A Longitudinal Study in Tunisia to Assess the Anti-RBD IgG and IgA Responses Induced by Three Different COVID-19 Vaccine Platforms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Detection of Serum SARS-CoV-2 S-RBD-Specific IgG
2.3. Detection of Serum SARS-CoV-2 S-RBD-Specific IgA
2.4. Data Visualization and Statistical Analysis
3. Results
3.1. Study Population
3.2. Anti-RBD IgG Kinetics Elicited by Different Vaccine Platforms in SARS-CoV-2-Naïve Individuals and in Those with Pre-Vaccination History of SARS-CoV-2 Infection
3.3. Anti-RBD IgA Kinetics Elicited by Different Vaccine Platforms in SARS-CoV-2-Naïve Individuals and in Those with Pre-Vaccination History of SARS-CoV-2 Infection
3.4. Association between Vaccine-Elicited IgG and IgA Responses
3.5. The Effect of Age on Antibody Response over Time in Vaccinated Individuals
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giamarellos-Bourboulis, E.J.; Netea, M.G.; Rovina, N.; Akinosoglou, K.; Antoniadou, A.; Antonakos, N.; Damoraki, G.; Gkavogianni, T.; Adami, M.-E.; Katsaounou, P.; et al. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe 2020, 27, 992–1000.e3. [Google Scholar] [CrossRef]
- Rydyznski Moderbacher, C.; Ramirez, S.I.; Dan, J.M.; Grifoni, A.; Hastie, K.M.; Weiskopf, D.; Belanger, S.; Abbott, R.K.; Kim, C.; Choi, J.; et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell 2020, 183, 996–1012.e19. [Google Scholar] [CrossRef]
- Sette, A.; Crotty, S. Adaptive Immunity to SARS-CoV-2 and COVID-19. Cell 2021, 184, 861–880. [Google Scholar] [CrossRef]
- Lucas, C.; Wong, P.; Klein, J.; Castro, T.B.R.; Silva, J.; Sundaram, M.; Ellingson, M.K.; Mao, T.; Oh, J.E.; Israelow, B.; et al. Longitudinal Analyses Reveal Immunological Misfiring in Severe COVID-19. Nature 2020, 584, 463–469. [Google Scholar] [CrossRef]
- Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; et al. Structure of the SARS-CoV-2 Spike Receptor-Binding Domain Bound to the ACE2 Receptor. Nature 2020, 581, 215–220. [Google Scholar] [CrossRef]
- Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural Basis for the Recognition of SARS-CoV-2 by Full-Length Human ACE2. Science 2020, 367, 1444–1448. [Google Scholar] [CrossRef]
- Piccoli, L.; Park, Y.-J.; Tortorici, M.A.; Czudnochowski, N.; Walls, A.C.; Beltramello, M.; Silacci-Fregni, C.; Pinto, D.; Rosen, L.E.; Bowen, J.E.; et al. Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. Cell 2020, 183, 1024–1042.e21. [Google Scholar] [CrossRef]
- Rogers, T.F.; Zhao, F.; Huang, D.; Beutler, N.; Burns, A.; He, W.; Limbo, O.; Smith, C.; Song, G.; Woehl, J.; et al. Isolation of Potent SARS-CoV-2 Neutralizing Antibodies and Protection from Disease in a Small Animal Model. Science 2020, 369, 956–963. [Google Scholar] [CrossRef]
- Andreano, E.; Nicastri, E.; Paciello, I.; Pileri, P.; Manganaro, N.; Piccini, G.; Manenti, A.; Pantano, E.; Kabanova, A.; Troisi, M.; et al. Extremely Potent Human Monoclonal Antibodies from COVID-19 Convalescent Patients. Cell 2021, 184, 1821–1835.e16. [Google Scholar] [CrossRef]
- COVID-19 Vaccines with WHO Emergency Use Listing. Available online: https://extranet.who.int/pqweb/vaccines/vaccinescovid-19-vaccine-eul-issued (accessed on 23 June 2023).
- Commissioner of the COVID-19 Vaccines. FDA 2023. Available online: https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/covid-19-vaccines (accessed on 8 December 2023).
