A Review of Social Media Data Utilization for the Prediction of Disease Outbreaks and Understanding Public Perception
Abstract
:1. Introduction
2. Disease Surveillance
2.1. Information Retrieval and Pre-Processing
2.2. Ensuring and Assessing Post Relevancy
2.3. Collecting and Using Location Data
2.4. Recognizing States of Health
3. Sentiment Analysis
4. Measuring Disease Activity
4.1. Detecting and Predicting Influenza Rates
4.2. Potential for Detecting Novel Diseases and Strains
5. Challenges of Using Social Media for Implementing Disease Models
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bollen, J.; Mao, H.; Zeng, X. Twitter mood predicts the stock market. J. Comput. Sci. 2011, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- McGough, S.F.; Brownstein, J.S.; Hawkins, J.B.; Santillana, M. Forecasting Zika Incidence in the 2016 Latin America Outbreak Combining Traditional Disease Surveillance with Search, Social Media, and News Report Data. PLoS Negl. Trop. Dis. 2017, 11, e0005295. [Google Scholar] [CrossRef] [PubMed]
- Aslam, A.A.; Tsou, M.-H.; Spitzberg, B.H.; An, L.; Gawron, J.M.; Gupta, D.K.; Peddecord, K.M.; Nagel, A.C.; Allen, C.; Yang, J.-A.; et al. The reliability of tweets as a supplementary method of seasonal influenza surveillance. J. Med. Internet Res. 2014, 16, e250. [Google Scholar] [CrossRef]
- Jain, V.K.; Kumar, S. An Effective Approach to Track Levels of Influenza-A (H1N1) Pandemic in India Using Twitter. Procedia Comput. Sci. 2015, 70, 801–807. [Google Scholar] [CrossRef] [Green Version]
- Aiello, A.E.; Renson, A.; Zivich, P.N. Social media–and internet-based disease surveillance for public health. Annu. Rev. Public Health 2020, 41, 101–118. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Wang, H.; Wang, F.; Langley, D.; Avram, A.; Liu, M. Prediction of influenza-like illness based on the improved artificial tree algorithm and artificial neural network. Sci. Rep. 2018, 8, 4895. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Agrawal, A.; Choudhary, A. Forecasting Influenza Levels Using Real-Time Social Media Streams. In Proceedings of the 2017 IEEE International Conference on Healthcare Informatics (ICHI), Park City, UT, USA, 23–26 August 2017. [Google Scholar] [CrossRef]
- Aramaki, E.; Maskawa, S.; Morita, M. Twitter catches the flu: Detecting influenza epidemics using Twitter. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, Edinburgh, Scotland, 27–31 July 2011; pp. 1568–1576. [Google Scholar]
- Broniatowski, D.A.; Paul, M.J.; Dredze, M. National and local influenza surveillance through twitter: An analysis of the 2012-2013 influenza epidemic. PLoS ONE 2013, 8, e83672. [Google Scholar] [CrossRef] [Green Version]
- Paul, M.J.; Dredze, M.; Broniatowski, D. Twitter Improves Influenza Forecasting. PLoS Curr. 2014, 6. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, J. Identifying the outbreak signal of covid-19 before the response of the traditional disease monitoring system. PLoS Negl. Trop. Dis. 2020, 14, e0008758. [Google Scholar] [CrossRef]
- Wang, T.; Lu, K.; Chow, K.P.; Zhu, Q. COVID-19 Sensing: Negative Sentiment Analysis on Social Media in China via BERT Model. IEEE Access 2020, 8, 138162–138169. [Google Scholar] [CrossRef]
- Zhao, Y.; Cheng, S.; Yu, X.; Xu, H. Chinese public’s attention to the COVID-19 epidemic on social media: Observational descriptive study. J. Med. Internet Res. 2020, 22, e18825. [Google Scholar] [CrossRef]
