Human Cytomegalovirus (HCMV) Genetic Diversity, Drug Resistance Testing and Prevalence of the Resistance Mutations: A Literature Review
Abstract
:1. Introduction
2. The HCMV Genome and Genetic Diversity
3. HCMV Antiviral Therapy
3.1. GCV and VGV
3.2. FOS
3.3. CDV
3.4. Maribavir
3.5. Letermovir
4. HCMV Drug Resistance
5. HCMV Drug Resistance Testing
5.1. Sanger Sequencing
5.2. Next-Generation Sequencing
Evaluation of NGS as a Diagnostic Tool
6. Prevalence of HCMV Drug Resistance Worldwide
6.1. General Population of HCMV Viremic Patients
6.2. Transplant Patients
6.3. HSCT
6.4. SOT
6.4.1. Kidney Transplant
6.4.2. Lung Transplant
6.5. HIV-Positive Individuals
6.6. Children
6.7. LMV
6.8. MBV
7. Immunotherapy
8. Vaccines
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, M.; Shorman, M. Cytomegalovirus. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Fulkerson, H.L.; Nogalski, M.T.; Collins-McMillen, D.; Yurochko, A.D. Overview of Human Cytomegalovirus Pathogenesis. Methods Mol. Biol. 2021, 2244, 1–18. [Google Scholar]
- Zuhair, M.; Smit, G.S.A.; Wallis, G.; Jabbar, F.; Smith, C.; Devleesschauwer, B.; Griffiths, P. Estimation of the worldwide seroprevalence of cytomegalovirus: A systematic review and meta-analysis. Rev. Med. Virol. 2019, 29, e2034. [Google Scholar] [CrossRef]
- Cannon, M.J.; Schmid, D.S.; Hyde, T.B. Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev. Med. Virol. 2010, 20, 202–213. [Google Scholar] [CrossRef]
- Sinzger, C.; Digel, M.; Jahn, G. Cytomegalovirus cell tropism. Curr. Top. Microbiol. Immunol. 2008, 325, 63–83. [Google Scholar]
- Revello, M.G.; Gerna, G. Human cytomegalovirus tropism for endothelial/epithelial cells: Scientific background and clinical implications. Rev. Med. Virol. 2010, 20, 136–155. [Google Scholar] [CrossRef]
- Bankier, A.T.; Beck, S.; Bohni, R.; Brown, C.M.; Cerny, R.; Chee, M.S.; Hutchison, C.A., 3rd; Kouzarides, T.; Martignetti, J.A.; Preddie, E.; et al. The DNA sequence of the human cytomegalovirus genome. DNA Seq. 1991, 2, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Charles, O.J.; Venturini, C.; Gantt, S.; Atkinson, C.; Griffiths, P.; Goldstein, R.A.; Breuer, J. Genomic and geographical structure of human cytomegalovirus. Proc. Natl. Acad. Sci. USA 2023, 120, e2221797120. [Google Scholar] [CrossRef] [PubMed]
- Stern-Ginossar, N.; Weisburd, B.; Michalski, A.; Le, V.T.; Hein, M.Y.; Huang, S.X.; Ma, M.; Shen, B.; Qian, S.B.; Hengel, H.; et al. Decoding human cytomegalovirus. Science 2012, 338, 1088–1093. [Google Scholar] [CrossRef] [PubMed]
- Dolan, A.; Cunningham, C.; Hector, R.D.; Hassan-Walker, A.F.; Lee, L.; Addison, C.; Dargan, D.J.; McGeoch, D.J.; Gatherer, D.; Emery, V.C.; et al. Genetic content of wild-type human cytomegalovirus. J. Gen. Virol. 2004, 85 Pt 5, 1301–1312. [Google Scholar] [CrossRef] [PubMed]
- Sijmons, S.; Thys, K.; Mbong Ngwese, M.; Van Damme, E.; Dvorak, J.; Van Loock, M.; Li, G.; Tachezy, R.; Busson, L.; Aerssens, J.; et al. High-throughput analysis of human cytomegalovirus genome diversity highlights the widespread occurrence of gene-disrupting mutations and pervasive recombination. J. Virol. 2015, 89, 7673–7695. [Google Scholar] [CrossRef] [PubMed]
- Sijmons, S.; Van Ranst, M.; Maes, P. Genomic and functional characteristics of human cytomegalovirus revealed by next-generation sequencing. Viruses 2014, 6, 1049–1072. [Google Scholar] [CrossRef]
- Hage, E.; Wilkie, G.S.; Linnenweber-Held, S.; Dhingra, A.; Suárez, N.M.; Schmidt, J.J.; Kay-Fedorov, P.C.; Mischak-Weissinger, E.; Heim, A.; Schwarz, A.; et al. Characterization of Human Cytomegalovirus Genome Diversity in Immunocompromised Hosts by Whole-Genome Sequencing Directly from Clinical Specimens. J. Infect. Dis. 2017, 215, 1673–1683. [Google Scholar] [CrossRef]
- Dal Monte, P.; Pignatelli, S.; Rossini, G.; Landini, M.P. Genomic variants among human cytomegalovirus (HCMV) clinical isolates: The glycoprotein n (gN) paradigm. Hum. Immunol. 2004, 65, 387–394. [Google Scholar] [CrossRef]