- Mohamed, K.; Rzymski, P.; Islam, M.S.; Makuku, R.; Mushtaq, A.; Khan, A.; Ivanovska, M.; Makka, S.A.; Hashem, F.; Marquez, L.; et al. COVID-19 Vaccinations: The Unknowns, Challenges, and Hopes. J. Med. Virol. 2022, 94, 1336–1349. [Google Scholar] [CrossRef]
- Tunisia: WHO Coronavirus Disease (COVID-19) Dashboard with Vaccination Data. Available online: https://covid19.who.int (accessed on 23 June 2023).
- Salazar, E.; Kuchipudi, S.V.; Christensen, P.A.; Eagar, T.; Yi, X.; Zhao, P.; Jin, Z.; Long, S.W.; Olsen, R.J.; Chen, J.; et al. Convalescent Plasma Anti–SARS-CoV-2 Spike Protein Ectodomain and Receptor-Binding Domain IgG Correlate with Virus Neutralization. J. Clin. Investig. 2020, 130, 6728–6738. [Google Scholar] [CrossRef] [PubMed]
- Su, F.; Patel, G.B.; Hu, S.; Chen, W. Induction of Mucosal Immunity through Systemic Immunization: Phantom or Reality? Hum. Vaccin. Immunother. 2016, 12, 1070–1079. [Google Scholar] [CrossRef] [PubMed]
- Ejemel, M.; Li, Q.; Hou, S.; Schiller, Z.A.; Tree, J.A.; Wallace, A.; Amcheslavsky, A.; Kurt Yilmaz, N.; Buttigieg, K.R.; Elmore, M.J.; et al. A Cross-Reactive Human IgA Monoclonal Antibody Blocks SARS-CoV-2 Spike-ACE2 Interaction. Nat. Commun. 2020, 11, 4198. [Google Scholar] [CrossRef] [PubMed]
- Sterlin, D.; Mathian, A.; Miyara, M.; Mohr, A.; Anna, F.; Claër, L.; Quentric, P.; Fadlallah, J.; Devilliers, H.; Ghillani, P.; et al. IgA Dominates the Early Neutralizing Antibody Response to SARS-CoV-2. Sci. Transl. Med. 2021, 13, eabd2223. [Google Scholar] [CrossRef] [PubMed]
- Chao, Y.X.; Rötzschke, O.; Tan, E.-K. The Role of IgA in COVID-19. Brain Behav. Immun. 2020, 87, 182–183. [Google Scholar] [CrossRef]
- Xue, M.; Zhang, T.; Hu, H.; Huang, Z.; Zhen, Y.; Liang, Y.; Zeng, Y.; Jin, T.; Zhou, L.; Zhang, X.D.; et al. Predictive Effects of IgA and IgG Combination to Assess Pulmonary Exudation Progression in COVID-19 Patients. J. Med. Virol. 2021, 93, 1443–1448. [Google Scholar] [CrossRef]
- Lippi, G.; Mattiuzzi, C. Clinical Value of anti-SARS-CoV-2 Serum IgA Titration in Patients with COVID-19. J. Med. Virol. 2021, 93, 1210–1211. [Google Scholar] [CrossRef]
- Matusali, G.; Sberna, G.; Meschi, S.; Gramigna, G.; Colavita, F.; Lapa, D.; Francalancia, M.; Bettini, A.; Capobianchi, M.R.; Puro, V.; et al. Differential Dynamics of SARS-CoV-2 Binding and Functional Antibodies upon BNT162b2 Vaccine: A 6-Month Follow-Up. Viruses 2022, 14, 312. [Google Scholar] [CrossRef]
- Wei, J.; Pouwels, K.B.; Stoesser, N.; Matthews, P.C.; Diamond, I.; Studley, R.; Rourke, E.; Cook, D.; Bell, J.I.; Newton, J.N.; et al. Antibody Responses and Correlates of Protection in the General Population after Two Doses of the ChAdOx1 or BNT162b2 Vaccines. Nat. Med. 2022, 28, 1072–1082. [Google Scholar] [CrossRef]
- Zhang, Z.; Mateus, J.; Coelho, C.H.; Dan, J.M.; Moderbacher, C.R.; Gálvez, R.I.; Cortes, F.H.; Grifoni, A.; Tarke, A.; Chang, J.; et al. Humoral and Cellular Immune Memory to Four COVID-19 Vaccines. Cell 2022, 185, 2434–2451.e17. [Google Scholar] [CrossRef]