- Gupta, A.; Katarya, R. Social media based surveillance systems for healthcare using machine learning: A systematic review. J. Biomed. Inform. 2020, 108, 103500. [Google Scholar] [CrossRef] [PubMed]
- Gencoglu, O.; Ermes, M. Predicting the Flu from Instagram. arXiv 2018. [Google Scholar] [CrossRef]
- Sharpe, J.D.; Hopkins, R.S.; Cook, R.L.; Striley, C.W. Evaluating Google, Twitter, and Wikipedia as tools for influenza surveillance using Bayesian change point analysis: A comparative analysis. JMIR Public Health Surveill. 2016, 2, e161. [Google Scholar] [CrossRef]
- Melton, C.A.; White, B.M.; Davis, R.L.; Bednarczyk, R.A.; Shaban-Nejad, A. Fine-tuned Sentiment Analysis of COVID-19 Vaccine–Related Social Media Data: Comparative Study. J. Med. Internet Res. 2022, 24, e40408. [Google Scholar] [CrossRef]
- Mohammed, I.A.B.; Abbas, A.S. Twitter APIs for Collecting Data of Influenza Viruses, A Systematic Review. In Proceedings of the 2021 International Conference on Communication & Information Technology (ICICT), Barash, Iraq, 5–6 June 2021. [Google Scholar]
- Alamoodi, A.H.; Zaidan, B.B.; Zaidan, A.A.; Albahri, O.S.; Mohammed, K.I.; Malik, R.Q.; Almadi, E.M.; Chyad, M.A.; Tareq, Z.; Albahri, A.S.; et al. Sentiment analysis and its applications in fighting COVID-19 and infectious diseases: A systematic review. Expert Syst. Appl. 2021, 167, 114155. [Google Scholar] [CrossRef] [PubMed]
- Sooknanan, J.; Mays, N. Harnessing Social Media in the Modelling of Pandemics—Challenges and Opportunities. Bull. Math. Biol. 2021, 83, 57. [Google Scholar] [CrossRef] [PubMed]
- Findling, M.G.; Blendon, R.J.; Benson, J.M. Polarized Public Opinion About Public Health During the COVID-19 Pandemic: Political Divides and Future Implications. JAMA Health Forum 2022, 3, e220016. [Google Scholar] [CrossRef]
- Yousefinaghani, S.; Dara, R.A.; Poljak, Z.; Sharif, S. A decision support framework for prediction of avian influenza. Sci. Rep. 2020, 10, 19011. [Google Scholar] [CrossRef]
- Batrinca, B.; Treleaven, P.C. Social media analytics: A survey of techniques, tools and platforms. AI Soc. 2015, 30, 89–116. [Google Scholar] [CrossRef] [Green Version]
- Alkouz, B.; Aghbari, Z.A.; Abawajy, J.H. Tweetluenza: Predicting flu trends from twitter data. Big Data Min. Anal. 2019, 2, 273–287. [Google Scholar] [CrossRef] [Green Version]
- Allen, C.; Tsou, M.H.; Aslam, A.; Nagel, A.; Gawron, J.M. Applying GIS and machine learning methods to twitter data for multiscale surveillance of influenza. PLoS ONE 2016, 11, e0157734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph, K.; Landwehr, P.M.; Carley, K.M. Two 1%s Don’t Make a Whole: Comparing Simultaneous Samples from Twitter’s Streaming API. In Social Computing, Behavioral-Cultural Modeling and Prediction. SBP 2014. Lecture Notes in Computer Science; Kennedy, W.G., Agarwal, N., Yang, S.J., Eds.; Springer: Cham, Switzerland, 2014; Volume 8393. [Google Scholar]
- Woo, H.; Cho, Y.; Shim, E.; Lee, J.-K.; Lee, C.-G.; Kim, S.H. Estimating influenza outbreaks using both search engine query data and social media data in South Korea. J. Med. Internet Res. 2016, 18, e177. [Google Scholar] [CrossRef] [Green Version]
