Study on Morphological Changes and Interference in the Development of Aedes aegypti Caused by Some Essential Oil Constituents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Essential Oils’ Constituents
2.2. Aedes aegypti
2.3. Bioassays
2.4. Statistical Analysis
2.5. Transmission Electron Microscopy
3. Results
3.1. Larvicidal Activity
3.2. Transmission Electron Microscopy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barrett, A.D.; Higgs, S. Yellow fever: A disease that has yet to conquered. Ann. Rev. Entomol. 2007, 52, 209–229. [Google Scholar] [CrossRef] [PubMed]
- WHO World Health Organization. Dengue and Dengue Severe. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 28 May 2023).
- MS Ministério da Saúde. Febre de Chikungunya: Manejo Clínico. Available online: http://bvsms.saude.gov.br/bvs/publicacoes/febre_chikungunya_manejo_clinico.pdf (accessed on 28 May 2023).
- PAHO Pan American Health Organization. Epidemiological Alert: Neurological Syndrome, Congenital Malformations, and Zika Virus Infection. Implications for Public Health in the Americas. 2015. Available online: https://iris.paho.org/handle/10665.2/50697 (accessed on 28 May 2023).
- WHO World Health Organization. Mosquito Borne Diseases. Available online: http://www.who.int/neglected_diseases/vector_ecology/mosquito-borne-diseases/en/ (accessed on 28 May 2023).
- WHO World Health Organization. Global Vector Control Response 2017–2030; World Health Organization: Geneva, Switzerland, 2017. Available online: https://www.who.int/publications/i/item/9789241512978 (accessed on 4 April 2023).
- Zara, A.L.S.A.; Santos, S.M.; Fernandes-Oliveira, E.S.; Carvalho, R.G.; Coelho, G.E. Estratégias de controle do Aedes aegypti: Uma revisão. Epidemiol. Serv. Saúde 2016, 25, 391–404. [Google Scholar] [PubMed]
- Govindarajan, M.; Benelli, G. Eco-friendly larvicides from Indian plants: Effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors. Ecotoxicol. Environ. Saf. 2016, 133, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R.; Govindarajan, M. The essential oil from Zanthoxylum monophyllum a potential mosquito larvicide with low toxicity to the non-target fish Gambusia affinis. J. Pest Sci. 2017, 90, 369–378. [Google Scholar] [CrossRef]
- WHO World Health Organization. Handbook for Integrated Vector Management; World Health Organization: Geneva, Switzerland, 2012. Available online: http://apps.who.int/iris/bitstream/handle/10665/44768/9789241502801_eng.pdf?sequence=1 (accessed on 4 April 2023).
- Ghosh, A.; Chowdhury, N.; Chandra, G. Plant extracts as potential mosquito larvicides. Indian J. Med. Res. 2012, 135, 581–598. [Google Scholar]
- Renault-Roger, C.; Vicent, C.; Arnason, J.T. Essential oils in insect control: Low-risk products in a high-stakes world. Ann. Rev. Entomol. 2012, 57, 405–424. [Google Scholar] [CrossRef]
- Heinzmann, B.M.; Spitzer, V.; Simões, C.M.O. Óleos voláteis. In Farmagnocosia: Do Produto Natural ao Medicamento; Simões, C.M.O., Schenkel, E.P., Mello, J.C.P., Mentz, L.A., Petrovick, P.R., Eds.; Artmed: Porto Alegre, Brazil, 2017. [Google Scholar]
