Difference between Microscopic and PCR Examination Result for Malaria Diagnosis and Treatment Evaluation in Sumba Barat Daya, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Subjects and Sample Collection
2.3. Microscopic Method
2.4. Molecular Method
2.5. Statistical Analysis
2.6. Definitions Used in the Study
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sitohang, V.; Sariwati, E.; Fajariyani, S.B.; Hwang, D.; Kurnia, B.; Hapsari, R.K.; Laihad, F.J.; Sumiwi, M.E.; Pronyk, P.; Hawley, W.A. Malaria Elimination in Indonesia: Halfway There. Lancet Glob. Health 2018, 6, e604–e606. [Google Scholar] [CrossRef] [Green Version]
- Kementerian Kesehatan Republik Indonesia Data Malaria Per Provinsi Tahun. 2020. Available online: https://docs.google.com/document/d/13RmOFO6C0i174sP671FrWDQGSR_K-1ukPC60Z42qffU/edit?usp=sharing (accessed on 1 April 2022).
- Dinas Kesehatan Provinsi Nusa Tenggara Timur. Laporan Situasi Terkini Perkembangan Program Pengendalian Malaria Di Indonesia Tahun 2020; Dinas Kesehatan Provinsi Nusa Tenggara Timur: Kupang, Indonesia, 2021. [Google Scholar]
- Dinas Kesehatan Provinsi Nusa Tenggara Timur. Data Final Program Malaria Tahun 2019; Dinas Kesehatan Provinsi Nusa Tenggara Timur: Kupang, Indonesia, 2020. [Google Scholar]
- Kementerian Kesehatan Republik Indonesia. Buku Saku Tatalaksana Kasus Malaria; Kementerian Kesehatan Republik Indonesia: Jakarta, Indonesia, 2020. [Google Scholar]
- Naing, C.; Racloz, V.; Whittaker, M.A.; Aung, K.; Reid, S.A.; Mak, J.W.; Tanner, M. Efficacy and Safety of Dihydroartemisinin-Piperaquine for Treatment of Plasmodium Vivax Malaria in Endemic Countries: Meta-Analysis of Randomized Controlled Studies. PLoS ONE 2013, 8, e78819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, M.; Carrara, V.I.; Gilder, M.E.; Min, A.M.; Tun, N.W.; Pimanpanarak, M.; Viladpai-Nguen, J.; Paw, M.K.; Haohankhunnatham, W.; Konghahong, K.; et al. A Randomized Controlled Trial of Dihydroartemisinin-Piperaquine, Artesunate-Mefloquine and Extended Artemether-Lumefantrine Treatments for Malaria in Pregnancy on the Thailand-Myanmar Border. BMC Med. 2021, 19, 132. [Google Scholar] [CrossRef] [PubMed]
- Sevene, E.; Banda, C.G.; Mukaka, M.; Maculuve, S.; Macuacua, S.; Vala, A.; Piqueras, M.; Kalilani-Phiri, L.; Mallewa, J.; Terlouw, D.J.; et al. Efficacy and Safety of Dihydroartemisinin–Piperaquine for Treatment of Plasmodium Falciparum Uncomplicated Malaria in Adult Patients on Antiretroviral Therapy in Malawi and Mozambique: An Open Label Non-Randomized Interventional Trial. Malar. J. 2019, 18, 277. [Google Scholar] [CrossRef] [PubMed]
- Okebe, J.; Bousema, T.; Affara, M.; Di Tanna, G.L.; Dabira, E.; Gaye, A.; Sanya-Isijola, F.; Badji, H.; Correa, S.; Nwakanma, D.; et al. The Gametocytocidal Efficacy of Different Single Doses of Primaquine with Dihydroartemisinin-Piperaquine in Asymptomatic Parasite Carriers in The Gambia: A Randomized Controlled Trial. EBioMedicine 2016, 13, 348–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mbanefo, A.; Kumar, N. Evaluation of Malaria Diagnostic Methods as a Key for Successful Control and Elimination Programs. Trop. Med. Infect. Dis. 2020, 5, 102. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Malaria Rapid Diagnostic Test Performance: Results of WHO Product Testing of Malaria RDTs: Round 8 (2016–2018); World Health Organization: Geneva, Switzerland, 2018; Volume 3, ISBN 1460-2091. [Google Scholar]