- Yousefinaghani, S.; Dara, R.; Poljak, Z.; Bernardo, T.M.; Sharif, S. The assessment of Twitter’s potential for outbreak detection: Avian influenza case study. Sci. Rep. 2019, 9, 18147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havrlant, L.; Kreinovich, V. A simple probabilistic explanation of term frequency-inverse document frequency (tf-idf) heuristic (and variations motivated by this explanation). Int. J. Gen. Syst. 2017, 46, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent Dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 339–1022. [Google Scholar]
- Dubey, A.D. Twitter Sentiment Analysis during COVID19 Outbreak. SSRN Electron. J. 2020. [Google Scholar] [CrossRef]
- Imran, A.S.; Daudpota, S.M.; Kastrati, Z.; Batra, R. Cross-cultural polarity and emotion detection using sentiment analysis and deep learning on covid-19 related tweets. IEEE Access 2020, 8, 181074–181090. [Google Scholar] [CrossRef]
- Lim, S.; Tucker, C.S.; Kumara, S. An unsupervised machine learning model for discovering latent infectious diseases using social media data. J. Biomed. Inform. 2017, 66, 82–94. [Google Scholar] [CrossRef]
- Cuomo, R.E.; Purushothaman, V.; Li, J.; Cai, M.; Mackey, T.K. Sub-national longitudinal and geospatial analysis of COVID-19 tweets. PLoS ONE 2020, 15, e0241330. [Google Scholar] [CrossRef]
- Șerban, O.; Thapen, N.; Maginnis, B.; Hankin, C.; Foot, V. Real-time processing of social media with SENTINEL: A syndromic surveillance system incorporating deep learning for health classification. Inf. Process Manag. 2019, 56, 1166–1184. [Google Scholar] [CrossRef]
- Lopreite, M.; Panzarasa, P.; Puliga, M.; Riccaboni, M. Early warnings of COVID-19 outbreaks across Europe from social media. Sci. Rep. 2021, 11, 2147. [Google Scholar] [CrossRef] [PubMed]
- De las Heras-Pedrosa, C.; Sánchez-Núñez, P.; Peláez, J.I. Sentiment analysis and emotion understanding during the COVID-19 pandemic in Spain and its impact on digital ecosystems. Int. J. Environ. Res. Public Health 2020, 17, 5542. [Google Scholar] [CrossRef]
- Wakamiya, S.; Kawai, Y.; Aramaki, E. Twitter-based influenza detection after flu peak via tweets with indirect information: Text mining study. JMIR Public Health Surveill. 2018, 4, e65. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Sun, Q.; Wang, Y.; Wu, K.-F.; Chen, M.; Shia, B.-C.; Wu, S.-Y. Prediction of number of cases of 2019 novel coronavirus (COVID-19) using social media search index. Int. J. Environ. Res. Public Health 2020, 17, 2365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, D.-W.; Jo, M.-W.; Sohn, C.H.; Shin, S.-Y.; Lee, J.; Yu, M.; Kim, W.Y.; Lim, K.S.; Lee, S.-I. Cumulative query method for influenza surveillance using search engine data. J. Med. Internet Res. 2014, 16, e289. [Google Scholar] [CrossRef] [Green Version]
- Cui, H.; Kertész, J. Attention dynamics on the Chinese social media Sina Weibo during the COVID-19 pandemic. EPJ Data Sci. 2021, 10, 8. [Google Scholar] [CrossRef]
- Paul, M.J.; Dredze, M. A Model for Mining Public Health Topics from Twitter; Technical Report; Johns Hopkins University: Baltimore, MD, USA, 2011. [Google Scholar]
- Paul, M.J.; Dredze, M. You Are What You Tweet: Analyzing Twitter for Public Health. Proc. Int. AAAI Conf. Web Soc. Media 2021, 5, 265–272. [Google Scholar] [CrossRef]
- Signorini, A.; Segre, A.M.; Polgreen, P.M. The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic. PLoS ONE 2011, 6, e19467. [Google Scholar] [CrossRef] [Green Version]