- Maleck, M.; Dias, T.D.; Cruz, I.L.S.; Serdeiro, M.T.; Nascimento, N.E.; Carraro, V.M. Óleos essenciais–um breve relato. Rev. Eletrônica TECCEN 2021, 14, 43–49. [Google Scholar] [CrossRef]
- Lambrano, R.H.; Castro, N.P.; Gallardo, K.C.; Stashenko, E.; Verbel, J.O. Essential oils from plants of the genus Cymbopogon as natural insecticides to control stored products pests. J. Stored Prod. Res. 2015, 62, 81–83. [Google Scholar] [CrossRef]
- Dambolena, J.S.; Zunino, M.P.; Herrera, J.M.; Pizzolitto, R.P.; Areco, V.A.; Zygadlo, J.A. Terpenes: Natural products for controlling insects of importance to human health-A Structure-Activity Relationship Study. Psyche J. Entomol. 2016, 2016, 1–17. [Google Scholar] [CrossRef]
- Abdel-Rahman, F.H.; Alaniz, N.M.; Saleh, M.A. Nematicidal activity of terpenoids. J. Environ. Sci. Health 2013, 48, 16–22. [Google Scholar] [CrossRef]
- Rosa, M.S.S.; Mendonça-Filho, R.R.; Bizzo, H.R.; Rodrigues, I.D.A.; Soares, R.M.A.; Souto-Padrón, T.; Alviano, C.S.; Lopes, A.H.C.S. Antileishmanial activity of a linalool-rich essential oil from Croton cajucara. Antimicrob. Agents Chemother. 2003, 47, 1895–1901. [Google Scholar] [CrossRef] [PubMed]
- Park, I.K.; Kim, J.N.; Lee, Y.S.; Lee, S.G.; Ahn, Y.J.; Shin, S.C. Toxicity of plant essential oils and their components against Lycoriella ingenua (Diptera: Sciaridae). J. Econ. Entomol. 2008, 101, 139–144. [Google Scholar] [CrossRef]
- Dubey, R.C.; Gupta, K.K.; Pandey, R.R. Antimicrobial properties of essential oils and their potencial application in Pharmaceutical Industries. In Industrial Exploitation of Microorganisms; Saravanamuthu, R., Ed.; IK International Pvt Ltd.: New Delhi, India, 2010. [Google Scholar]
- US-OFR. Code of Federal Regulations. 21, Food and Drugs, Part 170–199; US-OFR: Washington, DC, USA, 2009. [Google Scholar]
- Leite, A.C.C.F.; Kato, M.J.; Soares, R.O.A.; Guimarães, A.E.; Santos-Mallet, J.R.; Cabral, M.M.O. Grandisin caused morphological changes larval and toxicity on Aedes aegypti. Rev. Bras. Farmaogn. 2012, 22, 517–521. [Google Scholar] [CrossRef]
- Narciso, J.O.A.; Soares, R.O.A.; Santos-Mallet, J.R.; Guimarães, A.E.; Chaves, M.C.O.; Barbosa-Filho, J.M.; Maleck, M. Burchellin: Study of bioactivity against Aedes aegypti. Parasit. Vectors 2014, 7, 172. [Google Scholar] [CrossRef]
- Maleck, M.; Ferreira, B.; Mallet, J.; Guimarães, A.; Kato, M. Cytotoxicity of Piperamides Towards Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 2014, 51, 458–463. [Google Scholar] [CrossRef]
- Maleck, M.; Hollanda, P.O.; Serdeiro, M.T.; Soares, R.O.A. Toxicity and Larvicidal activity of podophyllum-based lignans against Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 2017, 54, 159–166. [Google Scholar] [CrossRef] [PubMed]
- WHO World Health Organization. Guidelines for Laboratory and Field-Testing of Mosquito Larvicides; World Health Organization: Geneva, Switzerland, 2005. Available online: https://apps.who.int/iris/handle/10665/69101 (accessed on 18 April 2017).
