The Art of the Masses: Overviews on the Collective Visual Heritage through Convolutional Neural Networks
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Computational Cartography of Visual Memory
3.2. Demonstrations around the World
3.3. COVID-19 Pandemic
3.4. Manifestations of Popular Culture
3.5. Climate Change
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fontcuberta, J. La Furia de las Imágenes. Notas Sobre la Postfotografía; Galaxia Gutenberg: Barcelona, Spain, 2016. [Google Scholar]
- Manovich, L. Computer vision, human senses, and language of art. AI Soc. 2021, 36, 1–8. [Google Scholar] [CrossRef]
- Manovich, L. Rethinking AI: Neural Networks, Biometrics and the New Artificial Intelligence. Digit. Cult. Soc. 2018, 4, 17–28. [Google Scholar] [CrossRef]
- Manovich, L. Data. In Critical Terms in Futures Studies; Paul, H., Ed.; Palgrave Macmillan: Cham, Switzerland, 2019. [Google Scholar]
- Warburg, A. Atlas Mnemosyne; Mielke, J.C., Translator; Akal: Madrid, Spain, 2010. [Google Scholar]
- The Warburg Institute. Aby Warburg Bilderatlas Mnemosyne Virtual Exhibition. Available online: https://warburg.sas.ac.uk/aby-warburg-bilderatlas-mnemosyne-virtual-exhibition (accessed on 20 February 2022).
- Malraux, A. Le Musée Imaginaire; Skira: Geneva, Switzerland, 1949. [Google Scholar]
- Manovich. TimeLine. Available online: http://manovich.net/index.php/exhibitions/timeline (accessed on 20 October 2022).
- Manovich. How to Compare One Million Images. Available online: http://manovich.net/index.php/projects/how-to-compare (accessed on 20 October 2022).
- Manovich, L. 2007 Cultural Analytics: About Software Studies Lab. Available online: http://lab.softwarestudies.com/p/overview-slides-and-video-articles-why.html (accessed on 15 April 2022).
- Park, S.; Song, H.; Han, S.; Weldegebriel, B.; Manovich, L.; Arielli, E.; Cha, M. Using Web Data to Reveal 22-Year History of Sneaker Designs. Www’22 Proc. ACM Web Conf. 2022, 2022, 2967–2977. [Google Scholar] [CrossRef]
- Manovich, L. Defining AI Arts: Three Proposals. In AI and Dialog of Cultures, Exhibition Catalog; Hermitage Museum: Saint-Petersburg, Russia, 2019. [Google Scholar]
- Google. Cómo Funcionan los Algoritmos de Google. Available online: https://www.google.com/intl/es_es/search/howsearchworks/algorithms/ (accessed on 10 April 2022).
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. Available online: http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html (accessed on 3 June 2022).
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Karpathy, A. t-SNE Visualization of CNN Codes. 2017. Available online: https://cs.stanford.edu/people/karpathy/cnnembed/ (accessed on 8 January 2020).
- Pérez-Hita, F. Pilar Rosado y la resurrección de los archivos. In Mnemosyne 2.0. Cartografías Computacionales de la Memoria Visual; Roca Umbert Fàbrica de les Arts: Granollers, Spain, 2019; pp. 1–2. [Google Scholar]
- Grebe, A. Museum and Mnemosyne. Aby Warburg, André Malraux and the re-/construction of art history as social history. In Le Musée Imaginaire and Temptations of the Orient and Japan; Hidemichi, T., Ed.; Akita: Tokyo, Japan, 2010; pp. 55–61. [Google Scholar]
- Koffka, K. Principles of Gestalt Psychology; Mimesis International: New York, NY, USA, 1967. [Google Scholar]
- Köhler, W. Gestalt Psychology: An Introduction to New Concepts in Modern Psychology; Liveright: New York, NY, USA, 1947. [Google Scholar]
- Boden, M.A. AI: Its Nature and Future; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
Climate Change | COVID-19 Pandemic | Demonstrations | Popular Culture |
---|---|---|---|
pollution | coronavirus | in Russia | circus shows |
big dumps | lockdown | in China | street theater |
deforestation | field hospital | in South Africa | concerts |
industrial spills | pandemic | police in riots | dances |
clean energy | empty shows | in Catalonia | cinema |
oil spills | coronavirus death | in Nicaragua | traditional music |
climate change | epidemic | in Egypt | popular culture |
nuclear disasters | coronavirus outbreak | demonstrations | street show |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosado-Rodrigo, P.; Reverter, F. The Art of the Masses: Overviews on the Collective Visual Heritage through Convolutional Neural Networks. Big Data Cogn. Comput. 2023, 7, 33. https://doi.org/10.3390/bdcc7010033
Rosado-Rodrigo P, Reverter F. The Art of the Masses: Overviews on the Collective Visual Heritage through Convolutional Neural Networks. Big Data and Cognitive Computing. 2023; 7(1):33. https://doi.org/10.3390/bdcc7010033
Chicago/Turabian StyleRosado-Rodrigo, Pilar, and Ferran Reverter. 2023. "The Art of the Masses: Overviews on the Collective Visual Heritage through Convolutional Neural Networks" Big Data and Cognitive Computing 7, no. 1: 33. https://doi.org/10.3390/bdcc7010033
APA StyleRosado-Rodrigo, P., & Reverter, F. (2023). The Art of the Masses: Overviews on the Collective Visual Heritage through Convolutional Neural Networks. Big Data and Cognitive Computing, 7(1), 33. https://doi.org/10.3390/bdcc7010033