- Sarrigeorgiou, I.; Moschandreou, D.; Dimitriadis, A.; Tsinti, G.; Sotiropoulou, E.; Ntoukaki, E.; Eliadis, P.; Backovic, M.; Labropoulou, S.; Escriou, N.; et al. Combined Monitoring of IgG and IgA Anti-Spike and Anti-Receptor Binding Domain Long Term Responses Following BNT162b2 mRNA Vaccination in Greek Healthcare Workers. PLoS ONE 2022, 17, e0277827. [Google Scholar] [CrossRef]
- Sheikh-Mohamed, S.; Isho, B.; Chao, G.Y.C.; Zuo, M.; Cohen, C.; Lustig, Y.; Nahass, G.R.; Salomon-Shulman, R.E.; Blacker, G.; Fazel-Zarandi, M.; et al. Systemic and Mucosal IgA Responses Are Variably Induced in Response to SARS-CoV-2 mRNA Vaccination and Are Associated with Protection against Subsequent Infection. Mucosal Immunol. 2022, 15, 799–808. [Google Scholar] [CrossRef]
- Ali, H.; Alahmad, B.; Al-Shammari, A.A.; Alterki, A.; Hammad, M.; Cherian, P.; Alkhairi, I.; Sindhu, S.; Thanaraj, T.A.; Mohammad, A.; et al. Previous COVID-19 Infection and Antibody Levels After Vaccination. Front. Public. Health 2021, 9, 778243. [Google Scholar] [CrossRef] [PubMed]
- Wisnewski, A.V.; Luna, J.C.; Redlich, C.A. Human IgG and IgA Responses to COVID-19 mRNA Vaccines. PLoS ONE 2021, 16, e0249499. [Google Scholar] [CrossRef] [PubMed]
- Rastawicki, W.; Juszczyk, G.; Gierczyński, R.; Zasada, A.A. Comparison of Anti-SARS-CoV-2 IgG and IgA Antibody Responses Post Complete Vaccination, 7 Months Later and after 3rd Dose of the BNT162b2 Vaccine in Healthy Adults. J. Clin. Virol. 2022, 152, 105193. [Google Scholar] [CrossRef] [PubMed]
- Montague, B.T.; Wipperman, M.F.; Chio, E.; Crow, R.; Hooper, A.T.; O’Brien, M.P.; Simões, E.A.F. Elevated Serum IgA Following Vaccination against SARS-CoV-2 in a Cohort of High-Risk First Responders. Sci. Rep. 2022, 12, 14932. [Google Scholar] [CrossRef] [PubMed]
- Gdoura, M.; Abouda, I.; Mrad, M.; Ben Dhifallah, I.; Belaiba, Z.; Fares, W.; Chouikha, A.; Khedhiri, M.; Layouni, K.; Touzi, H.; et al. SARS-CoV2 RT-PCR Assays: In Vitro Comparison of 4 WHO Approved Protocols on Clinical Specimens and Its Implications for Real Laboratory Practice through Variant Emergence. Virol. J. 2022, 19, 54. [Google Scholar] [CrossRef] [PubMed]
- Benabdessalem, C.; Hamouda, W.B.; Marzouki, S.; Faye, R.; Mbow, A.A.; Diouf, B.; Ndiaye, O.; Dia, N.; Faye, O.; Sall, A.A.; et al. Development and Comparative Evaluation of SARS-CoV-2 S-RBD and N Based ELISA Tests in Various African Endemic Settings. Diagn. Microbiol. Infect. Dis. 2023, 105, 115903. [Google Scholar] [CrossRef] [PubMed]
- Boumaiza, M.; Chaabene, A.; Akrouti, I.; Ben Zakour, M.; Askri, H.; Salhi, S.; Ben Hamouda, W.; Marzouki, S.; Benabdessalem, C.; Ben Ahmed, M.; et al. Development of an Optimized Process for Functional Recombinant SARS-CoV-2 Spike S1 Receptor-Binding Domain Protein Produced in the Baculovirus Expression Vector System. Trop. Med. Infect. Dis. 2023, 8, 501. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, P.; Curtis, N. Factors That Influence the Immune Response to Vaccination. Clin. Microbiol. Rev. 2019, 32, e00084-18. [Google Scholar] [CrossRef]