- Şengül Demirak, M.Ş.; Canpolat, E. Plant-based bioinsecticides for mosquito control: Impact on insecticide resistance and disease transmission. Insects 2022, 13, 162. [Google Scholar] [CrossRef]
- Cheng, S.S.; Chang, H.T.; Lin, C.Y.; Chen, P.S.; Huang, C.G.; Chen, W.J.; Chang, S.T. Insecticidal activities of leaf and twig essential oils from Clausena excavata against Aedes aegypti and Aedes albopictus larvae. Pest Manag. Sci. 2009, 65, 339–343. [Google Scholar] [CrossRef]
- Govindarajan, M.; Rajeswary, M.; Hoti, S.L.; Benelli, G. Larvicidal potential of carvacrol and terpinen-4-ol from the essential oil of Origanum vulgare (Lamiaceae) against Anopheles stephensi, Anopheles subpictus, Culex quinquefasciatus and Culex tritaeniorhynchus (Diptera: Culicidae). Res. Vet. Sci. 2016, 104, 77–82. [Google Scholar] [CrossRef]
- Tang, X.; Chen, S.; Wang, L. Purification and identification of carvacrol from the root of Stellera chamaejasme and research on its insecticidal activity. Nat. Prod. Res. 2011, 25, 320–325. [Google Scholar] [CrossRef]
- Park, J.H.; Jeon, Y.J.; Lee, C.H.; Chung, N.; Lee, H.S. Insecticidal toxicities of carvacrol and thymol derived from Thymus vulgaris Lin. against Pochazia shantungensis Chou & Lu., newly recorded pest. Sci. Rep. 2017, 7, srep40902. [Google Scholar]
- Waliwitiya, R.; Kennedy, C.J.; Carl, A.; Lowenberger, C.A. Larvicidal and oviposition-altering activity of monoterpenoids, trans-anethole and rosemary oil to the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Pest Manag. Sci. 2009, 65, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Hummelbrunner, L.A.; Isman, M.B. Acute, sublethal, antifeedant, and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera litura (Lep., Noctuidae). J. Agric. Food Chem. 2001, 49, 715–720. [Google Scholar] [CrossRef]
- Lee, S.; Tsao, R.; Peterson, C.; Coats, J.R. Insecticidal activity of monoterpenoids to western corn rootworm (Coleoptera: Chrysomelidae), twospotted spider mite (Acari: Tetranychidae), and housefly (Diptera: Muscidae). J. Econ. Entomol. 1997, 90, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Traboulsi, A.F.; Taoubi, K.; El-Haj, S.; Bessiere, J.M.; Rammal, S. Insecticidal properties of essential plants oils against the mosquito Culex pipiens molestus (Diptera:Culicidae). Pest Manag. Sci. 2002, 58, 491–495. [Google Scholar] [CrossRef]
- Govindarajan, M.; Sivakumar, R.; Rajeswary, M.; Veerakumar, K. Mosquito larvicidal activity of thymol from essential oil of Coleus aromaticus Benth. against Culex tritaeniorhynchus, Aedes albopictus, and Anopheles subpictus (Diptera: Culicidae). Parasitol. Res. 2013, 112, 3713–3721. [Google Scholar] [CrossRef]
- Simas, N.K.; Lima, E.C.; Conceição, S.R.; Kuster, R.M.; Oliveira-Filho, A.M.; Lage, C.L.S. Produtos naturais para o controle da transmissão da dengue-atividade larvicida de Myroxylon balsamum (óleo vermelho) e de terpenóides e fenilpropanóides. Quim. Nova 2004, 27, 46–49. [Google Scholar] [CrossRef]
