A Cholera Case Imported from Bangladesh to Italy: Clinico-Epidemiological Management and Molecular Characterization in a Non-Endemic Country
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbiological Methods for Bacterial Identification
2.2. Serological and Molecular Characterization
2.3. Whole Genome Sequencing and Bioinformatics Analysis
2.4. Epidemiological Investigation and Food Sample Collection
3. Results
3.1. Case Presentation and Epidemiological Investigation
3.2. V. cholerae Strain Molecular Characterization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weil, A.A.; Ryan, E.T. Cholera. Curr. Opin. Infect. Dis. 2018, 31, 455–461. [Google Scholar] [CrossRef]
- Kanungo, S.; Azman, A.S.; Ramamurthy, T.; Deen, J.; Dutta, S. Cholera. Lancet 2022, 399, 1429–1440. [Google Scholar] [CrossRef] [PubMed]
- Global Task Force on Cholera Control (GTFCC). Interim Guidance Document on Cholera Surveillance Global Task Force on Cholera Control (GTFCC) Surveillance Working Group; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Faruque, S.M.; Albert, M.J.; Mekalanos, J.J. Epidemiology, Genetics, and Ecology of Toxigenic Vibrio cholerae. Microbiol. Mol. Biol. Rev. 1998, 62, 1301–1314. [Google Scholar] [CrossRef] [PubMed]
- Chin, C.-S.; Sorenson, J.; Harris, J.B.; Robins, W.P.; Charles, R.C.; Jean-Charles, R.R.; Bullard, J.; Webster, D.R.; Kasarskis, A.; Peluso, P.; et al. The Origin of the Haitian Cholera Outbreak Strain. N. Engl. J. Med. 2011, 364, 33–42. [Google Scholar] [CrossRef]
- Ramamurthy, T.; Garg, S.; Sharma, R.; Bhattacharya, S.K.; Balakrish Nair, G.; Shimada, T.; Takeda, T.; Karasawa, T.; Kurazano, H.; Pal, A.; et al. Emergence of novel strain of Vibrio cholerae with epidemic potential in southern and eastern India. Lancet 1993, 341, 703–704. [Google Scholar] [CrossRef] [PubMed]
- Faruque, S.M.; Chowdhury, N.; Kamruzzaman, M.; Ahmad, Q.S.; Faruque, A.S.G.; Salam, M.A.; Ramamurthy, T.; Nair, G.B.; Weintraub, A.; Sack, D.A. Reemergence of epidemic Vibrio cholerae O139, Bangladesh. Emerg. Infect. Dis. 2003, 9, 1116–1122. [Google Scholar] [CrossRef] [PubMed]
- Global Task Force on Cholera Control Ending Cholera a Global Roadmap to 2030. Available online: https://www.gtfcc.org/about-cholera/roadmap-2030/ (accessed on 13 February 2023).
- Ali, M.; Nelson, A.R.; Lopez, A.L.; Sack, D.A. Updated Global Burden of Cholera in Endemic Countries. PLoS Negl. Trop. Dis. 2015, 9, e0003832. [Google Scholar] [CrossRef] [PubMed]
- Paul, R.C.; Faruque, A.S.G.; ALAM, M.; Iqbal, A.; Zaman, K.; Islam, N.; Sobhan, A.; DAS, S.K.; Malek, M.A.; Qadri, F.; et al. Incidence of severe diarrhoea due to Vibrio cholerae in the catchment area of six surveillance hospitals in Bangladesh. Epidemiol. Infect. 2016, 144, 927–939. [Google Scholar] [CrossRef]
- Azman, A.S.; A Lauer, S.; Bhuiyan, T.R.; Luquero, F.J.; Leung, D.T.; Hegde, S.T.; Harris, J.B.; Paul, K.K.; Khaton, F.; Ferdous, J.; et al. Vibrio cholerae O1 transmission in Bangladesh: Insights from a nationally representative serosurvey. Lancet Microbe 2020, 1, e336–e343. [Google Scholar] [CrossRef]
- World Health Organization. List of Member States by WHO Region and Mortality Stratum; World Health Report, 2003; WHO: Geneva, Switzerland, 2003. [Google Scholar]
- World Health Organization. Cholera—Cameroon, 16 May 2022. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON374 (accessed on 14 February 2023).