- Ngasala, B.; Bushukatale, S. Evaluation of Malaria Microscopy Diagnostic Performance at Private Health Facilities in Tanzania. Malar. J. 2019, 18, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roper, C.; Elhassan, I.M.; Hviid, L.; Giha, H.; Richardson, W.; Babiker, H.; Satti, G.M.; Theander, T.G.; Arnot, D.E. Detection of Very Low Level Plasmodium Falciparum Infections Using the Nested Polymerase Chain Reaction and a Reassessment of the Epidemiology of Unstable Malaria in Sudan. Am. J. Trop. Med. Hyg. 1996, 54, 325–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golassa, L.; Enweji, N.; Erko, B.; Aseffa, A.; Swedberg, G. Detection of a Substantial Number of Sub-Microscopic Plasmodium Falciparum Infections by Polymerase Chain Reaction: A Potential Threat to Malaria Control and Diagnosis in Ethiopia. Malar. J. 2013, 12, 352. [Google Scholar] [CrossRef] [Green Version]
- Fontecha, G.A.; Mendoza, M.; Banegas, E.; Poorak, M.; De Oliveira, A.M.; Mancero, T.; Udhayakumar, V.; Lucchi, N.W.; Mejia, R.E. Comparison of Molecular Tests for the Diagnosis of Malaria in Honduras. Malar. J. 2012, 11, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feleke, D.G.; Alemu, Y.; Yemanebirhane, N. Performance of Rapid Diagnostic Tests, Microscopy, Loop-Mediated Isothermal Amplification (LAMP) and PCR for Malaria Diagnosis in Ethiopia: A Systematic Review and Meta-Analysis. Malar. J. 2021, 20, 384. [Google Scholar] [CrossRef] [PubMed]
- Ehtesham, R.; Fazaeli, A.; Raeisi, A.; Keshavarz, H.; Heidari, A. Detection of Mixed-Species Infections of Plasmodium Falciparum and Plasmodium Vivax by Nested PCR and Rapid Diagnostic Tests in Southeastern Iran. Am. J. Trop. Med. Hyg. 2015, 93, 181–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steenkeste, N.; Rogers, W.O.; Okell, L.; Jeanne, I.; Incardona, S.; Duval, L.; Chy, S.; Hewitt, S.; Chou, M.; Socheat, D.; et al. Sub-Microscopic Malaria Cases and Mixed Malaria Infection in a Remote Area of High Malaria Endemicity in Rattanakiri Province, Cambodia: Implication for Malaria Elimination. Malar. J. 2010, 9, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Research Malaria Microscopy Standards Working Group. Microscopy for the Detection, Identification and Quantification of Malaria Parasites on Stained Thick and Thin Blood Films in Research Settings; World Health Organization: Geneva, Switzerland, 2015; ISBN 9789241549219. [Google Scholar]
- Menteri Kesehatan Republik Indonesia. Peraturan Menteri Kesehatan Republik Indonesia Nomor 68 Tahun 2015 Tentang Pedoman Jejaring Dan Pemantapan Mutu Laboratorium Malaria; Menteri Kesehatan Republik Indonesia: Batam, Indonesia, 2015. [Google Scholar]