- Park, D.H.; Choi, J.Y.; Lee, S.H.; Kim, J.H.; Park, M.G.; Kim, J.Y.; Wang, M.; Kim, H.J.; Je, Y.H. Mosquito larvicidal activities of farnesol and farnesyl acetate via regulation of juvenile hormone receptor complex formation in Aedes mosquito. J. Asia-Pac. Entomol. 2020, 23, 689–693. [Google Scholar] [CrossRef]
- Chantraine, J.M.; Laurent, D.; Ballibian, C.; Saavedra, G.; Ibañez, R.; Vilaseca, L.A. Insecticidal activity of essential oils on Aedes aegypti larvae. Phytother. Res. 1998, 12, 350–408. [Google Scholar] [CrossRef]
- Ali, A.; Murphy, C.C.; Demirci, B.; Wedge, D.E.; Sampson, B.J.; Khan, I.A.; Baser, K.H.C.; Tabanca, N. Insecticidal and biting deterrent activity of rose-scented geranium (Pelargonium spp.) essential oils and individual compounds against Stephanitis pyrioides and Aedes aegypti. Pest Manag. Sci. 2013, 69, 1385–1392. [Google Scholar] [CrossRef]
- Chan, W.K.; Tan, L.T.H.; Chan, K.G.; Lee, L.H.; Goh, B.H. Nerolidol: A sesquiterpene alcohol with multi-faceted pharmacological and biological activities. Molecules 2016, 21, 529. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.S.; Chang, H.T.; Chang, S.T.; Tsai, K.H.; Chen, W.J. Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresour. Technol. 2003, 89, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, H. Aroma constituents in plants and their repellent activities against mosquitoes. Aroma Res. 2001, 2, 257–267. [Google Scholar]
- Dias, C.N.; Moraes, D.F.C. Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides: Review. Parasitol. Res. 2014, 113, 565–592. [Google Scholar] [CrossRef]
- Baldacchino, F.; Caputo, B.; Chandre, F.; Drago, A.; della Torre, A.; Montarsi, F.; Rizzoli, A. Control methods against invasive Aedes mosquitoes in Europe: A review. Pest Manag. Sci. 2015, 71, 1471–1485. [Google Scholar] [CrossRef]
- Seye, F.; Fall, A.; Toure, M.; Ndione, R.D.; Ndiaye, M. Histopathological Effects of Cymbopogon citratus (Lemongrass) Essential Oil on Late Third Instar Larvae of Aedes aegypti L. (Diptera: Culicidae). Biol. Med. 2021, 13, 100287. [Google Scholar]
- Cantrell, C.L.; Pridgeon, J.W.; Fronczek, F.R.; Becnel, J.J. Structure–activity relationship studies on derivatives of eudesmanolides from Inula helenium as toxicants against Aedes aegypti larvae and adults. Chem. Biodivers. 2010, 7, 1681–1697. [Google Scholar] [CrossRef] [PubMed]
- Souza, T.M.; Cunha, A.P.; Farias, D.F.; Machado, L.K.; Morais, S.M.; Ricardo, N.M.; Carvalho, A.F. Insecticidal activity against Aedes aegypti of m-pentadecadienyl-phenol isolated from Myracrodruon urundeuva seeds. Pest Manag. Sci. 2012, 68, 1380–1384. [Google Scholar] [CrossRef] [PubMed]
Treatment | Larvae (Days) | Pupae (Days) | L3–Adult (Days) | |||