- Gundlapalli, A.V.; Salerno, R.M.; Brooks, J.T.; Averhoff, F.; Petersen, L.R.; McDonald, L.C.; Iademarco, M.F. SARS-CoV-2 Serologic Assay Needs for the Next Phase of the US COVID-19 Pandemic Response. Open Forum Infect. Dis. 2020, 8, ofaa555. [Google Scholar] [CrossRef] [PubMed]
- Padoan, A.; Dall’Olmo, L.; della Rocca, F.; Barbaro, F.; Cosma, C.; Basso, D.; Cattelan, A.; Cianci, V.; Plebani, M. Antibody Response to First and Second Dose of BNT162b2 in a Cohort of Characterized Healthcare Workers. Clin. Chim. Acta 2021, 519, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Cromer, D.; Steain, M.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Kent, S.J.; Triccas, J.A.; Khoury, D.S.; Davenport, M.P. Neutralising Antibody Titres as Predictors of Protection against SARS-CoV-2 Variants and the Impact of Boosting: A Meta-Analysis. Lancet Microbe 2022, 3, e52–e61. [Google Scholar] [CrossRef] [PubMed]
- Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing Antibody Levels Are Highly Predictive of Immune Protection from Symptomatic SARS-CoV-2 Infection. Nat. Med. 2021, 27, 1205–1211. [Google Scholar] [CrossRef]
- Ben Ahmed, M.; Bellali, H.; Gdoura, M.; Zamali, I.; Kallala, O.; Ben Hmid, A.; Hamdi, W.; Ayari, H.; Fares, H.; Mechri, K.; et al. Humoral and Cellular Immunogenicity of Six Different Vaccines against SARS-CoV-2 in Adults: A Comparative Study in Tunisia (North Africa). Vaccines 2022, 10, 1189. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Hua, Q.; Nani Xu, N.; Zhang, X.; Chen, B.; Ma, X.; Hu, J.; Chen, Z.; Yu, P.; Lei, H.; et al. Evaluation of Antibody Kinetics and Durability in Healthy Individuals Vaccinated with Inactivated COVID-19 Vaccine (CoronaVac): A Cross-Sectional and Cohort Study in Zhejiang, China. eLife 2023, 12, e84056. [Google Scholar] [CrossRef]
- Rammauro, F.; Carrión, F.; Olivero-Deibe, N.; Fló, M.; Ferreira, A.; Pritsch, O.; Bianchi, S. Humoral Immune Response Characterization of Heterologous Prime-Boost Vaccination with CoronaVac and BNT162b2. Vaccine 2022, 40, 5189–5196. [Google Scholar] [CrossRef]
- Jeewandara, C.; Aberathna, I.S.; Dayarathna, S.; Nimasha, T.; Ranasinghe, T.; Jayamali, J.; Kamaladasa, A.; Karunanada, M.; Perera, L.; Ogg, G.S.; et al. Comparison of the Kinetics and Magnitude of Antibody Responses to Different SARS-CoV-2 Proteins in Sinopharm/BBIBP-CorV Vaccinees Following the BNT162b2 Booster or Natural Infection. PLoS ONE 2022, 17, e0274845. [Google Scholar] [CrossRef]
- Dashdorj, N.J.; Wirz, O.F.; Röltgen, K.; Haraguchi, E.; Buzzanco, A.S.; Sibai, M.; Wang, H.; Miller, J.A.; Solis, D.; Sahoo, M.K.; et al. Direct Comparison of Antibody Responses to Four SARS-CoV-2 Vaccines in Mongolia. Cell Host Microbe 2021, 29, 1738–1743.e4. [Google Scholar] [CrossRef]
- Muramatsu, M.; Yoshida, R.; Yokoyama, A.; Miyamoto, H.; Kajihara, M.; Maruyama, J.; Nao, N.; Manzoor, R.; Takada, A. Comparison of Antiviral Activity between IgA and IgG Specific to Influenza Virus Hemagglutinin: Increased Potential of IgA for Heterosubtypic Immunity. PLoS ONE 2014, 9, e85582. [Google Scholar] [CrossRef]