- Snounou, G.; Viriyakosol, S.; Jarra, W.; Thaithong, S.; Brown, K.N. Identification of the Four Human Malaria Parasite Species in Field Samples by the Polymerase Chain Reaction and Detection of a High Prevalence of Mixed Infections. Mol. Biochem. Parasitol. 1993, 58, 283–292. [Google Scholar] [CrossRef]
- Singh, B.; Bobogare, A.; Cox-Singh, J.; Snounou, G.; Abdullah, M.S.; Rahman, H.A. A Genus- and Species-Specific Nested Polymerase Chain Reaction Malaria Detection Assay for Epidemiologic Studies. Am. J. Trop. Med. Hyg. 1999, 60, 687–692. [Google Scholar] [CrossRef]
- Huang, F.; Takala-Harrison, S.; Liu, H.; Xu, J.-W.; Yang, H.-L.; Adams, M.; Shrestha, B.; Mbambo, G.; Rybock, D.; Zhou, S.-S.; et al. Prevalence of Clinical and Subclinical Plasmodium Falciparum and Plasmodium Vivax Malaria in Two Remote Rural Communities on the Myanmar-China Border. Am. J. Trop. Med. Hyg. 2017, 97, 1524–1531. [Google Scholar] [CrossRef]
- World Health Organization. WHO Malaria Terminology, 2021 Update; World Health Organization: Geneva, Switzerland, 2021; ISBN 9789240038400. [Google Scholar]
- Mutabazi, T.; Arinaitwe, E.; Ndyabakira, A.; Sendaula, E.; Kakeeto, A.; Okimat, P.; Orishaba, P.; Katongole, S.P.; Mpimbaza, A.; Byakika-Kibwika, P.; et al. Assessment of the Accuracy of Malaria Microscopy in Private Health Facilities in Entebbe Municipality, Uganda: A Cross-Sectional Study. Malar. J. 2021, 20, 250. [Google Scholar] [CrossRef]
- Odhiambo, F.; Buff, A.M.; Moranga, C.; Moseti, C.M.; Wesongah, J.O.; Lowther, S.A.; Arvelo, W.; Galgalo, T.; Achia, T.O.; Roka, Z.G.; et al. Factors Associated with Malaria Microscopy Diagnostic Performance Following a Pilot Quality-Assurance Programme in Health Facilities in Malaria Low-Transmission Areas of Kenya, 2014. Malar. J. 2017, 16, 371. [Google Scholar] [CrossRef]
- Orjih, A.U.; Cherian, P.; Alfadhli, S. Microscopic Detection of Mixed Malarial Infections: Improvement by Saponin Hemolysis. Med. Princ. Pract. 2008, 17, 458–463. [Google Scholar] [CrossRef]
- Jarra, W.; Snounou, G. Only Viable Parasites Are Detected by PCR Following Clearance of Rodent Malarial Infections by Drug Treatment or Immune Responses. Infect. Immun. 1998, 66, 3783–3787. [Google Scholar] [CrossRef] [Green Version]
- Lubis, I.N.D.; Wijaya, H.; Lubis, M.; Lubis, C.P.; Divis, P.C.S.; Beshir, K.B.; Sutherland, C.J. Contribution of Plasmodium Knowlesi to Multispecies Human Malaria Infections in North Sumatera, Indonesia. J. Infect. Dis. 2017, 215, 1148–1155. [Google Scholar] [CrossRef] [PubMed]
- Kaisar, M.M.M.; Supali, T.; Wiria, A.E.; Hamid, F.; Wammes, L.J.; Sartono, E.; Luty, A.J.F.; Brienen, E.A.T.; Yazdanbakhsh, M.; van Lieshout, L.; et al. Epidemiology of Plasmodium Infections in Flores Island, Indonesia Using Real-Time PCR. Malar. J. 2013, 12, 169. [Google Scholar] [CrossRef] [Green Version]
- Suryaman, A.; Anwar, C.; Handayani, D.; Saleh, I.; Dalillah, D.; Prasasty, G.D.; Giffari, A.; Warni, S.E. Malaria Surveillance in the Anak Dalam Tribe, Jambi, Indonesia. J. Ilmu Kesehat. Masy. 2021, 12, 104–116. [Google Scholar] [CrossRef]
