Molecular Epidemiological Characterisation of ESBL- and Plasmid-Mediated AmpC-Producing Escherichia coli and Klebsiella pneumoniae at Kamuzu Central Hospital, Lilongwe, Malawi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of ESBL- and/or AmpC-Phenotype Positive Isolates for Genetic Characterisation
2.2. PCR Analysis for ESBL and pAmpC β-Lactamase Genes
2.3. Whole Genome Sequencing (WGS) and Bioinformatics Analysis
2.4. Analysis of Clonal Relatedness
3. Results
3.1. PCR Analysis for Genes Encoding CTX-M and pAmpC β-Lactamases
3.2. Whole Genome Sequencing (WGS)
E. coli ST-Profile and AMR-Determinants
3.3. Plasmid Incompatibility Groups
3.4. Clonal Relatedness in the Major STs of E. coli
3.5. K. Pneumoniae ST-Profile and AMR-Characteristics
3.6. Plasmid Incompatibility Groups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Correa-Martínez, C.L.; Idelevich, E.A.; Sparbier, K.; Kostrzewa, M.; Becker, K. Rapid Detection of Extended-Spectrum β-Lactamases (ESBL) and AmpC β-Lactamases in Enterobacterales: Development of a Screening Panel Using the MALDI-TOF MS-Based Direct-on-Target Microdroplet Growth Assay. Front. Microbiol. 2019, 10, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Karadiya, R.; Hooja, S.; Pal, N.; Sharma, R.; Maheshwari, R.; Mishra, R. Prevalence and antimicrobial susceptibility of ESBL and AmpC β-Lactamases producing Escherichia coli and Klebsiella pneumoniae from various clinical samples: An emerging threat. J. Evol. Med. Dent. Sci. 2016, 5, 1729–1734. [Google Scholar] [CrossRef]
- Ndir, A.; Diop, A.; Ka, R.; Faye, P.M.; Dia-Badiane, N.M.; Ndoye, B.; Astagneau, P. Infections caused by extended-spectrum β-lactamases producing Enterobacteriaceae: Clinical and economic impact in patients hospitalized in 2 teaching hospitals in Dakar, Senegal. Antimicrob. Resist. Infect. Control. 2016, 5, 13. [Google Scholar] [CrossRef] [PubMed]
- Denamur, E.; Clermont, O.; Bonacorsi, S.; Gordon, D. The population genetics of pathogenic Escherichia coli. Nat. Rev. Microbiol. 2021, 19, 37–54. [Google Scholar] [CrossRef]
- Wyres, K.L.; Lam, M.M.C.; Holt, K.E. Population genomics of Klebsiella pneumoniae. Nat. Rev. Microbiol. 2020, 18, 344–359. [Google Scholar] [CrossRef]
- Jacoby, G.A. AmpC β-Lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [CrossRef]
- Black, J.A.; Moland, E.S.; Thomson, K.S. AmpC disk test for detection of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking chromosomal AmpC β-lactamases. J. Clin. Microbiol. 2005, 43, 3110–3113. [Google Scholar] [CrossRef] [PubMed]
- Chirindze, L.M.; Zimba, T.F.; Sekyere, J.O.; Govinden, U.; Chenia, H.Y.; Sundsfjord, A.; Essack, S.Y.; Simonsen, G.S. Faecal colonization of E. coli and Klebsiella spp. producing extended-spectrum β-lactamases and plasmid-mediated AmpC in Mozambican university students. BMC Infect Dis. 2018, 18, 244. [Google Scholar] [CrossRef]
- Naseer, U.; Sundsfjord, A. The CTX-M Conundrum: Dissemination of Plasmids and Escherichia coli Clones. Microb. Drug Resist. 2011, 17, 83–97. [Google Scholar] [CrossRef]