- Liew, F.Y.; Russell, S.M.; Appleyard, G.; Brand, C.M.; Beale, J. Cross-Protection in Mice Infected with Influenza A Virus by the Respiratory Route Is Correlated with Local IgA Antibody Rather than Serum Antibody or Cytotoxic T Cell Reactivity. Eur. J. Immunol. 1984, 14, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Muecksch, F.; Schaefer-Babajew, D.; Finkin, S.; Viant, C.; Gaebler, C.; Hoffmann, H.-H.; Barnes, C.O.; Cipolla, M.; Ramos, V.; et al. Naturally Enhanced Neutralizing Breadth against SARS-CoV-2 One Year after Infection. Nature 2021, 595, 426–431. [Google Scholar] [CrossRef]
- Azzi, L.; Dalla Gasperina, D.; Veronesi, G.; Shallak, M.; Ietto, G.; Iovino, D.; Baj, A.; Gianfagna, F.; Maurino, V.; Focosi, D.; et al. Mucosal Immune Response in BNT162b2 COVID-19 Vaccine Recipients. EBioMedicine 2021, 75, 103788. [Google Scholar] [CrossRef]
- Sano, K.; Bhavsar, D.; Singh, G.; Floda, D.; Srivastava, K.; Gleason, C.; Carreño, J.M.; Simon, V.; Krammer, F. SARS-CoV-2 Vaccination Induces Mucosal Antibody Responses in Previously Infected Individuals. Nat. Commun. 2022, 13, 5135. [Google Scholar] [CrossRef] [PubMed]
- Zhong, D.; Xiao, S.; Debes, A.K.; Egbert, E.R.; Caturegli, P.; Colantuoni, E.; Milstone, A.M. Durability of Antibody Levels After Vaccination With mRNA SARS-CoV-2 Vaccine in Individuals With or Without Prior Infection. JAMA 2021, 326, 2524–2526. [Google Scholar] [CrossRef]
- Urbanowicz, R.A.; Tsoleridis, T.; Jackson, H.J.; Cusin, L.; Duncan, J.D.; Chappell, J.G.; Tarr, A.W.; Nightingale, J.; Norrish, A.R.; Ikram, A.; et al. Two Doses of the SARS-CoV-2 BNT162b2 Vaccine Enhance Antibody Responses to Variants in Individuals with Prior SARS-CoV-2 Infection. Sci. Transl. Med. 2021, 13, eabj0847. [Google Scholar] [CrossRef]
- Buonfrate, D.; Piubelli, C.; Gobbi, F.; Martini, D.; Bertoli, G.; Ursini, T.; Moro, L.; Ronzoni, N.; Angheben, A.; Rodari, P.; et al. Antibody Response Induced by the BNT162b2 mRNA COVID-19 Vaccine in a Cohort of Health-Care Workers, with or without Prior SARS-CoV-2 Infection: A Prospective Study. Clin. Microbiol. Infect. 2021, 27, 1845–1850. [Google Scholar] [CrossRef]
- Krammer, F.; Srivastava, K.; Alshammary, H.; Amoako, A.A.; Awawda, M.H.; Beach, K.F.; Bermúdez-González, M.C.; Bielak, D.A.; Carreño, J.M.; Chernet, R.L.; et al. Antibody Responses in Seropositive Persons after a Single Dose of SARS-CoV-2 mRNA Vaccine. N. Engl. J. Med. 2021, 384, 1372–1374. [Google Scholar] [CrossRef]
- Ssentongo, P.; Ssentongo, A.E.; Voleti, N.; Groff, D.; Sun, A.; Ba, D.M.; Nunez, J.; Parent, L.J.; Chinchilli, V.M.; Paules, C.I. SARS-CoV-2 Vaccine Effectiveness against Infection, Symptomatic and Severe COVID-19: A Systematic Review and Meta-Analysis. BMC Infect. Dis. 2022, 22, 439. [Google Scholar] [CrossRef]
- Pilishvili, T.; Gierke, R.; Fleming-Dutra, K.E.; Farrar, J.L.; Mohr, N.M.; Talan, D.A.; Krishnadasan, A.; Harland, K.K.; Smithline, H.A.; Hou, P.C.; et al. Effectiveness of mRNA Covid-19 Vaccine among U.S. Health Care Personnel. N. Engl. J. Med. 2021, 385, e90. [Google Scholar] [CrossRef]
- Lord, J.M. The Effect of Aging of the Immune System on Vaccination Responses. Hum. Vaccin. Immunother. 2013, 9, 1364–1367. [Google Scholar] [CrossRef] [PubMed]
