CAD Integrated Multipoint Adjoint-Based Optimization of a Turbocharger Radial Turbine
Abstract
:1. Introduction
2. Optimization Methodology
2.1. Parameterization, Design Variables, and CAD Model
- the meridional flow path,
- the camber line surface defined by a blade angle distribution and a trailing edge cutback,
- the blade thickness distribution, which is added normal to the camber line surface, and
- the number of blades.
2.2. Discretization
2.3. Flow and Adjoint Solver
2.3.1. Flow Solver
2.3.2. Adjoint Solver and Gradient Evaluation
3. Objectives and Constraints
4. Results and Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
Nomenclature
Roman Symbols | |||
Identity matrix | Residual vector | ||
J | Cost function | S | Surface |
m | Meridional length | t | Time |
M | Mach number | T | Temperature |
Mass flow | Conservative variables | ||
P | Pressure | Power | |
P | Source term | Grid point coordinates | |
System matrix | y | Non-dimensional wall distanc | |
Superscripts | |||
n | Pseudo time step | ||
m | Number of Runge–Kutta stages | ||
Subscripts | |||
0 | Total condition | m | Number of Runge–Kutta stages |
1 | Inlet | ref | Reference |
2 | Outlet | TS | Total-to-static |
is | Isentropic | vM | von Mises |
Greek Symbols | |||
Absolute flow angle | Camber line circumferential position | ||
Runge–Kutta stage coefficient | Grid points in computational space | ||
Design variables | Pressure ratio | ||
Difference | Mechanical stresses | ||
Efficiency | Adjoint variables | ||
Abbrevations | |||
AD | Algorithmic Differentiation | ||
BFGS | Broyden–Fletcher–Goldfarb–Shanno | ||
BRep | Boundary representation | ||
CAE | Computer Aided Engineering | ||
CAD | Computer Aided Design | ||
CEV | Constant Eddy Viscosity | ||
Constr | Constraint | ||
FFD | Free-Form Deformation | ||
GMRES | Generalized Minimal Residual Method | ||
ILU(0) | Incomplete Lower Upper factorization with zero fill-in | ||
JT-KIRK | Jacobian Trained Krylov Implicit Runge–Kutta | ||
KKT | Karush–Kuhn–Tucker | ||
MUSCL | Monotonic Upstream-Centered Scheme for Conservation Laws | ||
NURBS | Non-Uniform Rational Basis-Spline | ||
Obj | Objective | ||
OP | Operating Point | ||
PETSc | Portable, Extensible Toolkit for Scientific Computation | ||
RANS | Reynolds-Averaged Navier–Stokes | ||
RPM | Revolutions per minute | ||
SNOPT | Sparse Nonlinear OPTimizer | ||
SQP | Sequential Quadratic Programming | ||
STEP | STandard for the Exchange of Product model data |
References
- Verstraete, T.; Amaral, S.; Van den Braembussche, R.; Arts, T. Design and Optimization of the Internal Cooling Channels of a High Pressure Turbine Blade, Part 2 Optimization. J. Turbomach. 2010, 132, 021014. [Google Scholar] [CrossRef]
- Siller, U.; Voß, C.; Nicke, E. Automated Multidisciplinary Optimization of a Transonic Axial Compressor. In Proceedings of the 47th AIAA Aerospace Sciences Meeting, Orlando, FL, USA, 5–8 January 2009. [Google Scholar]
- Mueller, L.; Alsalihi, Z.; Verstraete, T. Multidisciplinary Optimization of a Turbocharger Radial Turbine. J. Turbomach. 2013, 135, 021022. [Google Scholar] [CrossRef]
- Shahpar, S.; Caloni, S. Aerodynamic Optimization of High-Pressure Turbines for Lean-Burn Combustion System. J. Eng. Gas Turbines Power 2013, 135, 055001. [Google Scholar] [CrossRef]
- Pironneau, O. On Optimum Design in Fluid Mechanics. J. Fluid Mech. 1974, 64, 97–110. [Google Scholar] [CrossRef]
- Jameson, A. Aerodynamic Design via Control Theory. J. Sci. Comput. 1988, 3, 233–260. [Google Scholar] [CrossRef]
- Campobasso, M.S.; Duta, M.C.; Giles, M.G. Adjoint Calculation of Sensitivities of Turbomachinery Objective Functions. J. Propuls. Power 2003, 19, 693–703. [Google Scholar] [CrossRef]