- Thapen, N.; Simmie, D.; Hankin, C.; Gillard, J. DEFENDER: Detecting and forecasting epidemics using novel data-analytics for enhanced response. PLoS ONE 2016, 11, e0155417. [Google Scholar] [CrossRef]
- Malla, S.; Alphonse, P.J.A. COVID-19 outbreak: An ensemble pre-trained deep learning model for detecting informative tweets. Appl. Soft Comput. 2021, 107, 107495. [Google Scholar] [CrossRef] [PubMed]
- Alessa, A.; Faezipour, M. Preliminary flu outbreak prediction using twitter posts classification and linear regression with historical centers for disease control and prevention reports: Prediction framework study. JMIR Public Health Surveill. 2019, 5, e12383. [Google Scholar] [CrossRef] [Green Version]
- Yuan, M.; Liu, T.; Yang, C. Exploring the Relationship among Human Activities, COVID-19 Morbidity, and At-Risk Areas Using Location-Based Social Media Data: Knowledge about the Early Pandemic Stage in Wuhan. Int. J. Environ. Res. Public Health 2022, 19, 6523. [Google Scholar] [CrossRef] [PubMed]
- Essam, N.; Moussa, A.M.; Elsayed, K.M.; Abdou, S.; Rashwan, M.; Khatoon, S.; Hasan, M.M.; Asif, A.; Alshamari, M.A. Location Analysis for Arabic COVID-19 Twitter Data Using Enhanced Dialect Identification Models. Appl. Sci. 2021, 11, 11328. [Google Scholar] [CrossRef]
- Abd-Alrazaq, A.; Alhuwail, D.; Househ, M.; Hai, M.; Shah, Z. Top concerns of tweeters during the COVID-19 pandemic: A surveillance study. J. Med. Internet Res. 2020, 22, e19016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collier, N.; Doan, S.; Kawazoe, A.; Goodwin, R.M.; Conway, M.; Tateno, Y.; Ngo, Q.-H.; Dien, D.; Kawtrakul, A.; Takeuchi, K.; et al. BioCaster: Detecting public health rumors with a Web-based text mining system. Bioinformatics 2008, 24, 2940–2941. [Google Scholar] [CrossRef] [Green Version]
- Byrd, K.; Mansurov, A.; Baysal, O. Mining twitter data for influenza detection and surveillance. In Proceedings of the 2016 IEEE/ACM International Workshop on Software Engineering in Healthcare Systems (SEHS), Austin, TX, USA, 14–15 May 2016. [Google Scholar] [CrossRef]
- Brownstein, J.S.; Freifeld, C.C.; Reis, B.Y.; Mandl, K.D. Surveillance sans frontières: Internet-based emerging infectious disease intelligence and the HealthMap project. PLoS Med. 2008, 5, e151. [Google Scholar] [CrossRef] [Green Version]
- Thapen, N.; Simmie, D.; Hankin, C. The early bird catches the term: Combining twitter and news data for event detection and situational awareness. J. Biomed. Semant. 2016, 7, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Hossain, K.S.M.T.; Butler, P.; Ramakrishnan, N.; Prakash, B.A. Flu Gone Viral: Syndromic Surveillance of Flu on Twitter Using Temporal Topic Models. In Proceedings of the 2014 IEEE International Conference on Data Mining, Shenzhen, China, 14–17 December 2014. [Google Scholar]
- Jain, P.K.; Pamula, R.; Srivastava, G. A systematic literature review on machine learning applications for consumer sentiment analysis using online reviews. Comput. Sci. Rev. 2021, 41, 100413. [Google Scholar] [CrossRef]
- Jain, P.K.; Srivastava, G.; Lin, J.C.-W.; Pamula, R. Unscrambling Customer Recommendations: A Novel LSTM Ensemble Approach in Airline Recommendation Prediction Using Online Reviews. IEEE Trans. Comput. Soc. Syst. 2022, 9, 1777–1784. [Google Scholar] [CrossRef]