- Kodde, C.; Tafelski, S.; Balamitsa, E.; Nachtigall, I.; Bonsignore, M. Factors Influencing Antibody Response to SARS-CoV-2 Vaccination. Vaccines 2023, 11, 451. [Google Scholar] [CrossRef] [PubMed]
- Kara, Z.; Akçin, R.; Demir, A.N.; Dinc, H.O.; Kocazeybek, B.; Yumuk, V.D. Antibody Response to Inactive SARS-CoV-2 Vaccination in a Cohort of Elderly Patients Living with Obesity. Obes. Facts 2023, 16, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Naaber, P.; Tserel, L.; Kangro, K.; Sepp, E.; Jürjenson, V.; Adamson, A.; Haljasmägi, L.; Rumm, A.P.; Maruste, R.; Kärner, J.; et al. Dynamics of Antibody Response to BNT162b2 Vaccine after Six Months: A Longitudinal Prospective Study. Lancet Reg. Health-Eur. 2021, 10, 100208. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.P.; Gauthey, L.; Michel, M.; Loreto, M.; Paccaud, M.; Pechere, J.C.; Michel, J.P. The Relationship between Influenza Vaccine-Induced Specific Antibody Responses and Vaccine-Induced Nonspecific Autoantibody Responses in Healthy Older Women. J. Gerontol. 1992, 47, M50–M55. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, K.; Viboud, C.; Simonsen, L. Antibody Response to Influenza Vaccination in the Elderly: A Quantitative Review. Vaccine 2006, 24, 1159–1169. [Google Scholar] [CrossRef] [PubMed]
- Weinberger, B.; Grubeck-Loebenstein, B. Vaccines for the Elderly. Clin. Microbiol. Infect. 2012, 18 (Suppl. S5), 100–108. [Google Scholar] [CrossRef]
- Terpos, E.; Trougakos, I.P.; Apostolakou, F.; Charitaki, I.; Sklirou, A.D.; Mavrianou, N.; Papanagnou, E.; Liacos, C.; Gumeni, S.; Rentziou, G.; et al. Age-dependent and Gender-dependent Antibody Responses against SARS-CoV-2 in Health Workers and Octogenarians after Vaccination with the BNT162b2 mRNA Vaccine. Am. J. Hematol. 2021, 96, E257–E259. [Google Scholar] [CrossRef]
- Vassilaki, N.; Gargalionis, A.N.; Bletsa, A.; Papamichalopoulos, N.; Kontou, E.; Gkika, M.; Patas, K.; Theodoridis, D.; Manolis, I.; Ioannidis, A.; et al. Impact of Age and Sex on Antibody Response Following the Second Dose of COVID-19 BNT162b2 mRNA Vaccine in Greek Healthcare Workers. Microorganisms 2021, 9, 1725. [Google Scholar] [CrossRef]
- Salvagno, G.L.; Henry, B.M.; di Piazza, G.; Pighi, L.; De Nitto, S.; Bragantini, D.; Gianfilippi, G.L.; Lippi, G. Anti-SARS-CoV-2 Receptor-Binding Domain Total Antibodies Response in Seropositive and Seronegative Healthcare Workers Undergoing COVID-19 mRNA BNT162b2 Vaccination. Diagnostics 2021, 11, 832. [Google Scholar] [CrossRef]
- Planas, D.; Saunders, N.; Maes, P.; Guivel-Benhassine, F.; Planchais, C.; Buchrieser, J.; Bolland, W.-H.; Porrot, F.; Staropoli, I.; Lemoine, F.; et al. Considerable Escape of SARS-CoV-2 Omicron to Antibody Neutralization. Nature 2022, 602, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Wall, E.C.; Carr, E.J.; Harvey, R.; Townsley, H.; Mears, H.V.; Adams, L.; Kjaer, S.; Kelly, G.; Warchal, S.; et al. Three-Dose Vaccination Elicits Neutralising Antibodies against Omicron. Lancet 2022, 399, 715–717. [Google Scholar] [CrossRef] [PubMed]