- Wu, H.-Y.; Liu, F.; Tsai, H.-M. Aerodynamic Design of Turbine Blades Using an Adjoint Equation Method. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting, Reno, NV, USA, 10–13 January 2005. [Google Scholar]
- Papadimitriou, D.I.; Giannakoglou, K.C. Total Pressure Loss Minimization in Turbomachinery Cascades Using a New Continuous Adjoint Formulation. J. Power Energy 2007, 221, 865–872. [Google Scholar] [CrossRef]
- Marta, A.C.; Shankaran, S.; Holmes, D.G.; Stein, A. Development of Adjoint Solvers for Engineering Gradient-Based Turbomachinery Design Applications. In Proceedings of the ASME Turbo Expo, Orlando, FL, USA, 8–12 June 2009. [Google Scholar]
- Luo, J.; Liu, F.; McBean, I. Turbine Blade Row Optimization Through Endwall Contouring by an Adjoint Method. J. Propuls. Power 2015, 31, 505–518. [Google Scholar] [CrossRef]
- Corral, R.; Gisbert, F. Profiled End Wall Design Using an Adjoint Navier-Stokes Solver. J. Turbomach. 2008, 130, 021011. [Google Scholar] [CrossRef]
- Wang, D.X.; He, L. Adjoint Aerodynamic Design Optimization for Blades in Multi-Stage Turbomachines: Part 1—Methodology and Verification. J. Turbomach. 2010, 132, 021011. [Google Scholar] [CrossRef]
- Wang, D.X.; He, L.; Li, Y.S.; Wells, R.G. Adjoint Aerodynamic Design Optimization for Blades in Multi-Stage Turbomachines: Part 2—Verification and Application. J. Turbomach. 2010, 132, 021012. [Google Scholar] [CrossRef]
- Shahpar, S.; Caloni, S. Adjoint Optimisation of a High Pressure Turbine Stage for Lean-Burn Combustion System. In Proceedings of the 10th European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, Lappeenranta, Finland, 15–19 April 2013. [Google Scholar]
- Walther, B.; Nadarajah, S. Optimum Shape Design for Multirow Turbomachinery Configurations Using a Discrete Adjoint Approach and an Efficient Radial Basis Function Deformation Scheme for Complex Multiblock Grids. J. Turbomach. 2015, 137, 081006. [Google Scholar] [CrossRef]
- Hicks, R.; Henne, P. Wing Design by Numerical Optimization. J. Aircr. 1978, 15, 407–412. [Google Scholar] [CrossRef]
- Sonderberg, T.W.; Parry, S.R. Free-Form Deformation of Solid Geometric Models. In Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1986, Dallas, TX, USA, 18–22 August 1986; pp. 151–160. [Google Scholar]
- Leal, N.; Leal, E.; Branch, J.W. Simple Method for Constructing Nurbs Surfaces From Unorganized Points. In Proceedings of the 19th International Meshing Roundtable, Chattanooga, TN, USA, 3–6 October 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 161–175. [Google Scholar]
- Becker, G.; Schaefer, M.; Jameson, A. An Advanced NURBS Fitting Procedure for Post-Processing of Grid-Based Shape Optimizations. In Proceedings of the 49th AIAA Aerospace Sciences Meeting, Orlando, FL, USA, 4–7 January 2011. [Google Scholar]
- Robinson, T.T.; Armstrong, C.G.; Chua, H.S.; Othmer, C.; Grahs, T. Optimizing Parameterized CAD Geometries Using Sensitivities Based on Adjoint Functions. Comput. Aided Des. Appl. 2012, 9, 253–268. [Google Scholar] [CrossRef] [Green Version]
- Vasilopoulos, I.; Flassig, P.; Meyer, M. CAD-Based Aerodynamic Optimization of a Compressor Stator Using Conventional and Adjoint-Driven Approaches. In Proceedings of the ASME Turbo Expo, Charlotte, NC, USA, 26–30 June 2017. [Google Scholar]
- Banovic, M.; Mykhaskiv, O.; Auriemma, S.; Walther, A.; Legrand, H.; Mueller, J.-D. Automatic Differentiation of the Open CASCADE Technology CAD System and Its Coupling with an Adjoint CFD Solver. Optim. Methods Softw. 2017. submitted. Available online: www.optimization-online.org/DB_FILE/2017/03/5931.pdf (accessed on May 2017).