- European Centre for Disease Prevention and Control (ECDC). Weekly Communicable Disease Threats Report, Week 51, 18–24 December 2022; Surveillance Report; ECDC: Stockholm, Sweden, 2022. [Google Scholar]
- European Centre for Disease Prevention and Control (ECDC). Cholera—Annual Epidemiological Report for 2019; ECDC: Stockholm, Sweden, 2019. [Google Scholar]
- European Centre for Disease Prevention and Control (ECDC). The European Surveillance System (TESSy): Surveillance Atlas of Infectious Diseases. Available online: https://atlas.ecdc.europa.eu/public/index.aspx (accessed on 20 April 2023).
- Naha, A.; Pazhani, G.P.; Ganguly, M.; Ghosh, S.; Ramamurthy, T.; Nandy, R.K.; Nair, G.B.; Takeda, Y.; Mukhopadhyay, A.K. Development and Evaluation of a PCR Assay for Tracking the Emergence and Dissemination of Haitian Variant ctxB in Vibrio cholerae O1 Strains Isolated from Kolkata, India. J. Clin. Microbiol. 2012, 50, 1733–1736. [Google Scholar] [CrossRef]
- Andrews, S. Babraham Bioinformatics—FastQC a Quality Control Tool for High throughput Sequence Data. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 25 January 2021).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K.; et al. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLoS ONE 2014, 9, e112963. [Google Scholar] [CrossRef] [PubMed]
- Bushnell, B. BBMap. Available online: https://sourceforge.net/projects/bbmap/ (accessed on 11 February 2022).
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. GitHub—tseemann/mlst: Scan Contig Files against PubMLST Typing Schemes. Available online: https://github.com/tseemann/mlst (accessed on 11 February 2022).
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef] [PubMed]
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; A Wlodarski, M.; Edalatmand, A.; Petkau, A.; A Syed, S.; Tsang, K.K.; et al. CARD 2023, expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2023, 51, D690–D699. [Google Scholar] [CrossRef]
- Lee, I.; Ha, S.-M.; Baek, M.; Kim, D.W.; Yi, H.; Chun, J. VicPred: A Vibrio cholerae Genotype Prediction Tool. Front. Microbiol. 2021, 12, 691895. [Google Scholar] [CrossRef]
- Lebens, M.; Karlsson, S.L.; Källgård, S.; Blomquist, M.; Ekman, A.; Nygren, E.; Holmgren, J. Construction of novel vaccine strains of Vibrio cholerae co-expressing the Inaba and Ogawa serotype antigens. Vaccine 2011, 29, 7505–7513. [Google Scholar] [CrossRef]
- Zhang, Z.; Schwartz, S.; Wagner, L.; Miller, W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 2000, 7, 203–214. [Google Scholar] [CrossRef]
- Siguier, P.; Perochon, J.; Lestrade, L.; Mahillon, J.; Chandler, M. ISfinder: The reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006, 34, D32–D36. [Google Scholar] [CrossRef]
- Ondov, B.D.; Treangen, T.J.; Melsted, P.; Mallonee, A.B.; Bergman, N.H.; Koren, S.; Phillippy, A.M. Mash: Fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016, 17, 132. [Google Scholar] [CrossRef] [PubMed]
- Olson, R.D.; Assaf, R.; Brettin, T.; Conrad, N.; Cucinell, C.; Davis, J.J.; Dempsey, D.M.; Dickerman, A.; Dietrich, E.M.; Kenyon, R.W.; et al. Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): A resource combining PATRIC, IRD and ViPR. Nucleic Acids Res. 2023, 51, D678–D689. [Google Scholar] [CrossRef] [PubMed]
- Sayers, E.W.; E Bolton, E.; Brister, J.R.; Canese, K.; Chan, J.; Comeau, D.C.; Connor, R.; Funk, K.; Kelly, C.; Kim, S.; et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2022, 50, D20–D26. [Google Scholar] [CrossRef]
- O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016, 44, D733–D745. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.J.; Gerdes, S.; Olsen, G.J.; Olson, R.; Pusch, G.D.; Shukla, M.; Vonstein, V.; Wattam, A.R.; Yoo, H. PATtyFams: Protein Families for the Microbial Genomes in the PATRIC Database. Front. Microbiol. 2016, 7, 118. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8, a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Stamatakis, A.; Hoover, P.; Rougemont, J. A rapid bootstrap algorithm for the RAxML Web servers. Syst. Biol. 2008, 57, 758–771. [Google Scholar] [CrossRef]
- Rambaut, A.; Drummond, A.J. FigTree, version 1.4.0; GitHub: San Francisco, CA, USA, 2012.