- Wall, E.C.; Wu, M.; Harvey, R.; Kelly, G.; Warchal, S.; Sawyer, C.; Daniels, R.; Hobson, P.; Hatipoglu, E.; Ngai, Y.; et al. Neutralising Antibody Activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 Vaccination. Lancet 2021, 397, 2331–2333. [Google Scholar] [CrossRef] [PubMed]
- Wall, E.C.; Wu, M.; Harvey, R.; Kelly, G.; Warchal, S.; Sawyer, C.; Daniels, R.; Adams, L.; Hobson, P.; Hatipoglu, E.; et al. AZD1222-Induced Neutralising Antibody Activity against SARS-CoV-2 Delta VOC. Lancet 2021, 398, 207–209. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Nair, M.S.; Liu, L.; Iketani, S.; Luo, Y.; Guo, Y.; Wang, M.; Yu, J.; Zhang, B.; Kwong, P.D.; et al. Antibody Resistance of SARS-CoV-2 Variants B.1.351 and B.1.1.7. Nature 2021, 593, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Edara, V.V.; Norwood, C.; Floyd, K.; Lai, L.; Davis-Gardner, M.E.; Hudson, W.H.; Mantus, G.; Nyhoff, L.E.; Adelman, M.W.; Fineman, R.; et al. Infection- and Vaccine-Induced Antibody Binding and Neutralization of the B.1.351 SARS-CoV-2 Variant. Cell Host Microbe 2021, 29, 516–521.e3. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.E.; Zhang, X.; Case, J.B.; Winkler, E.S.; Liu, Y.; VanBlargan, L.A.; Liu, J.; Errico, J.M.; Xie, X.; Suryadevara, N.; et al. Resistance of SARS-CoV-2 Variants to Neutralization by Monoclonal and Serum-Derived Polyclonal Antibodies. Nat. Med. 2021, 27, 717–726. [Google Scholar] [CrossRef]
- Farkash, I.; Feferman, T.; Cohen-Saban, N.; Avraham, Y.; Morgenstern, D.; Mayuni, G.; Barth, N.; Lustig, Y.; Miller, L.; Shouval, D.S.; et al. Anti-SARS-CoV-2 Antibodies Elicited by COVID-19 mRNA Vaccine Exhibit a Unique Glycosylation Pattern. Cell Rep. 2021, 37, 110114. [Google Scholar] [CrossRef]
- Fernandes, E.R.; Taminato, M.; de Souza Apostolico, J.; Gabrielonni, M.C.; Lunardelli, V.A.S.; Maricato, J.T.; Andersen, M.L.; Tufik, S.; Rosa, D.S. Robust Specific RBD Responses and Neutralizing Antibodies after ChAdOx1 nCoV-19 and CoronaVac Vaccination in SARS-CoV-2–Seropositive Individuals. J. Allergy Clin. Immunol. Glob. 2023, 2, 100083. [Google Scholar] [CrossRef]
- Takheaw, N.; Liwsrisakun, C.; Chaiwong, W.; Laopajon, W.; Pata, S.; Inchai, J.; Duangjit, P.; Pothirat, C.; Bumroongkit, C.; Deesomchok, A.; et al. Correlation Analysis of Anti-SARS-CoV-2 RBD IgG and Neutralizing Antibody against SARS-CoV-2 Omicron Variants after Vaccination. Diagnostics 2022, 12, 1315. [Google Scholar] [CrossRef]
- Abdullahi, A.; Oladele, D.; Owusu, M.; Kemp, S.A.; Ayorinde, J.; Salako, A.; Fink, D.; Ige, F.; Ferreira, I.A.T.M.; Meng, B.; et al. SARS-COV-2 Antibody Responses to AZD1222 Vaccination in West Africa. Nat. Commun. 2022, 13, 6131. [Google Scholar] [CrossRef] [PubMed]
- Guiomar, R.; Santos, A.J.; Melo, A.M.; Costa, I.; Matos, R.; Rodrigues, A.P.; Kislaya, I.; Silva, A.S.; Roque, C.; Nunes, C.; et al. Monitoring of SARS-CoV-2 Specific Antibodies after Vaccination. Vaccines 2022, 10, 154. [Google Scholar] [CrossRef] [PubMed]
- Uysal, E.B.; Gümüş, S.; Bektöre, B.; Bozkurt, H.; Gözalan, A. Evaluation of Antibody Response after COVID-19 Vaccination of Healthcare Workers. J. Med. Virol. 2022, 94, 1060–1066. [Google Scholar] [CrossRef] [PubMed]