- Adekunle, A.I.; Pinkevych, M.; McGready, R.; Luxemburger, C.; White, L.J.; Nosten, F.; Cromer, D.; Davenport, M.P. Modeling the Dynamics of Plasmodium Vivax Infection and Hypnozoite Reactivation In Vivo. PLoS Negl. Trop. Dis. 2015, 9, e0003595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battle, K.E.; Karhunen, M.S.; Bhatt, S.; Gething, P.W.; Howes, R.E.; Golding, N.; Van Boeckel, T.P.; Messina, J.P.; Shanks, G.D.; Smith, D.L.; et al. Geographical Variation in Plasmodium Vivax Relapse. Malar. J. 2014, 13, 144. [Google Scholar] [CrossRef] [Green Version]
- Craige Jr., B.; Alving, A.S.; Jones, R., Jr.; Whorton, C.M.; Pullman, T.N.; Eichelberger, L. The Chesson Strain of Plasmodium Vivax Malaria: II. Relationship between Prepatent Period, Latent Period and Relapse Rate. J. Infect. Dis. 1947, 80, 228–236. [Google Scholar] [CrossRef]
- Vafa Homann, M.; Emami, S.N.; Yman, V.; Stenström, C.; Sondén, K.; Ramström, H.; Karlsson, M.; Asghar, M.; Färnert, A. Detection of Malaria Parasites After Treatment in Travelers: A 12-Months Longitudinal Study and Statistical Modelling Analysis. EBioMedicine 2017, 25, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Dakić, Z.; Ivović, V.; Pavlović, M.; Lavadinović, L.; Marković, M.; Djurković-Djaković, O. Clinical Significance of Molecular Methods in the Diagnosis of Imported Malaria in Returning Travelers in Serbia. Int. J. Infect. Dis. 2014, 29, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Aydin-Schmidt, B.; Mubi, M.; Morris, U.; Petzold, M.; Ngasala, B.E.; Premji, Z.; Björkman, A.; Mårtensson, A. Usefulness of Plasmodium Falciparum-Specific Rapid Diagnostic Tests for Assessment of Parasite Clearance and Detection of Recurrent Infections after Artemisinin-Based Combination Therapy. Malar. J. 2013, 12, 349. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Suspected Malaria (n = 174) | Post-DHP Therapy with Fever (n = 20) | Post-DHP Therapy without Fever (n = 215) |
---|---|---|---|
Age | |||
≤5 years old | 15 | 1 | 3 |
5–15 years old | 85 | 15 | 89 |
>15 years old | 74 | 4 | 123 |
Gender | |||
Male | 123 | 14 | 170 |
Female | 51 | 6 | 45 |
History of malaria | |||
None | 5 | 0 | 0 |
Once | 47 | 7 | 50 |
More than once | 122 | 13 | 165 |
History of DHP 1 therapyin the past 2 years | |||
Yes | 164 | 20 | 215 |
No | 10 | 0 | 0 |
Living area | |||
Forest and garden border | 174 | 20 | 215 |
Tributary border | 35 | 12 | 35 |
Respondent Group | Suspected Malaria (n = 174) | Post-DHP Therapy with Fever (n = 20) | Post-DHP Therapy without Fever (n = 215) | ||||||
---|---|---|---|---|---|---|---|---|---|
Classification Age (years old) | <5 | 5–15 | >15 | <5 | 5–15 | >15 | <5 | 5–15 | >15 |
Microscopy results | |||||||||
P. falciparum | 13 (7.5%) | 73 (42%) | 42 (24.1%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
P. vivax | 2 (1.2%) | 10 (5.7%) | 22 (12.6%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
P. malariae | 0 (0%) | 1 (0.6%) | 6 (3.4%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