- Pignatelli, S.; Dal Monte, P.; Rossini, G.; Landini, M.P. Genetic polymorphisms among human cytomegalovirus (HCMV) wild-type strains. Rev. Med. Virol. 2004, 14, 383–410. [Google Scholar] [CrossRef]
- Dong, N.; Cao, L.; Zheng, D.; Su, L.; Lu, L.; Dong, Z.; Xu, M.; Xu, J. Distribution of CMV envelope glycoprotein, B.; H and N genotypes in infants with congenital cytomegalovirus symptomatic infection. Front. Pediatr. 2023, 11, 1112645. [Google Scholar] [CrossRef] [PubMed]
- Coşkun, A.; Gökahmetoğlu, S.; Özmen, P.; Karakükcü, M.; Kaynar, L.; Kuşkucu, M.A.; Midilli, K. Determination of genotypes in cytomegalovirus (CMV) strains obtained from pediatric and adult immunocompromised patients. J. Basic Clin. Health Sci. 2023, 7, 270–276. [Google Scholar] [CrossRef]
- Arcangeletti, M.C.; Vasile Simone, R.; Rodighiero, I.; De Conto, F.; Medici, M.C.; Martorana, D.; Chezzi, C.; Calderaro, A. Combined genetic variants of human cytomegalovirus envelope glycoproteins as congenital infection markers. Virol. J. 2015, 12, 202. [Google Scholar] [CrossRef] [PubMed]
- Pati, S.K.; Pinninti, S.; Novak, Z.; Chowdhury, N.; Patro, R.K.; Fowler, K.; Ross, S.; Boppana, S.; NIDCD CHIMES Study Investigators. Genotypic diversity and mixed infection in newborn disease and hearing loss in congenital cytomegalovirus infection. Pediatr. Infect. Dis. J. 2013, 32, 1050–1054. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Cheng, Y.; Peng, Q.; Chen, K. Cytomegalovirus Genotype Distribution among Postnatally Infected Infants: Association of Glycoprotein B, Glycoprotein N and Glycoprotein H Types with CMV-Associated Thrombocytopenia. Mediterr. J. Hematol. Infect. Dis. 2020, 12, e2020057. [Google Scholar] [CrossRef] [PubMed]
- Dieamant, D.C.; Bonon, S.H.; Peres, R.M.; Costa, C.R.; Albuquerque, D.M.; Miranda, E.C.; Aranha, F.J.; Oliveira-Duarte, G.; Fernandes, V.C.; De Souza, C.A.; et al. Cytomegalovirus (CMV) genotype in allogeneic hematopoietic stem cell transplantation. BMC Infect. Dis. 2013, 13, 310. [Google Scholar] [CrossRef]
- Wang, H.Y.; Valencia, S.M.; Pfeifer, S.P.; Jensen, J.D.; Kowalik, T.F.; Permar, S.R. Common Polymorphisms in the Glycoproteins of Human Cytomegalovirus and Associated Strain-Specific Immunity. Viruses 2021, 13, 1106. [Google Scholar] [CrossRef]
- Razonable, R.R. Oral antiviral drugs for treatment of cytomegalovirus in transplant recipients. Clin. Microbiol. Infect. 2023, 29, 1144–1149. [Google Scholar] [CrossRef]
- Galar, A.; Valerio, M.; Catalán, P.; García-González, X.; Burillo, A.; Fernández-Cruz, A.; Zataráin, E.; Sousa-Casasnovas, I.; Anaya, F.; Rodríguez-Ferrero, M.L.; et al. Valganciclovir—Ganciclovir Use and Systematic Therapeutic Drug Monitoring. An Invitation to Antiviral Stewardship. Antibiotics 2021, 10, 77. [Google Scholar] [CrossRef]
- Hakki, M.; Aitken, S.L.; Danziger-Isakov, L.; Michaels, M.G.; Carpenter, P.A.; Chemaly, R.F.; Papanicolaou, G.A.; Boeckh, M.; Marty, F.M. American Society for Transplantation and Cellular Therapy Series: Prevention of Cytomegalovirus Infection and Disease after Hematopoietic Cell Transplantation. Transplant. Cell. Ther. 2021, 27, 707–719. [Google Scholar] [CrossRef]
- Garikapati, S.; Nguyen, M. Foscarnet. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Yong, M.K.; Shigle, T.L.; Kim, Y.J.; Carpenter, P.A.; Chemaly, R.F.; Papanicolaou, G.A. American Society for Transplantation and Cellular Therapy Series: #4-Cytomegalovirus treatment and management of resistant or refractory infections after hematopoietic cell transplantation. Transplant. Cell. Ther. 2021, 27, 957–967. [Google Scholar]
- Acquier, M.; Taton, B.; Alain, S.; Garrigue, I.; Mary, J.; Pfirmann, P.; Visentin, J.; Hantz, S.; Merville, P.; Kaminski, H.; et al. Cytomegalovirus DNAemia Requiring (Val)Ganciclovir Treatment for More Than 8 Weeks Is a Key Factor in the Development of Antiviral Drug Resistance. Open Forum Infect. Dis. 2023, 10, ofad018. [Google Scholar] [CrossRef] [PubMed]