- Reimer, A.; Domselaar, G.; Stroika, S.; Al, A.R.R.E.; Kent, H.; Tarr, C.; Talkington, D.; Rowe, L.; Olsen-Rasmussen, M.; Frace, M.; et al. Comparative genomics of Vibrio cholerae from Haiti, Asia, and Africa. Emerg. Infect. Dis. 2011, 17, 2113–2121. [Google Scholar] [CrossRef]
- Sim, E.M.; Martinez, E.; Blackwell, G.A.; Pham, D.; Millan, G.; Graham, R.M.A.; Dhakal, R.; Wang, Q.; Suliman, B.; Jennison, A.V.; et al. Genomes of Vibrio cholerae O1 Serotype Ogawa Associated with Current Cholera Activity in Pakistan. Microbiol. Resour. Announc. 2023, 12, 1–3. [Google Scholar] [CrossRef]
- Kim, E.J.; Lee, D.; Moon, S.H.; Lee, C.H.; Kim, S.J.; Lee, J.H.; Kim, J.O.; Song, M.; Das, B.; Clemens, J.D.; et al. Molecular insights into the evolutionary pathway of Vibrio cholerae O1 atypical El Tor variants. PLoS Pathog. 2014, 10, e1004384. [Google Scholar] [CrossRef] [PubMed]
- Ramamurthy, T.; Nandy, R.K.; Mukhopadhyay, A.K.; Dutta, S.; Mutreja, A.; Okamoto, K.; Miyoshi, S.-I.; Nair, G.B.; Ghosh, A. Virulence Regulation and Innate Host Response in the Pathogenicity of Vibrio cholerae. Front. Cell. Infect. Microbiol. 2020, 10, 572096. [Google Scholar] [CrossRef] [PubMed]
- Heidelberg, J.F.; Eisen, J.A.; Nelson, W.C.; Clayton, R.A.; Gwinn, M.L.; Dodson, R.J.; Haft, D.H.; Hickey, E.K.; Peterson, J.D.; Umayam, L.; et al. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 2000, 406, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Lääveri, T.; Antikainen, J.; Mero, S.; Pakkanen, S.H.; Kirveskari, J.; Roivainen, M.; Kantele, A. Bacterial, viral and parasitic pathogens analysed by qPCR: Findings from a prospective study of travellers’ diarrhoea. Travel Med. Infect. Dis. 2021, 40, 101957. [Google Scholar] [CrossRef]
- Guan, H.; Zhang, J.; Xiao, Y.; Sha, D.; Ling, X.; Kan, B. Evaluation of PCR Based Assays for the Improvement of Proportion Estimation of Bacterial and Viral Pathogens in Diarrheal Surveillance. Front. Microbiol. 2016, 7, 386. [Google Scholar] [CrossRef]
- Mosley, J.F., II; Smith, L.L.; Brantley, P.; Locke, D.; Como, M. Vaxchora: The First FDA-Approved Cholera Vaccination in the United States. Pharm. Ther. 2017, 42, 638–640. [Google Scholar]
- Ricaboni, D.; Bozzoni, M.; Riario Sforza, G.G.; Rimoldi, S.G.; Antinori, S. A case of severe cholera imported from Bangladesh to Italy, 2017. Travel Med. Infect. Dis. 2019, 29, 60–62. [Google Scholar] [CrossRef] [PubMed]
- Muzembo, B.A.; Kitahara, K.; Debnath, A.; Okamoto, K.; Miyoshi, S.-I. Accuracy of cholera rapid diagnostic tests: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2022, 28, 155–162. [Google Scholar] [CrossRef]
- Dieckmann, R.; Strauch, E.; Alter, T. Rapid identification and characterization of Vibrio species using whole-cell MALDI-TOF mass spectrometry. J. Appl. Microbiol. 2010, 109, 199–211. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention Cholera—Vibrio cholerae Infection. Available online: https://www.cdc.gov/cholera/diagnosis.html (accessed on 18 April 2023).