SARS-CoV-2-Naïve at Pre-Vaccination (n = 93) | SARS-CoV-2-Experienced at Pre-Vaccination (n = 93) | |||||
---|---|---|---|---|---|---|
Inactivated Vaccines | RNA Vaccines | Viral Vector Vaccines | Inactivated Vaccines | RNA Vaccines | Viral Vector Vaccines | |
Donors, N | 15 | 65 | 13 | 7 | 68 | 18 |
N, (Sex) | 8 (F) 7 (M) | 38 (F) 27 (M) | 7 (F) 6 (M) | 4 (F) 3 (M) | 46 (F) 22 (M) | 11 (F) 7 (M) |
Age, median (range) | 49 (29–62) | 44 (25–71) | 46 (30–67) | 41.5 (34–62) | 45 (26–70) | 46 (23–67) |
Boosted, N (Time-point) | 4 (T3) 2 (T4) | 6 (T3) 27 (T4) 2 (T5) | 1 (T3) 3 (T4) | 3 (T3) 1 (T4) | 11 (T3) 22 (T4) 1 (T5) | 1 (T3) |
Booster Categories, N (category) | 1 * 5 ** | 34 * 1 ** | 4 ** | 4 ** | 34 * | 1 * |
Boosted total | 45/93 | 39/93 |
SARS-CoV-2-Naïve at Pre-Vaccination (n = 93) | SARS-CoV-2-Experienced at Pre-Vaccination (n = 93) | |||||
---|---|---|---|---|---|---|
Inactivated Vaccines | RNA Vaccines | Viral Vector Vaccines | Inactivated Vaccines | RNA Vaccines | Viral Vector Vaccines | |
Donors, N | 15 | 65 | 13 | 7 | 68 | 18 |
Breakthrough infection, N (Time-point) | 5 (T3) 4 (T4) 1 (T5) | 5 (T2) 1 (T3) 6 (T4) 19 (T5) | 5 (T3) | 1 (T4) | 4 (T3) 13 (T4) 14 (T5) | 2 (T2) 1 (T3) |
Breakthrough infection, N (%) | 10 (66%) | 31 (47%) | 5 (38%) | 1 (14%) | 31 (45%) | 3 (18%) |
Breakthrough infection total | 46/93 | 35/93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Hamouda, W.; Hanachi, M.; Ben Hamouda, S.; Kammoun Rebai, W.; Gharbi, A.; Baccouche, A.; Bettaieb, J.; Souiai, O.; Barbouche, M.R.; Dellagi, K.; et al. A Longitudinal Study in Tunisia to Assess the Anti-RBD IgG and IgA Responses Induced by Three Different COVID-19 Vaccine Platforms. Trop. Med. Infect. Dis. 2024, 9, 61. https://doi.org/10.3390/tropicalmed9030061
Ben Hamouda W, Hanachi M, Ben Hamouda S, Kammoun Rebai W, Gharbi A, Baccouche A, Bettaieb J, Souiai O, Barbouche MR, Dellagi K, et al. A Longitudinal Study in Tunisia to Assess the Anti-RBD IgG and IgA Responses Induced by Three Different COVID-19 Vaccine Platforms. Tropical Medicine and Infectious Disease. 2024; 9(3):61. https://doi.org/10.3390/tropicalmed9030061
Chicago/Turabian StyleBen Hamouda, Wafa, Mariem Hanachi, Sonia Ben Hamouda, Wafa Kammoun Rebai, Adel Gharbi, Amor Baccouche, Jihene Bettaieb, Oussema Souiai, Mohamed Ridha Barbouche, Koussay Dellagi, and et al. 2024. "A Longitudinal Study in Tunisia to Assess the Anti-RBD IgG and IgA Responses Induced by Three Different COVID-19 Vaccine Platforms" Tropical Medicine and Infectious Disease 9, no. 3: 61. https://doi.org/10.3390/tropicalmed9030061
APA StyleBen Hamouda, W., Hanachi, M., Ben Hamouda, S., Kammoun Rebai, W., Gharbi, A., Baccouche, A., Bettaieb, J., Souiai, O., Barbouche, M. R., Dellagi, K., Ben Ahmed, M., & Benabdessalem, C. (2024). A Longitudinal Study in Tunisia to Assess the Anti-RBD IgG and IgA Responses Induced by Three Different COVID-19 Vaccine Platforms. Tropical Medicine and Infectious Disease, 9(3), 61. https://doi.org/10.3390/tropicalmed9030061