- Halpern-Cohen, V.; Blumberg, E.A. New Perspectives on Antimicrobial Agents: Maribavir. Antimicrob. Agents Chemother. 2022, 66, e0240521. [Google Scholar] [CrossRef] [PubMed]
- Avery, R.K.; Alain, S.; Alexander, B.D.; Blumberg, E.A.; Chemaly, R.F.; Cordonnier, C.; Duarte, R.F.; Florescu, D.F.; Kamar, N.; Kumar, D.; et al. Maribavir for Refractory Cytomegalovirus Infections with or Without Resistance Post-Transplant: Results From a Phase 3 Randomized Clinical Trial. Clin. Infect. Dis. 2022, 75, 690–701. [Google Scholar] [CrossRef] [PubMed]
- Fung, M.; DeVoe, C.; Spottiswoode, N.; Doernberg, S.B. Maribavir for Cytomegalovirus Treatment in the Real World-Not a Silver Bullet. Open Forum Infect. Dis. 2022, 10, ofac686. [Google Scholar] [CrossRef] [PubMed]
- Bini Viotti, J.; Dammann, F.; Jimenez Jimenez, A.M.; Anderson, A.D.; Morris, M.I.; Camargo, J.F.; Raja, M. Emergence of maribavir resistance after CMV treatment in hematopoietic stem cell transplant recipient. Ann. Hematol. 2023, 102, 2283–2284. [Google Scholar] [CrossRef] [PubMed]
- Papanicolaou, G.A.; Silveira, F.P.; Langston, A.A.; Pereira, M.R.; Avery, R.K.; Uknis, M.; Wijatyk, A.; Wu, J.; Boeckh, M.; Marty, F.M.; et al. Maribavir for Refractory or Resistant Cytomegalovirus Infections in Hematopoietic-cell or Solid-organ Transplant Recipients: A Randomized, Dose-ranging, Double-blind, Phase 2 Study. Clin. Infect. Dis. 2019, 68, 1255–1264. [Google Scholar] [CrossRef]
- Chou, S.; Song, K.; Wu, J.; Bo, T.; Crumpacker, C. Drug Resistance Mutations and Associated Phenotypes Detected in Clinical Trials of Maribavir for Treatment of Cytomegalovirus Infection. J. Infect. Dis. 2022, 226, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Komazin, G.; Ptak, R.G.; Emmer, B.T.; Townsend, L.B.; Drach, J.C. Resistance of human cytomegalovirus to the benzimidazole L-ribonucleoside maribavir maps to UL27. J. Virol. 2003, 77, 11499–11506. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, D.; Byrns, J.; Maziarz, E.; Alexander, B.D.; Saullo, J.L. Use of Letermovir for Primary and Secondary Cytomegalovirus Prophylaxis in Abdominal Organ Transplantation: A Single Center Experience. J. Pharm. Pract. 2023, 08971900231176430. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Purtill, D.; Cooney, J.; Cannell, P.; Wright, M.; Copeland, T.S.; McGuire, M.; Boan, P. Letermovir for pre-emptive cytomegalovirus therapy after allogeneic hematopoietic cell transplantation. Transpl. Infect. Dis. 2023, 25, e14147. [Google Scholar] [CrossRef] [PubMed]
- Chou, S. Rapid In Vitro Evolution of Human Cytomegalovirus UL56 Mutations That Confer Letermovir Resistance. Antimicrob. Agents Chemother. 2015, 59, 6588–6593. [Google Scholar] [CrossRef]
- Santos Bravo, M.; Tilloy, V.; Plault, N.; Palomino, S.S.; Mosquera, M.M.; Navarro Gabriel, M.; Fernández Avilés, F.; Suárez Lledó, M.; Rovira, M.; Moreno, A.; et al. Assessment of UL56 Mutations before Letermovir Therapy in Refractory Cytomegalovirus Transplant Recipients. Microbiol. Spectr. 2022, 10, e0019122. [Google Scholar] [CrossRef]
- Cherrier, L.; Nasar, A.; Goodlet, K.J.; Nailor, M.D.; Tokman, S.; Chou, S. Emergence of letermovir resistance in a lung transplant recipient with ganciclovir-resistant cytomegalovirus infection. Am. J. Transplant. 2018, 18, 3060–3064. [Google Scholar] [CrossRef]
- Jung, S.; Michel, M.; Stamminger, T.; Michel, D. Fast breakthrough of resistant cytomegalovirus during secondary letermovir prophylaxis in a hematopoietic stem cell transplant recipient. BMC Infect. Dis. 2019, 19, 388. [Google Scholar] [CrossRef]
- Britt, W.J.; Prichard, M.N. New therapies for human cytomegalovirus infections. Antivir. Res. 2018, 159, 153–174. [Google Scholar] [CrossRef]