---|---|---|---|---|---|---|
X ± SD | VI | X ± SD | VI | X ± SD | VI | |
Control | 5.9 ± 1.3 a | 4–9 | 1.8 ± 0.4 a | 1–2 | 7.8 ± 1.5 a | 5–11 |
Testimony | 7.3 ± 0.9 b | 6–9 | 2 ± 0 ab | 2–2 | 9.2 ± 1.1 b | 6–11 |
1 | 6.8 ± 1.5 ab | 5–12 | 2 ± 0 ab | 2–2 | 8.2 ± 1.5 ab | 7–14 |
10 | 7.9 ± 2.5 b | 4–15 | 2.3 ± 0.3 c **** | 2–3 | 10.2 ± 2.5 ab | 6–17 |
30 | 6.6 ± 2.2 ab | 3–14 | 2.1 ± 0.7 b | 1–3 | 8.7 ± 2.4 ab | 5–16 |
50 | 5.9 ± 1.5 a * | 2–10 | 2 ± 0 ab | 2–2 | 7.8 ± 1.4 a * | 4–12 |
60 | 8.5 ± 2.2 b | 4–13 | 2 ± 0 ab | 2–2 | 10.5 ± 2.2 b | 6–15 |
70 | 10.1 ± 3.4 c **** | 2–17 | 2 ± 0 ab | 2–2 | 11.8 ± 3.7 c **** | 4–19 |
80 | 11.7 ± 3.6 c **** | 4–18 | 2 ± 0 ab | 2–2 | 13.7 ± 3.6 c **** | 6–20 |
90 | 7.7 ± 2.6 b | 4–10 | 2 ± 0 ab | 2–2 | 9.5 ± 3 ab | 6–12 |
100 | 0 | 0 | 0 | 0 | 0 | 0 |
Treatment | Larvae (Days) | Pupae (Days) | L3–Adult (Days) | |||
---|---|---|---|---|---|---|
X ± SD | VI | X ± SD | X ± SD | VI | X ± SD | |
Control | 5.9 ± 1.3 a | 4–9 | 1.8 ± 0.4 a | 1–2 | 7.8 ± 1.5 a | 5–11 |
Testimony | 7.3 ± 0.9 b | 6–9 | 2 ± 0 ab | 2–2 | 9.2 ± 1.1 b | 8–11 |
1 | 8.2 ± 1.2 c *** | 4–10 | 1.9 ± 0.3 ab | 1–2 | 10.2 ± 1.2 c ** | 5–12 |
10 | 8.5 ± 1.1 c **** | 6–10 | 2 ± 0 ab | 2–2 | 10.5 ± 2.3 c **** | 8–12 |
30 | 5.6 ± 1.3 a **** | 4–8 | 1.9 ± 0.3 ab | 1–2 | 7.5 ± 1.4 a **** | 5–10 |
50 | 7.3 ± 1.8 b | 6–10 | 2 ± 0 ab | 2–2 | 9 ± 1.6 ab | 8–12 |
60 | 5 ± 0 ab | 5–5 | 2 ± 0 ab | 2–2 | 7 ± 0 ab | 7–7 |
70 | 6 ± 0 ab | 6–6 | 1 ± 0 c **** | 1–1 | 7 ± 0 ab | 7–7 |
80 | 0 | 0 | 0 | 0 | 0 | 0 |
Treatment | Larvae (Days) | Pupae (Days) | L3–Adult (Days) | |||
---|---|---|---|---|---|---|
X ± SD | VI | X ± SD | X ± SD | VI | IV | |
Control | 7.8 ± 1.8 a | 4–12 | 2.1 ± 0.4 a | 1–3 | 9.8 ± 1.7 a | 6–13 |
Testimony | 7.8 ± 1.8 ab | 4–11 | 2.2 ± 0.5 ab | 1–3 | 10 ± 1.6 ab | 7–13 |
1 | 9.9 ± 3.7 c *** | 3–18 | 2 ± 0 ab | 2–2 | 11.9 ± 3.7 c **** | 5–20 |
10 | 7.9 ± 3.2 ab | 4–16 | 2 ± 0.3 ab | 2–2 | 10.3 ± 3.2 ab | 6–18 |
30 | 7.9 ± 2.5 ab | 4–14 | 2.2 ± 0.5 ab | 2–4 | 9.9 ± 2.4 ab | 6–18 |
50 | 5.1 ± 1.1 d | 4–7 | 3.2 ± 1 c **** | 2–4 | 8.3 ± 1.2 ab | 7–11 |
60 | 0 | 0 | 0 | 0 | 0 | 0 |
Treatment | Larvae (Days) | Pupae (Days) | L3–Adult (Days) | |||
---|---|---|---|---|---|---|
X ± SD | VI | X ± SD | VI | X ± SD | VI | |
Control | 6.6 ± 3 a | 3–14 | 2.3 ± 0.5 a | 2–3 | 10 ± 2.9 a | 6–18 |
Testimony | 7.7 ± 3.2 ab | 3–16 | 1.9 ± 0.3 b | 1–2 | 10.2 ± 3.4 ab | 6–18 |
1 | 8.1 ± 2 b | 5–15 | 2 ± 0 b | 2–2 | 10.3 ± 2.1 ab | 7–16 |
10 | 7.5 ± 1.1 ab | 6–9 | 2.2 ± 0.4 a | 2–3 | 9.7 ± 1.2 ab | 8–12 |
30 | 7.6 ± 1.5 ab | 3–10 | 2 ± 0 b | 2–2 | 9.8 ± 1.5 ab | 5–12 |
50 | 6.6 ± 0.8 ab | 5–7 | 2.2 ± 0.4 a | 2–3 | 8.7 ± 0.9 ab | 7–10 |
60 | 5.4 ± 1.1 ab | 4–7 | 2 ± 0 b | 2–2 | 7.7 ± 1.2 ab | 6–9 |
70 | 5 ± 1 ab | 4–6 | 2 ± 0 b | 2–2 | 6.7 ± 1.5 ab | 5–8 |
80 | 0 | 0 | 0 | 0 | 0 | 0 |