- Woerther, P.L.; Burdet, C.; Chachaty, E.; Andremont, A. Trends in human fecal carriage of extended-spectrum β-lactamases in the community: Toward the globalization of CTX-M. Clin. Microbiol. Rev. 2013, 26, 744–758. [Google Scholar] [CrossRef] [Green Version]
- Kocsis, B.; Szabó, D. Antibiotic resistance mechanisms in Enterobacteriaceae. Microb. Pathog. Strateg. Combat. Them Sci. Technol. Educ. 2013, 5, 251–257. [Google Scholar]
- Castanheira, M.; Simner, P.J.; Bradford, P.A. Extended-spectrum β -lactamases: An update on their characteristics, epidemiology and detection. JAC-Antimicrob. Resist. 2021, 12, 3. [Google Scholar] [CrossRef]
- Tansarli, G.S.; Poulikakos, P.; Kapaskelis, A.; Falagas, M.E. Proportion of extended-spectrum β-lactamase (ESBL)-producing isolates among Enterobacteriaceae in Africa: Evaluation of the evidence-systematic review. J. Antimicrob. Chemother. 2014, 69, 1177–1184. [Google Scholar] [CrossRef] [PubMed]
- Musicha, P.; Feasey, N.A.; Cain, A.K.; Kallonen, T.; Chaguza, C.; Peno, C.; Khonga, M.; Thompson, S.; Gray, K.J.; Mather, A.E.; et al. Genomic landscape of extended-spectrum β-lactamase resistance in Escherichia coli from an urban African setting. J. Antimicrob. Chemother. 2017, 72, 1602–1609. [Google Scholar] [CrossRef] [PubMed]
- Tegha, G.; Ciccone, E.J.; Krysiak, R.; Kaphatika, J.; Chikaonda, T.; Ndhlovu, I.; van Duin, D.; Hoffman, I.; Juliano, J.J.; Wang, J. Genomic epidemiology of Escherichia coli isolates from a tertiary referral center in Lilongwe, Malawi. Microb. Genom. 2021, 7, 1–12. [Google Scholar] [CrossRef]
- Musicha, P.; Msefula, C.L.; Mather, A.E.; Chaguza, C.; Cain, A.K.; Peno, C.; Kallonen, T.; Khonga, M.; Denis, B.; Gray, K.J.; et al. Genomic analysis of Klebsiella pneumoniae isolates from Malawi reveals acquisition of multiple ESBL determinants across diverse lineages. J. Antimicrob. Chemother. 2019, 74, 1223–1232. [Google Scholar] [CrossRef]
- Coudron, P.E.; Moland, E.S.; Thomson, K.S. Occurrence and Detection of AmpC β-Lactamases among Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis Isolates at a Veterans Medical Center. J. Clin. Microbiol. 2000, 38, 1791–1796. [Google Scholar] [CrossRef]
- Sidjabat, H.E.; Paterson, D.L.; Qureshi, Z.A.; Adams-Haduch, J.M.; O’Keefe, A.; Pascual, A.; Rodríguez-Baño, J.; Doi, Y. Clinical Features and Molecular Epidemiology of CMY-Type β-Lactamase–Producing Escherichia coli. Clin. Infect. Dis. 2009, 48, 739–744. [Google Scholar] [CrossRef]
- Choonara, F.E.; Haldorsen, B.C.; Ndhlovu, I.; Saulosi, O.; Maida, T.; Lampiao, F.; Simonsen, G.S.; Essack, S.Y.; Sundsfjord, A. Antimicrobial susceptibility profiles of clinically important bacterial pathogens at the Kamuzu Central Hospital in Lilongwe, Malawi. Malawi Med. J. 2022, 34, 9–16. [Google Scholar] [CrossRef]
- Birkett, C.I.; Ludlam, H.A.; Woodford, N.; Brown, D.F.J.; Brown, N.M.; Roberts, M.T.M.; Milner, N.; Curran, M.D. Real-time TaqMan PCR for rapid detection and typing of genes encoding CTX-M extended-spectrum β-lactamases. J. Med. Microbiol. 2007, 56, 52–55. [Google Scholar] [CrossRef]