- Acosta, E.; Bowlin, T.; Brooks, J.; Chiang, L.; Hussein, I.; Kimberlin, D.; Kauvar, L.M.; Leavitt, R.; Prichard, M.; Whitley, R. Advances in the Development of Therapeutics for Cytomegalovirus Infections. J. Infect. Dis. 2020, 221 (Suppl. S1), S32–S44. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Potgieter, T.I.; Kosche, E.; Rückert, J.; Ostermann, E.; Schulz, T.; Empting, M.; Brune, W. Thioxothiazolo[3,4-a] quinazoline derivatives inhibit the human cytomegalovirus alkaline nuclease. Antivir. Res. 2023, 217, 105696. [Google Scholar] [CrossRef] [PubMed]
- Razonable, R.R. Drug-resistant cytomegalovirus: Clinical implications of specific mutations. Curr. Opin. Organ Transplant. 2018, 23, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Chou, S. Advances in the genotypic diagnosis of cytomegalovirus antiviral drug resistance. Antivir. Res. 2020, 176, 104711. [Google Scholar] [CrossRef] [PubMed]
- Richman, D.D.; Nathanson, N. Antiviral Therapy. In Viral Pathogenesis; Academic Press: Cambridge, MA, USA, 2016; pp. 271–287. [Google Scholar]
- Panda, K.; Parashar, D.; Viswanathan, R. An Update on Current Antiviral Strategies to Combat Human Cytomegalovirus Infection. Viruses 2023, 15, 1358. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, T.E.; Hodowanec, A.C.; Colberg-Poley, A.M.; Pikis, A.; Singer, M.E.; O’Rear, J.J.; Donaldson, E.F. In-depth genomic analyses identified novel letermovir resistance-associated substitutions in the cytomegalovirus UL56 and UL89 gene products. Antivir. Res. 2019, 169, 04549. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.; Marousek, G.I.; Senters, A.E.; Davis, M.G.; Biron, K.K. Mutations in the human cytomegalovirus UL27 gene that confer resistance to maribavir. J. Virol. 2004, 78, 7124–7130. [Google Scholar] [CrossRef]
- Göhring, K.; Wolf, D.; Bethge, W.; Mikeler, E.; Faul, C.; Vogel, W.; Vöhringer, M.C.; Jahn, G.; Hamprecht, K. Dynamics of coexisting HCMV-UL97 and UL54 drug-resistance associated mutations in patients after haematopoietic cell transplantation. J. Clin. Virol. 2013, 57, 43–49. [Google Scholar] [CrossRef]
- Göhring, K.; Hamprecht, K.; Jahn, G. Antiviral Drug- and Multidrug Resistance in Cytomegalovirus Infected SCT Patients. Comput. Struct. Biotechnol. J. 2015, 13, 153–159. [Google Scholar] [CrossRef]
- Fischer, L.; Imrich, E.; Sampaio, K.L.; Hofmann, J.; Jahn, G.; Hamprecht, K.; Göhring, K. Identification of resistance-associated HCMV UL97- and UL54-mutations and a UL97-polymporphism with impact on phenotypic drug-resistance. Antivir. Res. 2016, 131, 1–8. [Google Scholar] [CrossRef]
- Chae, S.; Kim, H.S.; Cho, S.Y.; Nho, D.; Lee, R.; Lee, D.G.; Kim, M.; Kim, Y. Genetic Variants Associated with Drug Resistance of Cytomegalovirus in Hematopoietic Cell Transplantation Recipients. Viruses 2023, 15, 1286. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.; Van Wechel, L.C.; Lichy, H.M.; Marousek, G.I. Phenotyping of cytomegalovirus drug resistance mutations by using recombinant viruses incorporating a reporter gene. Antimicrob. Agents Chemother. 2005, 49, 2710–2715. [Google Scholar] [CrossRef] [PubMed]
- Mallory, M.A.; Hymas, W.C.; Simmon, K.E.; Pyne, M.T.; Stevenson, J.B.; Barker, A.P.; Hillyard, D.R.; Hanson, K.E. Development and validation of a next-generation sequencing assay with open-access analysis software for detecting resistance-associated mutations in CMV. J. Clin. Microbiol. 2023, 61, e0082923. [Google Scholar] [CrossRef]
- Hall Sedlak, R.; Castor, J.; Butler-Wu, S.M.; Chan, E.; Cook, L.; Limaye, A.P.; Jerome, K.R. Rapid detection of human cytomegalovirus UL97 and UL54 mutations directly from patient samples. J. Clin. Microbiol. 2013, 51, 2354–2359. [Google Scholar] [CrossRef]
- Bosworth, A.; Atabani, S.F.; Theodosiou, A.; Shahi, A.; Peate, T.; Wilson, S.; Pelosi, E.; Rosser, A. Letermovir salvage therapy in the management of a case of cytomegalovirus ventriculitis complicated by drug resistance. Clin. Infect. Pract. 2020, 7, 100039. [Google Scholar] [CrossRef]
- Pham, J.; Su, L.D.; Hanson, K.E.; Hogan, C.A. Sequence-based diagnostics and precision medicine in bacterial and viral infections: From bench to bedside. Curr. Opin. Infect. Dis. 2023, 36, 228–234. [Google Scholar] [CrossRef]