- Verstraete, T.; Mueller, L.; Mueller, J.-D. Adjoint Based Design Optimisation of an Internal Cooling Channel U-Bend for Minimised Pressure Losses. Int. J. Turbomach. Propuls. Power 2017, 2, 10. [Google Scholar] [CrossRef]
- Yu, G.; Mueller, J.-D.; Jones, D.; Christakopoulos, F. CAD-Based Shape Optimization Using Adjoint Sensitivities. Comput. Fluids 2011, 46, 512–516. [Google Scholar] [CrossRef]
- Xu, S.; Jahn, W.; Mueller, J.-D. CAD-Based Shape Optimization with CFD Using a Discrete Adjoint. Int. J. Numer. Methods Fluids 2014, 74, 153–168. [Google Scholar] [CrossRef]
- Xu, S.; Radford, D.; Meyer, M.; Mueller, J.-D. CAD-Based Shape Optimisation of a One Stage Turbine with Geometric Constraints. In Proceedings of the ASME Turbo Expo, Montreal, QC, Canada, 15–19 June 2015. [Google Scholar]
- Lyness, J.N.; Moler, C.B. Numerical Differentiation of Analytical Functions. SIAM J. Numer. Anal. 1967, 4, 202–210. [Google Scholar] [CrossRef]
- Martins, J.R.; Sturdza, P.; Alonso, J.J. The Complex-Step Derivative Approximation. ACM Trans. Mathe. Softw. 2003, 29, 245–262. [Google Scholar] [CrossRef]
- Sturdza, P. Complex-Step Guide—C/C++. Available online: http://mdolab.engin.umich.edu/content/complex-step-guide-cc (accessed on April 2016).
- Torreguitart, I.S.; Verstraete, T.; Mueller, L. CAD Kernel and Grid Generation Algorithmic Differentiation for Turbomachinery Adjoint Optimization. In VII European Congress on Computational Methods in Applied Sciences and Engineering, Proceedings of the ECCOMAS Congress, Crete Island, Greece, 5–10 June 2016; Papadrakakis, M., Papadopoulos, V., Stefanou, G., Plevris, V., Eds.; ECCOMAS: Barcelona, Spain, 2016. [Google Scholar]
- Gill, P.E.; Murray, W.; Saunders, M.A. An SQP Algorithm for Large-Scale Constrained Optimization. SIAM J. Optim. 2002, 12, 979–1006. [Google Scholar] [CrossRef]
- Gill, P.E.; Murray, W.; Saunders, M.A. User’s Guide for SNOPT Version 7: Software for Large-Scale Nonlinear Programming; University of California: San Diego, CA, USA, 2008. [Google Scholar]
- Gill, P.E.; Murray, W.; Saunders, M.A. Some Theoretical Properties of an Augmented Lagrangian Merit Function; Technical Report SOL 86-6R; Stanford University: Stanford, CA, USA, 1986. [Google Scholar]
- Kuhn, H.W.; Tucker, A.W. Nonlinear Programing. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 31 July–12 August 1950; Neyman, J., Ed.; University of California Press: Oakland, CA, USA, 1951; pp. 481–492. [Google Scholar]
- Verstraete, T. CADO: A Computer Aided Design and Optimization Tool for Turbomachinery Applications. In Proceedings of the 2nd International Conference on Engineering Optimization, Lisbon, Portugal, 6–9 September 2010. [Google Scholar]
- Stroud, I. Boundary Representation Modelling Techniques; Springer: London, UK, 2006; Volume 1. [Google Scholar]
- Miller, P.L.; Olivier, J.H.; Miller, P.D.; Tweedt, D.L. BladeCAD: An Interactive Geometric Design Tool for Turbomachinery Blades; Technical Report TM-107262; National Aeronautics and Space Administration (NASA): Washington, DC, USA, 1996.
