 | 0 |
sinc | 4 | 6 | 30 | 0 | 9 | 0 | 31 | 0 | 16 | 0 | 24 | 0 |
sincos | 2 | 4 | 34 | 0 | 3 | 9 | 21 | 7 | 9 | 28 | 3 | 0 |
snake | 5 | 0 | 32 | 3 | 8 | 5 | 27 | 0 | 22 | 9 | 8 | 1 |
softs | 11 | 5 | 15 | 9 | 3 | 0 | 37 | 0 | 15 | 3 | 11 | 11 |
tang | 3 | 6 | 24 | 7 | 10 | 12 | 17 | 1 | 9 | 27 | 0 | 4 |
wave | 8 | 17 | 15 | 0 | 18 | 2 | 19 | 1 | 17 | 5 | 16 | 2 |
Total | 79 | 55 | 344 | 42 | 113 | 59 | 330 | 18 | 192 | 145 | 148 | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gribanova, E.; Gerasimov, R.; Viktorenko, E. Application of Inverse Optimization Algorithms in Neural Network Models for Short-Term Stock Price Forecasting. Big Data Cogn. Comput. 2025, 9, 235. https://doi.org/10.3390/bdcc9090235
Gribanova E, Gerasimov R, Viktorenko E. Application of Inverse Optimization Algorithms in Neural Network Models for Short-Term Stock Price Forecasting. Big Data and Cognitive Computing. 2025; 9(9):235. https://doi.org/10.3390/bdcc9090235
Chicago/Turabian StyleGribanova, Ekaterina, Roman Gerasimov, and Elena Viktorenko. 2025. "Application of Inverse Optimization Algorithms in Neural Network Models for Short-Term Stock Price Forecasting" Big Data and Cognitive Computing 9, no. 9: 235. https://doi.org/10.3390/bdcc9090235
APA StyleGribanova, E., Gerasimov, R., & Viktorenko, E. (2025). Application of Inverse Optimization Algorithms in Neural Network Models for Short-Term Stock Price Forecasting. Big Data and Cognitive Computing, 9(9), 235. https://doi.org/10.3390/bdcc9090235