- Vankova, O.E.; Brusnigina, N.F.; Novikova, N.A. NGS Technology in Monitoring the Genetic Diversity of Cytomegalovirus Strains. Sovrem. Tekhnologii Med. 2023, 15, 41–46. [Google Scholar] [CrossRef]
- Schindele, B.; Apelt, L.; Hofmann, J.; Nitsche, A.; Michel, D.; Voigt, S.; Mertens, T.; Ehlers, B. Improved detection of mutated human cytomegalovirus UL97 by pyrosequencing. Antimicrob. Agents Chemother. 2010, 54, 5234–5241. [Google Scholar] [CrossRef]
- Li, K.K.; Lau, B.; Suárez, N.M.; Camiolo, S.; Gunson, R.; Davison, A.J.; Orton, R.J. Direct Nanopore Sequencing of Human Cytomegalovirus Genomes from High-Viral-Load Clinical Samples. Viruses 2023, 15, 1248. [Google Scholar] [CrossRef]
- Garrigue, I.; Moulinas, R.; Recordon-Pinson, P.; Delacour, M.L.; Essig, M.; Kaminski, H.; Rerolle, J.P.; Merville, P.; Fleury, H.; Alain, S. Contribution of next generation sequencing to early detection of cytomegalovirus UL97 emerging mutants and viral subpopulations analysis in kidney transplant recipients. J. Clin. Virol. 2016, 80, 74–81. [Google Scholar] [CrossRef]
- von Bredow, B.; Caldera, J.R.; Cerón, S.; Chan, J.L.; Gray, H.K.; Garner, O.B.; Yang, S. Clinical next-generation sequencing assay combining full-length gene amplification and shotgun sequencing for the detection of CMV drug resistance mutations. J. Clin. Virol. 2023, 165, 105520. [Google Scholar] [CrossRef]
- Streck, N.T.; Espy, M.J.; Ferber, M.J.; Klee, E.W.; Razonable, R.R.; Gonzalez, D.; Sayada, C.; Heaton, P.R.; Chou, S.; Binnicker, M.J. Use of next-generation sequencing to detect mutations associated with antiviral drug resistance in cytomegalovirus. J. Clin. Microbiol. 2023, 61, e0042923. [Google Scholar] [CrossRef]
- Hume, J.; Lowry, K.; Whiley, D.M.; Irwin, A.D.; Bletchly, C.; Sweeney, E.L. Application of the ViroKey® SQ FLEX assay for detection of cytomegalovirus antiviral resistance. J. Clin. Virol. 2023, 167, 105556. [Google Scholar] [CrossRef]
- Kleiboeker, S.B. Prevalence of cytomegalovirus antiviral drug resistance in transplant recipients. Antivir. Res. 2023, 215, 05623. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.L.; Lin, T.W.; Lin, H.C.; Wang, H.Y.; Chang, P.Y.; Wang, P.N.; Yang, S.; Lu, J.J. Molecular Epidemiology of Cytomegalovirus UL97 and UL54 variants in Taiwan. J. Microbiol. Immunol. Infect. 2021, 54, 971–978. [Google Scholar] [CrossRef]
- Shao, P.L.; Lu, M.Y.; Liau, Y.J.; Kao, C.L.; Chang, S.Y.; Huang, L.M. Lack of resistance-associated mutations in UL54 and UL97 genes of circulating cytomegalovirus strains isolated in a medical center in Taiwan. J. Formos. Med. Assoc. 2012, 111, 456–460. [Google Scholar] [CrossRef] [PubMed]
- Iwasenko, J.M.; Scott, G.M.; Naing, Z.; Glanville, A.R.; Rawlinson, W.D. Diversity of antiviral-resistant human cytomegalovirus in heart and lung transplant recipients. Transpl. Infect. Dis. 2011, 13, 145–153. [Google Scholar] [CrossRef]
- Recio, V.; González, I.; Tarragó, D. Cytomegalovirus drug resistance mutations in transplant recipients with suspected resistance. Virol. J. 2023, 20, 153. [Google Scholar] [CrossRef]
- Li, L.; Lowe, C.F.; McLachlan, E.; Romney, M.G.; Wright, A.; Matic, N. Epidemiology of cytomegalovirus antiviral resistance testing for solid organ and bone marrow transplant patients from 2011–2019. J. Clin. Virol. 2023, 166, 105549. [Google Scholar] [CrossRef]
- Campos, A.B.; Ribeiro, J.; Pinho Vaz, C.; Campilho, F.; Branca, R.; Campos, A., Jr.; Baldaque, I.; Medeiros, R.; Boutolleau, D.; Sousa, H. Genotypic resistance of cytomegalovirus to antivirals in hematopoietic stem cell transplant recipients from Portugal: A retrospective study. Antivir. Res. 2017, 138, 86–92. [Google Scholar] [CrossRef]
- Young, P.G.; Rubin, J.; Angarone, M.; Flaherty, J.; Penugonda, S.; Stosor, V.; Ison, M.G. Ganciclovir-resistant cytomegalovirus infection in solid organ transplant recipients: A single-center retrospective cohort study. Transpl. Infect. Dis. 2016, 18, 390–395. [Google Scholar] [CrossRef]