- Thompson, J.F.; Thames, F.C.; Mastin, C.W. Automatic Numerical Generation of Body-Fitted Curvilinear Coordinates for a Field Containing Any Number of Arbitrary Two-Dimensional Bodies. J. Comput. Phys. 1974, 15, 299–319. [Google Scholar] [CrossRef]
- Steger, J.L.; Sorenson, R.L. Automatic Mesh-Point Clustering Near a Boundary in Grid Generation with Elliptic Partial Differential Equations. J. Comput. Phys. 1979, 33, 403–410. [Google Scholar] [CrossRef]
- White, J.A. Elliptic Grid Generation with Orthogonality and Spacing Control on an Arbitrary Number of Boundaries. In Proceedings of the 21st AIAA Fluid Dynamics, Plasma Dynamics and Lasers Conference, Seattle, WA, USA, 18–20 June 1990. [Google Scholar]
- Thomas, P.D.; Middlecoff, J.F. Direct Control of the Grid Point Distribution in Meshes Generated by Elliptic Equations. AIAA J. 1980, 18, 652–656. [Google Scholar] [CrossRef]
- Roe, P.L. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes. J. Comput. Phys. 1981, 43, 357–372. [Google Scholar] [CrossRef]
- Van Leer, B. Towards the Ultimate Conservative Difference Scheme. V. A Second Order Sequel to Godunov’s Method. J. Comput. Phys. 1979, 32, 101–136. [Google Scholar] [CrossRef]
- Venkatakrishnan, V. On the Accuracy of Limiters and Convergence to Steady State Solutions. In Proceedings of the 31st AIAA Aerospace Sciences Meeting, Reno, NV, USA, 11–14 January 1993. [Google Scholar]
- Harten, A.; Hyman, J.M. Self-Adjusting Grid Methods for One-Dimensional Hyperbolic Conservation Laws. J. Comput. Phys. 1983, 50, 235–269. [Google Scholar] [CrossRef]
- Allmaras, S.R.; Johnson, F.T.; Spalart, P.R. Modifications and Clarifications for the Implementation of the Spalart-Allmaras Turbulence Model. In Proceedings of the 7th International Conference on Computational Fluid Dynamics (ICCFD7-1902), Big Island, HI, USA, 9–13 July 2012. [Google Scholar]
- Blazek, J. Computational Fluid Dynamics: Principles and Applications, 2nd ed.; Elsevier Science Ltd.: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Jirásek, A. Mass Flow Boundary Conditions for Subsonic Inflow and Outflow Boundary. AIAA J. 2006, 44, 939–947. [Google Scholar] [CrossRef]
- Xu, S.; Radford, D.; Meyer, M.; Müller, J.-D. Stabilisation of Discrete Steady Adjoint Solvers. J. Comput. Phys. 2015, 299, 175–196. [Google Scholar] [CrossRef]
- Balay, S.; Abhyankar, S.; Adams, M.F.; Brown, J.; Brune, P.; Buschelman, K.; Eijkhout, V.; Gropp, W.D.; Kaushik, D.; Knepley, M.G.; et al. PETSc/Tao. Portable, Extensible Toolkit for Scientific Computation. Available online: http://www.mcs.anl.gov/petsc (accessed on April 2014).