Treatment | Larvae (Days) | Pupae (Days) | L3–Adult (Days) | |||
---|---|---|---|---|---|---|
X ± SD | VI | X ± SD | VI | X ± SD | VI | |
Control | 5.9 ± 1.3 a | 4–9 | 1.9 ± 0.3 a | 1–2 | 7.8 ± 1.5 a | 5–11 |
Testimony | 7.3 ± 0.9 b | 6–9 | 2 ± 0 ab | 2–2 | 9.2 ± 1.1 b | 6–11 |
1 | 7.3 ± 2 b | 4–12 | 1.9 ± 0.3 ab | 1–2 | 9.3 ± 2.1 b | 6–14 |
10 | 6.6 ± 2 ab | 3–11 | 2 ± 0 ab | 2–2 | 8.6 ± 1.9 ab | 5–13 |
30 | 4.4 ± 0.9 ac *** | 3–6 | 1.7 ± 0.5 ab | 1–2 | 6.1 ± 0.7 ac *** | 5–7 |
50 | 4 ± 1 ac * | 3–5 | 2.2 ± 0.5 ab | 2–3 | 6.3 ± 1.5 ab | 5–8 |
60 | 5.7 ± 1.2 ab | 5–7 | 2 ± 0 ab | 2–2 | 7.7 ± 1.2 ab | 7–9 |
70 | 4.5 ± 0.5 ab | 4–5 | 1.5 ± 0.7 ab | 1–2 | 6.5 ± 0.5 ab | 6–7 |
80 | 5 ± 0 ab | 5–5 | 0 | 0 | 0 | 0 |
90 | 6 ± 0 ab | 6–6 | 2 ± 0 | 2–2 | 8 ± 0 ab | 8–8 |
100 | 0 | 0 | 0 | 0 | 0 | 0 |
Treatment | Larvae (Days) | Pupae (Days) | L3–adult (Days) | |||
---|---|---|---|---|---|---|
X ± SD | VI | X ± SD | VI | X ± SD | VI | |
Control | 5.9 ± 1.3 a | 4–9 | 1.8 ± 0.4 a | 1–2 | 7.8 ± 1.5 a | 5–11 |
Testimony | 7.3 ± 0.9 b | 6–9 | 2 ± 0 ab | 2–2 | 9.2 ± 1 b | 8–11 |
1 | 6.9 ± 1.4 b | 4–12 | 2 ± 0 ab | 2–2 | 9 ± 1.4 b | 6–14 |
10 | 9.1 ± 2.7 c **** | 5–13 | 2 ± 0 ab | 2–2 | 11.1 ± 2.7 c **** | 7–15 |
30 | 3 ± 0 a * | 3–3 | 2 ± 0 ab | 2–2 | 5 ± 0 a * | 5–5 |
50 | 5 ± 0 ab | 5–5 | 2 ± 0 ab | 2–2 | 7 ± 0 ab | 7–7 |
60 | 0 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serdeiro, M.T.; Dias, T.D.; de Lima, N.T.R.; Barbosa-Filho, J.M.; Belato, R.d.S.; Santos-Mallet, J.R.d.; Maleck, M. Study on Morphological Changes and Interference in the Development of Aedes aegypti Caused by Some Essential Oil Constituents. Trop. Med. Infect. Dis. 2023, 8, 440. https://doi.org/10.3390/tropicalmed8090440
Serdeiro MT, Dias TD, de Lima NTR, Barbosa-Filho JM, Belato RdS, Santos-Mallet JRd, Maleck M. Study on Morphological Changes and Interference in the Development of Aedes aegypti Caused by Some Essential Oil Constituents. Tropical Medicine and Infectious Disease. 2023; 8(9):440. https://doi.org/10.3390/tropicalmed8090440
Chicago/Turabian StyleSerdeiro, Michele Teixeira, Thiago Dutra Dias, Natanael Teles Ramos de Lima, José Maria Barbosa-Filho, Renato de Souza Belato, Jacenir Reis dos Santos-Mallet, and Marise Maleck. 2023. "Study on Morphological Changes and Interference in the Development of Aedes aegypti Caused by Some Essential Oil Constituents" Tropical Medicine and Infectious Disease 8, no. 9: 440. https://doi.org/10.3390/tropicalmed8090440
APA StyleSerdeiro, M. T., Dias, T. D., de Lima, N. T. R., Barbosa-Filho, J. M., Belato, R. d. S., Santos-Mallet, J. R. d., & Maleck, M. (2023). Study on Morphological Changes and Interference in the Development of Aedes aegypti Caused by Some Essential Oil Constituents. Tropical Medicine and Infectious Disease, 8(9), 440. https://doi.org/10.3390/tropicalmed8090440