- Ghosh, A.; Ramamurthy, T. Antimicrobials & cholera: Are we stranded? Indian J. Med. Res. 2011, 133, 225–231. [Google Scholar]
- Parvin, I.; Shahunja, K.M.; Khan, S.H.; Alam, T.; Shahrin, L.; Ackhter, M.M.; Sarmin, M.; Dash, S.; Rahman, M.W.; Bin Shahid, A.S.M.S.; et al. Changing Susceptibility Pattern of Vibrio cholerae O1 Isolates to Commonly Used Antibiotics in the Largest Diarrheal Disease Hospital in Bangladesh during 2000–2018. Am. J. Trop. Med. Hyg. 2020, 103, 652–658. [Google Scholar] [CrossRef] [PubMed]
- Garbern, S.C.; Chu, T.-C.; Yang, P.; Gainey, M.; Nasrin, S.; Kanekar, S.; Qu, K.; Nelson, E.J.; Leung, D.T.; Ahmed, D.; et al. Clinical and socio-environmental determinants of multidrug-resistant vibrio cholerae 01 in older children and adults in Bangladesh. Int. J. Infect. Dis. 2021, 105, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Lepuschitz, S.; Baron, S.; Larvor, E.; Granier, S.A.; Pretzer, C.; Mach, R.; Farnleitner, A.H.; Ruppitsch, W.; Pleininger, S.; Indra, A.; et al. Phenotypic and Genotypic Antimicrobial Resistance Traits of Vibrio cholerae Non-O1/Non-O139 Isolated from a Large Austrian Lake Frequently Associated with Cases of Human Infection. Front. Microbiol. 2019, 10, 2600. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Yadav, P.; Deshmukh, D.G.; Bulle, P.A.; Singh, D.; Singh, N.; Sharma, K.K.; Jain, M.; Ingole, K.V.; Goel, A.K.; et al. Vibrio cholerae O1 with ctxB7 variant genotype acquired qnrVC mediated ciprofloxacin resistance in Yavatmal, India. Clin. Microbiol. Infect. 2017, 23, 1005–1006. [Google Scholar] [CrossRef]
- Wang, J.; Villeneuve, S.; Zhang, J.; Lei, P.-S.; Miller, C.E.; Lafaye, P.; Nato, F.; Szu, S.C.; Karpas, A.; Bystricky, S.; et al. On the antigenic determinants of the lipopolysaccharides of Vibrio cholerae O:1, serotypes Ogawa and Inaba. J. Biol. Chem. 1998, 273, 2777–2783. [Google Scholar] [CrossRef]
- Baddam, R.; Sarker, N.; Ahmed, D.; Mazumder, R.; Abdullah, A.; Morshed, R.; Hussain, A.; Begum, S.; Shahrin, L.; Khan, A.I.; et al. Genome Dynamics of Vibrio cholerae Isolates Linked to Seasonal Outbreaks of Cholera in Dhaka, Bangladesh. mBio 2020, 11, 1–14. [Google Scholar] [CrossRef]
- Alam, M.T.; Ray, S.S.; Chun, C.N.; Chowdhury, Z.G.; Rashid, M.H.; De Rochars, V.E.M.B.; Ali, A. Major Shift of Toxigenic V. cholerae O1 from Ogawa to Inaba Serotype Isolated from Clinical and Environmental Samples in Haiti. PLoS Negl. Trop. Dis. 2016, 10, e0005045. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russini, V.; Giancola, M.L.; Brunetti, G.; Calbi, C.; Anzivino, E.; Nisii, C.; Scaramella, L.; Dionisi, A.M.; Faraglia, F.; Selleri, M.; et al. A Cholera Case Imported from Bangladesh to Italy: Clinico-Epidemiological Management and Molecular Characterization in a Non-Endemic Country. Trop. Med. Infect. Dis. 2023, 8, 266. https://doi.org/10.3390/tropicalmed8050266
Russini V, Giancola ML, Brunetti G, Calbi C, Anzivino E, Nisii C, Scaramella L, Dionisi AM, Faraglia F, Selleri M, et al. A Cholera Case Imported from Bangladesh to Italy: Clinico-Epidemiological Management and Molecular Characterization in a Non-Endemic Country. Tropical Medicine and Infectious Disease. 2023; 8(5):266. https://doi.org/10.3390/tropicalmed8050266
Chicago/Turabian StyleRussini, Valeria, Maria Letizia Giancola, Grazia Brunetti, Carmela Calbi, Elena Anzivino, Carla Nisii, Lucia Scaramella, Anna Maria Dionisi, Francesca Faraglia, Marina Selleri, and et al. 2023. "A Cholera Case Imported from Bangladesh to Italy: Clinico-Epidemiological Management and Molecular Characterization in a Non-Endemic Country" Tropical Medicine and Infectious Disease 8, no. 5: 266. https://doi.org/10.3390/tropicalmed8050266
APA StyleRussini, V., Giancola, M. L., Brunetti, G., Calbi, C., Anzivino, E., Nisii, C., Scaramella, L., Dionisi, A. M., Faraglia, F., Selleri, M., Villa, L., Lovari, S., De Marchis, M. L., Bossù, T., Vairo, F., Pagnanelli, A., & Nicastri, E. (2023). A Cholera Case Imported from Bangladesh to Italy: Clinico-Epidemiological Management and Molecular Characterization in a Non-Endemic Country. Tropical Medicine and Infectious Disease, 8(5), 266. https://doi.org/10.3390/tropicalmed8050266