- Swayne, R.; Ellington, M.J.; Curran, M.D.; Woodford, N.; Aliyu, S.H. Utility of a novel multiplex TaqMan PCR assay for metallo-β-lactamase genes plus other TaqMan assays in detecting genes encoding serine carbapenemases and clinically significant extended-spectrum β-lactamases. Int. J. Antimicrob. Agents 2013, 42, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Bevan, E.R.; Jones, A.M.; Hawkey, P.M. Global epidemiology of CTX-M β-lactamases: Temporal and geographical shifts in genotype. J. Antimicrob. Chemother. 2017, 72, 2145–2155. [Google Scholar] [CrossRef] [PubMed]
- Zeynudin, A.; Pritsch, M.; Schubert, S.; Messerer, M.; Liegl, G.; Hoelscher, M.; Belachew, T.; Wieser, A. Prevalence and antibiotic susceptibility pattern of CTX-M type extended-spectrum β-lactamases among clinical isolates of gram-negative bacilli in Jimma, Ethiopia. BMC Infect. Dis. 2018, 18, 524. [Google Scholar] [CrossRef] [PubMed]
- Warjri, I.; Dutta, T.K.; Lalzampuia, H.; Chandra, R. Detection and characterization of extended-spectrum ß-lactamases (blaCTX-M-1 and blaSHV) producing Escherichia coli, Salmonella spp. and Klebsiella pneumoniae isolated from humans in Mizoram. Veter-World 2015, 8, 8–599. [Google Scholar] [CrossRef]
- Legese, M.H.; Asrat, D.; Aseffa, A.; Hasan, B.; Mihret, A.; Swedberg, G. Molecular Epidemiology of Extended-Spectrum Beta-Lactamase and AmpC Producing Enterobacteriaceae among Sepsis Patients in Ethiopia: A Prospective Multicenter Study. Antibiotics 2022, 11, 131. [Google Scholar] [CrossRef]
- Estaleva, C.E.L.; Zimba, T.F.; Sekyere, J.O.; Govinden, U.; Chenia, H.Y.; Simonsen, G.S.; Haldorsen, B.; Essack, S.Y.; Sundsfjord, A. High prevalence of multidrug resistant ESBL- and plasmid mediated AmpC-producing clinical isolates of Escherichia coli at Maputo Central Hospital, Mozambique. BMC Infect. Dis. 2021, 21, 16. [Google Scholar] [CrossRef]
- Sonda, T.; Kumburu, H.; van Zwetselaar, M.; Alifrangis, M.; Mmbaga, B.T.; Aarestrup, F.M.; Kibiki, G.; Lund, O. Whole genome sequencing reveals high clonal diversity of Escherichia coli isolated from patients in a tertiary care hospital in Moshi, Tanzania. Antimicrob. Resist. Infect. Control 2018, 7, 72. [Google Scholar] [CrossRef]
- Agyepong, N.; Govinden, U.; Owusu-Ofori, A.; Amoako, D.G.; Allam, M.; Janice, J.; Pedersen, T.; Sundsfjord, A.; Essack, S. Genomic characterization of multidrug-resistant ESBL-producing Klebsiella pneumoniae isolated from a Ghanaian teaching hospital. Int. J. Infect. Dis. 2019, 85, 117–123. [Google Scholar] [CrossRef]
- Roer, L.; Overballe-Petersen, S.; Hansen, F.; Schønning, K.; Wang, M.; Røder, B.L.; Hansen, D.S.; Justesen, U.S.; Andersen, L.P.; Fulgsang-Damgaard, D.; et al. Escherichia coli Sequence Type 410 Is Causing New International High-Risk Clones. mSphere 2018, 3, e00337-18. [Google Scholar] [CrossRef]
- Cummins, E.A.; Snaith, A.E.; McNally, A.; Hall, R.J. The role of potentiating mutations in the evolution of pandemic Escherichia coli clones. Eur. J. Clin. Microbiol. Infect. Dis. 2021. Available online: https://link.springer.com/content/pdf/10.1007/s10096-021-04359-3.pdf (accessed on 19 December 2021).