- Bhat, M.; Qadri, M.; Beg, N.-u.-A.; Kundroo, M.; Ahanger, N.; Agarwal, B. Sentiment analysis of social media response on the Covid19 outbreak. Brain Behav. Immun. 2020, 87, 136–137. [Google Scholar] [CrossRef] [PubMed]
- Saeed, K.; Homenda, W.; Chaki, R. Towards the Exploitation of Statistical Language Models for Sentiment Analysis of Twitter Posts; Springer International Publishing: Cham, Switzerland, 2017; Volume 10244, pp. 253–263. [Google Scholar]
- Nemes, L.; Kiss, A. Social media sentiment analysis based on COVID-19. J. Inf. Telecommun. 2021, 5, 1–15. [Google Scholar] [CrossRef]
- Klein, A.Z.; Magge, A.; O’Connor, K.; Amaro, J.I.F.; Weissenbacher, D.; Hernandez, G.G. Toward Using Twitter for Tracking COVID-19: A Natural Language Processing Pipeline and Exploratory Data Set. J. Med. Internet Res. 2021, 23, e25314. [Google Scholar] [CrossRef] [PubMed]
- Wątroba, P.; Bródka, P. Influence of Information Blocking on the Spread of Virus in Multilayer Networks. Entropy 2023, 25, 231. [Google Scholar] [CrossRef] [PubMed]
- Santamaría, L.P.; Tuñas, J.M.; Peces-Barba, D.F.; Jaramillo, A.; Cotarelo, M.; Menasalvas, E.; Fernández, A.C.; Arce, A.; de Miguel, A.G.; González, A.R. Influenza and Measles-MMR: Two case study of the trend and impact of vaccine-related Twitter posts in Spanish during 2015–2018. Hum. Vaccines Immunother. 2022, 18, 1–16. [Google Scholar] [CrossRef]
- Ortiz-Sánchez, E.; Velando-Soriano, A.; Pradas-Hernández, L.; Vargas-Román, K.; Gómez-Urquiza, J.L.; la Fuente, G.A.C.-D.; Albendín-García, L. Analysis of the anti-vaccine movement in social networks: A systematic review. Int. J. Environ. Res. Public Health 2020, 17, 5394. [Google Scholar] [CrossRef]
- Shi, W.; Liu, D.; Yang, J.; Zhang, J.; Wen, S.; Su, J. Social bots’ sentiment engagement in health emergencies: A topic-based analysis of the covid-19 pandemic discussions on twitter. Int. J. Environ. Res. Public Health 2020, 17, 8701. [Google Scholar] [CrossRef]
- Yousefinaghani, S.; Dara, R.; Mubareka, S.; Papadopoulos, A.; Sharif, S. An analysis of COVID-19 vaccine sentiments and opinions on Twitter. Int. J. Infect. Dis. 2021, 108, 256–262. [Google Scholar] [CrossRef]
- Chae, S.; Kwon, S.; Lee, D. Predicting infectious disease using deep learning and big data. Int. J. Environ. Res. Public Health 2018, 15, 1596. [Google Scholar] [CrossRef] [Green Version]
- Kass-Hout, T.A.; Xu, Z.; McMurray, P.; Park, S.; Buckeridge, D.L.; Brownstein, J.S.; Finelli, L.; Groseclose, S.L. Application of change point analysis to daily influenza-like illness emergency department visits. J. Am. Med. Inform. Assoc. 2012, 19, 1075–1081. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.; Mgbere, O.; Arafat, R.; Yang, B.; Santos, E. Modeling and Forecasting Influenza-like Illness (ILI) in Houston, Texas Using Three Surveillance Data Capture Mechanisms. Online J. Public Health Inform. 2017, 9, e187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, H.; Bai, Y.; Hu, H.; Liang, H. Regional level influenza study based on Twitter and machine learning method. PLoS ONE 2019, 14, e0215600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Xiang, T.; He, L. Modeling epidemic spread in transportation networks: A review. J. Traffic Transp. Eng. Engl. Ed. 2021, 8, 139–152. [Google Scholar] [CrossRef]