- Nielsen, E.J.; Lu, J.; Park, M.A.; Darmofal, D.L. An Implicit, Exact Dual Adjoint Solution Method for Turbulent Flows on Unstructured Grids. Comput. Fluids 2004, 33, 1131–1155. [Google Scholar] [CrossRef]
- Dwight, R.P.; Brezillon, J. Efficient and Robust Algorithms for Solution of the Adjoint Compressible Navier-Stokes Equations with Applications. Int. J. Numer. Methods Fluids 2009, 60, 365–389. [Google Scholar] [CrossRef] [Green Version]
- Hascoët, L.; Pascual, V. The Tapenade Automatic Differentiation tool: Principles, Model, and Specification. ACM Trans. Math. Softw. 2013, 39, 20. [Google Scholar] [CrossRef]
- Dwight, R.P.; Brezillion, J. Effect of Approximation of the Discrete Adjoint on the Gradient-Based Optimization. AIAA J. 2006, 4412, 3022–3031. [Google Scholar] [CrossRef]
- Marta, A.C.; Shankaran, S. On the Handling of Turbulence Equations in RANS Adjoint Solvers. Comput. Fluids 2013, 74, 102–113. [Google Scholar] [CrossRef]
- Dhondt, G.; Wittig, K. CALCULIX. A Free Software Three-Dimensional Structural Finite Element Program. 1998. Available online: www.calculix.de.
Parameter | Symbol | Unit | OP1 | OP2 | OP3 |
---|---|---|---|---|---|
Inlet flow angle | [] | 62 | |||
Inlet total pressure | [bar] | - | - | 3.0 | |
Inlet mass flow | [g/s] | 100 | 130 | - | |
Inlet total temperature | [K] | 1050 | |||
Exit static pressure | [bar] | 1.013 | |||
Rotational speed | [min] | 140,000 |
Baseline | Iteration016 | Rel. Difference [%] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameter | Unit | OP1 | OP2 | OP3 | OP1 | OP2 | OP3 | OP1 | OP2 | OP3 |
Total-to-static efficiency | [%] | 77.74 | 73.98 | 68.71 | 80.19 | 76.88 | 71.51 | +3.15 | +3.92 | +4.08 |
Power | [kW] | 13.29 | 20.21 | 31.71 | 13.28 | 20.31 | 33.48 | −0.08 | +0.49 | +5.58 |
Mass flow | [g/s] | 100 | 130 | 178 | 100 | 130 | 185 | 0.0 | 0.0 | +3.93 |
Exit Mach number (absolute) | [-] | 0.32 | 0.42 | 0.56 | 0.29 | 0.38 | 0.51 | −9.38 | −9.52 | −8.93 |
Exit specific kinetic energy | [m/s] | 19,564 | 31,045 | 51,812 | 15,913 | 25,091 | 43,880 | −18.66 | −19.18 | −15.31 |
Max. von Mises stresses | [MPa] | 488 | 505 | +3.48 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Share and Cite
Mueller, L.; Verstraete, T. CAD Integrated Multipoint Adjoint-Based Optimization of a Turbocharger Radial Turbine. Int. J. Turbomach. Propuls. Power 2017, 2, 14. https://doi.org/10.3390/ijtpp2030014
Mueller L, Verstraete T. CAD Integrated Multipoint Adjoint-Based Optimization of a Turbocharger Radial Turbine. International Journal of Turbomachinery, Propulsion and Power. 2017; 2(3):14. https://doi.org/10.3390/ijtpp2030014
Chicago/Turabian StyleMueller, Lasse, and Tom Verstraete. 2017. "CAD Integrated Multipoint Adjoint-Based Optimization of a Turbocharger Radial Turbine" International Journal of Turbomachinery, Propulsion and Power 2, no. 3: 14. https://doi.org/10.3390/ijtpp2030014
APA StyleMueller, L., & Verstraete, T. (2017). CAD Integrated Multipoint Adjoint-Based Optimization of a Turbocharger Radial Turbine. International Journal of Turbomachinery, Propulsion and Power, 2(3), 14. https://doi.org/10.3390/ijtpp2030014