- López-Aladid, R.; Guiu, A.; Sanclemente, G.; López-Medrano, F.; Cofán, F.; Mosquera, M.M.; Torre-Cisneros, J.; Vidal, E.; Moreno, A.; Aguado, J.M.; et al. Detection of cytomegalovirus drug resistance mutations in solid organ transplant recipients with suspected resistance. J. Clin. Virol. 2017, 90, 57–63. [Google Scholar] [CrossRef]
- Van Leer Buter, C.C.; de Voogd, D.W.K.; Blokzijl, H.; de Joode, A.A.E.; Berger, S.P.; Verschuuren, E.A.M.; Niesters, H.G.M. Antiviral-resistant cytomegalovirus infections in solid organ transplantation in the Netherlands. J. Antimicrob. Chemother. 2019, 74, 2370–2376. [Google Scholar] [CrossRef] [PubMed]
- Hantz, S.; Garnier-Geoffroy, F.; Mazeron, M.C.; Garrigue, I.; Merville, P.; Mengelle, C.; Rostaing, L.; Saint Marcoux, F.; Essig, M.; Rerolle, J.P.; et al. Drug-resistant cytomegalovirus in transplant recipients: A French cohort study. J. Antimicrob. Chemother. 2010, 65, 2628–2640. [Google Scholar] [CrossRef] [PubMed]
- Silva Junior, H.T.; Tokat, Y.; Cai, J.; Singh, I.; Sandhu, A.; Demuth, D.; Kim, J. Epidemiology, management, and burden of cytomegalovirus in solid organ transplant recipients in selected countries outside of Europe and North America: A systematic review. Transpl. Infect. Dis. 2023, 25, e14070. [Google Scholar] [CrossRef] [PubMed]
- Tamzali, Y.; Pourcher, V.; Azoyan, L.; Ouali, N.; Barrou, B.; Conti, F.; Coutance, G.; Gay, F.; Tourret, J.; Boutolleau, D. Factors Associated with Genotypic Resistance and Outcome among Solid Organ Transplant Recipients with Refractory Cytomegalovirus Infection. Transpl. Int. 2023, 36, 11295. [Google Scholar] [CrossRef]
- Myhre, H.A.; Haug Dorenberg, D.; Kristiansen, K.I.; Rollag, H.; Leivestad, T.; Asberg, A.; Hartmann, A. Incidence and outcomes of ganciclovir-resistant cytomegalovirus infections in 1244 kidney transplant recipients. Transplantation 2011, 92, 217–223. [Google Scholar] [CrossRef]
- Sant’ Anna, C.C.; Migone, S.R.D.C.; Rocha, C.A.M.D.; Mello Júnior, F.A.R.; Seabra, A.D.; Pontes, T.B.; Rodrigues, J.M.; Soares, S.A.; Rego, V.P.; Figueira, J.P.; et al. Research for Cytomegalovirus Mutations Associated with Resistance to Antivirals in Kidney Transplant Receptors. Cell Transplant. 2023, 32, 9636897231195245. [Google Scholar] [CrossRef]
- Heliövaara, E.; Husain, S.; Martinu, T.; Singer, L.G.; Cypel, M.; Humar, A.; Keshavjee, S.; Tikkanen, J. Drug-resistant cytomegalovirus infection after lung transplantation: Incidence, characteristics, and clinical outcomes. J. Heart Lung Transplant. 2019, 38, 1268–1274. [Google Scholar] [CrossRef]
- Díaz-Brochero, C.; Nocua-Báez, L.C.; Valderrama-Rios, M.C.; Cortés, J.A. Efficacy and safety of preemptive therapy for cytomegalovirus end-organ disease in people living with HIV: A systematic review and meta-analysis. Braz. J. Infect. Dis. 2023, 27, 102805. [Google Scholar] [CrossRef]
- Frost, K.R. Cytomegalovirus resistance. Public health implications of CMV prophylaxis and treatment in the HIV patient population. AMFAR Rep. 1996, 1–6. [Google Scholar]
- Jabs, D.A. Cytomegalovirus retinitis and the acquired immunodeficiency syndrome-bench to bedside: LXVII Edward Jackson Memorial Lecture. Am. J. Ophthalmol. 2011, 151, 198–216.e1. [Google Scholar] [CrossRef] [PubMed]
- Azimi, T.; Tavakolian, S.; Goudarzi, H.; Pourmand, M.R.; Faghihloo, E. Global estimate of phenotypic and genotypic ganciclovir resistance in cytomegalovirus infections among HIV and organ transplant patients; A systematic review and meta-analysis. Microb. Pathog. 2020, 141, 104012. [Google Scholar] [CrossRef] [PubMed]