- Santillana, M.; Nguyen, A.T.; Dredze, M.; Paul, M.J.; Nsoesie, E.O.; Brownstein, J.S. Combining Search, Social Media, and Traditional Data Sources to Improve Influenza Surveillance. PLoS Comput. Biol. 2015, 11, e1004513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, X.; Dai, H.; Dong, L.; Wang, X. Multi-view ensemble learning method for microblog sentiment classification. Expert Syst. Appl. 2021, 166, 113987. [Google Scholar] [CrossRef]
- Sharma, V.C.; Frankenfield, D.; Gupta, A.; Singh, R.K. Ensemble Approach for Zoonotic Disease Forecasting Using Machine Learning Techniques. Int. J. Bus. Anal. Intell. 2015, 3, 11–24. [Google Scholar] [CrossRef]
- Walker, A.; Hopkins, C.; Surda, P. Use of Google Trends to investigate loss-of-smell-related searches during the COVID-19 outbreak. Int. Forum Allergy. Rhinol. 2020, 10, 839–847. [Google Scholar] [CrossRef] [Green Version]
- Heymann, D.L.; Rodier, G. Global Surveillance, National Surveillance, and SARS. Emerg. Infect. Dis. 2004, 10, 173–175. [Google Scholar] [CrossRef]
- Rodríguez, A.; Muralidhar, N.; Adhikari, B.; Tabassum, A.; Ramakrishnan, N.; Prakash, B.A. Steering a Historical Disease Forecasting Model Under a Pandemic: Case of Flu and COVID-19. arXiv 2020. [Google Scholar] [CrossRef]
- Tavoschi, L.; Quattrone, F.; D’Andrea, E.; Ducange, P.; Vabanesi, M.; Marcelloni, F.; Lopalco, P.L. Twitter as a sentinel tool to monitor public opinion on vaccination: An opinion mining analysis from September 2016 to August 2017 in Italy. Hum. Vaccines Immunother. 2020, 16, 1062–1069. [Google Scholar] [CrossRef] [Green Version]
Topic | Sub-Topic | Relevant Literature |
---|---|---|
Disease surveillance | Disease surveillance | [14,15,22,23] |
Information retrieval and pre-processing | [15,22,24,25,26,27,28,29,30,31,32,33,34,35] | |
Determining post relevancy and their applications | [4,8,9,12,13,22,24,25,27,28,35,36,37,38,39,40,41,42,43,44,45,46,47] | |
Collecting and using location data | [3,9,16,25,34,36,44,48,49,50,51,52,53,54] | |
Recognizing states of health | [55] | |
Sentiment analysis | Sentiment analysis | [9,12,13,32,41,44,52,56,57,58,59,60,61,62,63,64,65,66] |
Measuring disease activity | Measuring disease activity | [10,44] |
Detecting and predicting influenza rates | [6,7,9,27,35,45,48,67,68,69,70,71,72,73,74] | |
Potential for detecting novel diseases/strains | [11,33,75,76,77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, A.; Dara, R.; Yousefinaghani, S.; Maier, E.; Sharif, S. A Review of Social Media Data Utilization for the Prediction of Disease Outbreaks and Understanding Public Perception. Big Data Cogn. Comput. 2023, 7, 72. https://doi.org/10.3390/bdcc7020072
Wang A, Dara R, Yousefinaghani S, Maier E, Sharif S. A Review of Social Media Data Utilization for the Prediction of Disease Outbreaks and Understanding Public Perception. Big Data and Cognitive Computing. 2023; 7(2):72. https://doi.org/10.3390/bdcc7020072
Chicago/Turabian StyleWang, Alice, Rozita Dara, Samira Yousefinaghani, Emily Maier, and Shayan Sharif. 2023. "A Review of Social Media Data Utilization for the Prediction of Disease Outbreaks and Understanding Public Perception" Big Data and Cognitive Computing 7, no. 2: 72. https://doi.org/10.3390/bdcc7020072
APA StyleWang, A., Dara, R., Yousefinaghani, S., Maier, E., & Sharif, S. (2023). A Review of Social Media Data Utilization for the Prediction of Disease Outbreaks and Understanding Public Perception. Big Data and Cognitive Computing, 7(2), 72. https://doi.org/10.3390/bdcc7020072