- Cornick, J.; Musicha, P.; Peno, C.; Seager, E.; Iroh Tam, P.-Y.; Bilima, S.; Bennett, A.; Kennedy, N.; Feasey, N.; Heinz, E.; et al. Genomic investigation of a suspected Klebsiella pneumoniae outbreak in a neonatal care unit in sub-Saharan Africa. Microb. Genom. 2021, 7, 10–15. [Google Scholar] [CrossRef]
- Kumwenda, G.P.; Sugawara, Y.; Abe, R.; Akeda, Y.; Kasambara, W.; Chizani, K.; Takeuchi, D.; Tomono, K.; Sakamoto, N.; Hamada, S. First Identification and genomic characterization of multidrug-resistant carbapenemase-producing Enterobacteriaceae clinical isolates in Malawi, Africa. J. Med. Microbiol. 2019, 68, 1707–1715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
PCR Result | β-Lactam Resistance | Trimethoprim Resistance | Sulphonamide Resistance | Quinolone Mutations | Aminoglycoside | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ST | CTX-M + | pAmpC + | CTX-M-15 (n = 30) | CTX-M-27 (n = 6) | CTX-M-14 (n = 1) | CMY-2 (n = 15) | TEM-1 (n = 32) | OXA-1 (n = 23) | dfrA1 (n = 2) | dfrA8 (n = 1) | dfrA12 (n = 2) | dfrA14 (n = 1) | dfrA17 (n = 31) | sul 1 (n = 33) | sul 2 (n = 35) | gyrA (n = 32) | parC (n = 29) | parE (n = 31) | (n = 37) |
ST410 (n = 16) | 16 | 1/5 | 16 | - | - | 15 | 15 | 14 | - | - | - | - | 16 | 16 | 15 | 16 | 15 | 15 | 16 |
ST131 (n = 7) | 7 | - | 2 | 5 | - | 4 | - | - | - | - | - | 7 | 7 | 7 | 7 | 4 | 7 | 7 | |
ST617 (n = 6) | 6 | - | 6 | - | - | - | 6 | 6 | 1 | 5 | 6 | 6 | 5 | 6 | 6 | 6 | |||
ST155 (n = 1) | 1 | - | 1 | - | - | - | 1 | - | - | - | - | - | - | - | - | 1 | - | - | 1 |
ST48 (n = 1) | 1 | - | 1 | - | - | - | 1 | - | - | - | 1 | - | - | 1 | 1 | 1 | - | - | 1 |
ST6332 (n = 1) | 1 | - | 1 | - | - | - | 1 | 1 | - | - | - | 1 | - | - | 1 | 1 | 1 | 1 | 1 |
ST354 (n = 1) | 1 | - | - | 1 | - | - | 1 | - | - | - | - | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
ST5824 (n = 1) | 1 | - | - | - | 1 | - | - | - | 1 | - | - | - | - | - | 1 | - | - | - | 1 |
ST38 (n = 1) | 1 | - | 1 | - | - | - | 1 | - | 1 | - | - | - | - | - | 1 | - | - | - | 1 |
ST44 (n = 1) | 1 | - | 1 | - | - | - | 1 | 1 | - | 1 | - | - | 1 | 1 | 1 | 1 | - | 1 | |
ST648 (n = 1) | 1 | - | 1 | - | - | - | 1 | 1 | - | - | - | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
ST | PCR Result | β-Lactam Resistance | Trimethoprim Resistance | Sulphonamide Resistance | Quinolone Mutations | Amino Glycoside | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTX-M (n = 17) | CTX-M-15 (n = 17) | SHV (n = 16) | TEM (n = 14) | OXA (n = 11) | blaSCO-1 (n = 1) | dfrA1 (n = 1) | dfrA12 (n = 1) | dfrA14 (n = 12) | dfrA17 (n = 1) | dfrA27 (n = 1) | dfrA30 (n = 1) | Sul1 (n = 6) | Sul2 (n = 14) | gyrA (n = 8) | qnrB1 (n = 4) | (n = 17) | |