P. falciparum + P. vivax | 0 (0%) | 1 (0.6%) | 4 (2.3%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
P. falciparum + P. vivax + P. malariae | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
Negative | 0 (0%) | 0 (0%) | 0 (0%) | 1 (5%) | 15 (75%) | 4 (20%) | 3 (1.4%) | 89 (41.4 %) | 123 (57.2%) |
Total (Microscopy) | 15 (8.7%) | 85 (48.9%) | 74 (42.4%) | 1 (5%) | 15 (75%) | 4 (20%) | 3 (1.4%) | 89 (41.4%) | 123 (57.2%) |
PCR results | |||||||||
P. falciparum | 2 (1.2%) | 6 (3.4%) | 0 (0%) | 0 (0%) | 3 (15%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
P. vivax | 2 (1.2%) | 7 (4%) | 4 (2.3%) | 1 (5%) | 0 (0%) | 0 (0%) | 3 (1.4%) | 0 (0%) | 0 (0%) |
P. malariae | 0 (0%) | 1 (0.6%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
P. falciparum + P. vivax | 11 (6.3%) | 71 (40.8%) | 64 (36.8%) | 0 (0%) | 12 (60%) | 4 (20%) | 0 (0%) | 88 (41%) | 95 (44.2%) |
P. falciparum + P. vivax + P. malariae | 0 (0%) | 0 (0%) | 6 (3.4%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
Negative | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (0.4%) | 28 (13%) |
Total (PCR) | 15 (8.7%) | 85 (48.8%) | 74 (42.5%) | 1 (5%) | 15 (75%) | 4 (20%) | 3 (1.4%) | 89 (41.4%) | 123 (57.2%) |
Plasmodium Species | Microscopic | Nested PCR | p |
---|---|---|---|
P. falciparum | 128 (31.3%) | 11 (2.7%) | <0.001 |
P. vivax | 34 (8.3%) | 16 (3.9%) | < 0.001 |
P. malariae | 7 (1.7%) | 1 (0.2%) | 0.031 |
P. falciparum + P. vivax | 5 (1.2%) | 346 (84.5%) | <0.001 |
* P. falciparum + P. vivax + P. malariae | 0 (0%) | 6 (1.5%) | - |
Negative | 235 (57.5%) | 29 (7.1%) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deo, D.A.; Herningtyas, E.H.; Intansari, U.S.; Perdana, T.M.; Murhandarwati, E.H.; Soesatyo, M.H.N.E. Difference between Microscopic and PCR Examination Result for Malaria Diagnosis and Treatment Evaluation in Sumba Barat Daya, Indonesia. Trop. Med. Infect. Dis. 2022, 7, 153. https://doi.org/10.3390/tropicalmed7080153
Deo DA, Herningtyas EH, Intansari US, Perdana TM, Murhandarwati EH, Soesatyo MHNE. Difference between Microscopic and PCR Examination Result for Malaria Diagnosis and Treatment Evaluation in Sumba Barat Daya, Indonesia. Tropical Medicine and Infectious Disease. 2022; 7(8):153. https://doi.org/10.3390/tropicalmed7080153
Chicago/Turabian StyleDeo, Dwita Anastasia, Elizabeth Henny Herningtyas, Umi Solekhah Intansari, Taufik Mulya Perdana, Elsa Herdiana Murhandarwati, and Marsetyawan H. N. E. Soesatyo. 2022. "Difference between Microscopic and PCR Examination Result for Malaria Diagnosis and Treatment Evaluation in Sumba Barat Daya, Indonesia" Tropical Medicine and Infectious Disease 7, no. 8: 153. https://doi.org/10.3390/tropicalmed7080153
APA StyleDeo, D. A., Herningtyas, E. H., Intansari, U. S., Perdana, T. M., Murhandarwati, E. H., & Soesatyo, M. H. N. E. (2022). Difference between Microscopic and PCR Examination Result for Malaria Diagnosis and Treatment Evaluation in Sumba Barat Daya, Indonesia. Tropical Medicine and Infectious Disease, 7(8), 153. https://doi.org/10.3390/tropicalmed7080153