- Mirarab, A.; Mohebbi, A.; Moradi, A.; Javid, N.; Vakili, M.A.; Tabarraei, A. Frequent pUL27 Variations in HIV-Infected Patients. Intervirology 2016, 59, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Manicklal, S.; Emery, V.C.; Lazzarotto, T.; Boppana, S.B.; Gupta, R.K. The “silent” global burden of congenital cytomegalovirus. Clin. Microbiol. Rev. 2013, 26, 86–102. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.Y.; Sharon, B.; Balfour, H.H., Jr.; Belani, K.; Pozos, T.C.; Schleiss, M.R. Emergence of antiviral resistance during oral valganciclovir treatment of an infant with congenital cytomegalovirus (CMV) infection. J. Clin. Virol. 2013, 57, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Morillo-Gutierrez, B.; Waugh, S.; Pickering, A.; Flood, T.; Emonts, M. Emerging (val)ganciclovir resistance during treatment of congenital CMV infection: A case report and review of the literature. BMC Pediatr. 2017, 17, 181. [Google Scholar] [CrossRef]
- Wolf, D.G.; Yaniv, I.; Honigman, A.; Kassis, I.; Schonfeld, T.; Ashkenazi, S. Early emergence of ganciclovir-resistant human cytomegalovirus strains in children with primary combined immunodeficiency. J. Infect. Dis. 1998, 178, 535–538. [Google Scholar] [CrossRef]
- Blackman, S.C.; Lurain, N.S.; Witte, D.P.; Filipovich, A.H.; Groen, P.; Schleiss, M.R. Emergence and compartmentalization of fatal multi-drug-resistant cytomegalovirus infection in a patient with autosomal-recessive severe combined immune deficiency. J. Pediatr. Hematol. Oncol. 2004, 26, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Kampmann, S.E.; Schindele, B.; Apelt, L.; Bührer, C.; Garten, L.; Weizsaecker, K.; Krüger, D.H.; Ehlers, B.; Hofmann, J. Pyrosequencing allows the detection of emergent ganciclovir resistance mutations after HCMV infection. Med. Microbiol. Immunol. 2011, 200, 109–113. [Google Scholar] [CrossRef]
- Campanini, G.; Zavattoni, M.; Cristina, E.; Gazzolo, D.; Stronati, M.; Baldanti, F. Multiple ganciclovir-resistant strains in a newborn with symptomatic congenital human cytomegalovirus infection. J. Clin. Virol. 2012, 54, 86–88. [Google Scholar] [CrossRef]
- Kim, E.; Asmar, B.I.; Thomas, R.; Abdel-Haq, N. Cytomegalovirus viremia and resistance patterns in immunocompromised children: An 11-year experience. Pediatr. Hematol. Oncol. 2020, 37, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Andouard, D.; Tilloy, V.; Ribot, E.; Mayeras, M.; Diaz-Gonzalez, D.; El Hamel, C.; Piras-Douce, F.; Mantel, N.; Alain, S. Genetic and Functional Characterization of Congenital HCMV Clinical Strains in ex vivo First Trimester Placental Model. Pathogens 2023, 12, 985. [Google Scholar] [CrossRef] [PubMed]
- Renzette, N.; Bhattacharjee, B.; Jensen, J.D.; Gibson, L.; Kowalik, T.F. Extensive genome-wide variability of human cytomegalovirus in congenitally infected infants. PLoS Pathog. 2011, 7, e1001344. [Google Scholar] [CrossRef] [PubMed]
- Hume, J.; Sweeney, E.L.; Lowry, K.; Fraser, C.; Clark, J.E.; Whiley, D.M.; Irwin, A.D. Cytomegalovirus in children undergoing haematopoietic stem cell transplantation: A diagnostic and therapeutic approach to antiviral resistance. Front. Pediatr. 2023, 11, 1180392. [Google Scholar] [CrossRef]
- Chou, S.; Kleiboeker, S. Relative frequency of cytomegalovirus UL56 gene mutations detected in genotypic letermovir resistance testing. Antivir. Res. 2022, 207, 105422. [Google Scholar] [CrossRef] [PubMed]
- Perchetti, G.A.; Biernacki, M.A.; Xie, H.; Castor, J.; Joncas-Schronce, L.; Ueda Oshima, M.; Kim, Y.; Jerome, K.R.; Sandmaier, B.M.; Martin, P.J.; et al. Cytomegalovirus breakthrough and resistance during letermovir prophylaxis. Bone Marrow Transplant. 2023, 58, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Muller, C.; Tilloy, V.; Frobert, E.; Feghoul, L.; Garrigue, I.; Lepiller, Q.; Mirand, A.; Sidorov, E.; Hantz, S.; Alain, S. First clinical description of letermovir resistance mutation in cytomegalovirus UL51 gene and potential impact on the terminase complex structure. Antivir. Res. 2022, 204, 105361. [Google Scholar] [CrossRef] [PubMed]
- Chou, S. A third component of the human cytomegalovirus terminase complex is involved in letermovir resistance. Antivir. Res. 2017, 148, 1–4. [Google Scholar] [CrossRef]