ST101 (n = 2) | 2 | 2 | 2 | - | 2 | - | 2 | 2 | 2 | 2 | |||||||
ST1047 (n = 1) | 1 | 1 | 1 | 1 | 1 | - | 1 | 1 | 1 | ||||||||
ST14 (n = 2) | 2 | 2 | 2 | 2 | 2 | - | 1 | 1 | 2 | 1 | 2 | ||||||
ST15 (n = 1) | 1 | 1 | 1 | 1 | 1 | - | 1 | 1 | 1 | 1 | 1 | ||||||
ST1552 (n = 1) | 1 | 1 | 1 | 1 | - | - | 1 | 1 | 1 | 1 | 1 | 1 | |||||
ST231 (n = 1) | 1 | 1 | 1 | 1 | 1 | - | 1 | 1 | 1 | ||||||||
ST29 (n = 1) | 1 | 1 | 1 | 1 | 1 | - | 1 | 1 | 1 | ||||||||
ST307 (n = 1) | 1 | 1 | 1 | 1 | - | - | 1 | 1 | 1 | 1 | |||||||
ST340 (n = 2) | 2 | 2 | 2 | 2 | 1 | - | 2 | 1 | 1 | 2 | 2 | ||||||
ST48 (n = 1) | 1 | 1 | 1 | 1 | 1 | - | 1 | 1 | 1 | 1 | 1 | ||||||
ST607 (n = 1) | 1 | 1 | 1 | - | - | 1 | 1 | 1 | 1 | ||||||||
ST874 (n = 1) | 1 | 1 | 1 | 1 | 1 | - | 1 | 1 | 1 | 1 | 1 | ||||||
UNKNOWN (n = 2) | 2 | 2 | 1 | 1 | 1 | - | 1 | 1 | 1 | 1 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choonara, F.E.; Haldorsen, B.C.; Janice, J.; Mbanga, J.; Ndhlovu, I.; Saulosi, O.; Maida, T.; Lampiao, F.; Simonsen, G.S.; Essack, S.Y.; et al. Molecular Epidemiological Characterisation of ESBL- and Plasmid-Mediated AmpC-Producing Escherichia coli and Klebsiella pneumoniae at Kamuzu Central Hospital, Lilongwe, Malawi. Trop. Med. Infect. Dis. 2022, 7, 245. https://doi.org/10.3390/tropicalmed7090245
Choonara FE, Haldorsen BC, Janice J, Mbanga J, Ndhlovu I, Saulosi O, Maida T, Lampiao F, Simonsen GS, Essack SY, et al. Molecular Epidemiological Characterisation of ESBL- and Plasmid-Mediated AmpC-Producing Escherichia coli and Klebsiella pneumoniae at Kamuzu Central Hospital, Lilongwe, Malawi. Tropical Medicine and Infectious Disease. 2022; 7(9):245. https://doi.org/10.3390/tropicalmed7090245
Chicago/Turabian StyleChoonara, Faheema Ebrahim, Bjørg Christina Haldorsen, Jessin Janice, Joshua Mbanga, Isaac Ndhlovu, Osborne Saulosi, Tarsizio Maida, Fanuel Lampiao, Gunnar Skov Simonsen, Sabiha Yusuf Essack, and et al. 2022. "Molecular Epidemiological Characterisation of ESBL- and Plasmid-Mediated AmpC-Producing Escherichia coli and Klebsiella pneumoniae at Kamuzu Central Hospital, Lilongwe, Malawi" Tropical Medicine and Infectious Disease 7, no. 9: 245. https://doi.org/10.3390/tropicalmed7090245
APA StyleChoonara, F. E., Haldorsen, B. C., Janice, J., Mbanga, J., Ndhlovu, I., Saulosi, O., Maida, T., Lampiao, F., Simonsen, G. S., Essack, S. Y., & Sundsfjord, A. (2022). Molecular Epidemiological Characterisation of ESBL- and Plasmid-Mediated AmpC-Producing Escherichia coli and Klebsiella pneumoniae at Kamuzu Central Hospital, Lilongwe, Malawi. Tropical Medicine and Infectious Disease, 7(9), 245. https://doi.org/10.3390/tropicalmed7090245