- Jalili, A.; Hajifathali, A.; Mohammadian, M.; Sankanian, G.; Sayahinouri, M.; Dehghani Ghorbi, M.; Roshandel, E.; Aghdami, N. Virus-Specific T Cells: Promising Adoptive T Cell Therapy against Infectious Diseases following Hematopoietic Stem Cell Transplantation. Adv. Pharm. Bull. 2023, 13, 469–482. [Google Scholar] [CrossRef]
- Cho, S.Y.; Lee, D.G.; Kim, H.J. Cytomegalovirus Infections after Hematopoietic Stem Cell Transplantation: Current Status and Future Immunotherapy. Int. J. Mol. Sci. 2019, 20, 2666. [Google Scholar] [CrossRef]
- Long, X.; Qiu, Y.; Zhang, Z.; Wu, M. Insight for Immunotherapy of HCMV Infection. Int. J. Biol. Sci. 2021, 17, 2899–2911. [Google Scholar] [CrossRef]
- Nuévalos, M.; García-Ríos, E.; Mancebo, F.J.; Martín-Martín, C.; Pérez-Romero, P. Novel monoclonal antibody-based therapies: Implications for the treatment and prevention of HCMV disease. Trends Microbiol. 2023, 31, 480–497. [Google Scholar] [CrossRef]
- Ai, Y.; Wu, C.; Zhang, M.; Jaijyan, D.K.; Liu, T.; Zan, L.; Li, N.; Yu, W.; Wang, Y.; Yuan, X.; et al. Neutralization Epitopes in Trimer and Pentamer Complexes Recognized by Potent Cytomegalovirus-Neutralizing Human Monoclonal Antibodies. Microbiol. Spectr. 2022, 10, e0139322. [Google Scholar] [CrossRef] [PubMed]
- Scarpini, S.; Morigi, F.; Betti, L.; Dondi, A.; Biagi, C.; Lanari, M. Development of a Vaccine against Human Cytomegalovirus: Advances, Barriers, and Implications for the Clinical Practice. Vaccines 2021, 9, 551. [Google Scholar] [CrossRef] [PubMed]
- Byrne, C.; Coombs, D.; Gantt, S. Modestly protective cytomegalovirus vaccination of young children effectively prevents congenital infection at the population level. Vaccine 2022, 40, 5179–5188. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Snapper, C.M. Development of novel vaccines against human cytomegalovirus. Hum. Vaccines Immunother. 2019, 15, 2673–2683. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, S.A.; Boppana, S.B. Vaccination against the human cytomegalovirus. Vaccine 2019, 37, 7437–7442. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Blázquez-Gamero, D.; Bernstein, D.I.; Gantt, S.; Bautista, O.; Beck, K.; Conlon, A.; Rosenbloom, D.I.S.; Wang, D.; Ritter, M.; et al. Safety, efficacy, and immunogenicity of a replication-defective human cytomegalovirus vaccine, V160, in cytomegalovirus-seronegative women: A double-blind, randomised, placebo-controlled, phase 2b trial. Lancet Infect. Dis. 2023, 23, 1383–1394. [Google Scholar] [CrossRef] [PubMed]
- Nelson, C.S.; Herold, B.C.; Permar, S.R. A new era in cytomegalovirus vaccinology: Considerations for rational design of next-generation vaccines to prevent congenital cytomegalovirus infection. NPJ Vaccines 2018, 3, 38. [Google Scholar] [CrossRef]
- Hu, X.; Wang, H.Y.; Otero, C.E.; Jenks, J.A.; Permar, S.R. Lessons from Acquired Natural Immunity and Clinical Trials to Inform Next-Generation Human Cytomegalovirus Vaccine Development. Annu. Rev. Virol. 2022, 9, 491–520. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grgic, I.; Gorenec, L. Human Cytomegalovirus (HCMV) Genetic Diversity, Drug Resistance Testing and Prevalence of the Resistance Mutations: A Literature Review. Trop. Med. Infect. Dis. 2024, 9, 49. https://doi.org/10.3390/tropicalmed9020049
Grgic I, Gorenec L. Human Cytomegalovirus (HCMV) Genetic Diversity, Drug Resistance Testing and Prevalence of the Resistance Mutations: A Literature Review. Tropical Medicine and Infectious Disease. 2024; 9(2):49. https://doi.org/10.3390/tropicalmed9020049
Chicago/Turabian StyleGrgic, Ivana, and Lana Gorenec. 2024. "Human Cytomegalovirus (HCMV) Genetic Diversity, Drug Resistance Testing and Prevalence of the Resistance Mutations: A Literature Review" Tropical Medicine and Infectious Disease 9, no. 2: 49. https://doi.org/10.3390/tropicalmed9020049
APA StyleGrgic, I., & Gorenec, L. (2024). Human Cytomegalovirus (HCMV) Genetic Diversity, Drug Resistance Testing and Prevalence of the Resistance Mutations: A Literature Review. Tropical Medicine and Infectious Disease, 9(2), 49. https://doi.org/10.3390/tropicalmed9020049