Malaria Vector Surveillance and Control in an Elimination Setting in South Africa
Abstract
:1. Malaria and Plans for Elimination in South Africa
- Provision of effective management, leadership and coordination;
- Provision of sustainable and strengthened surveillance systems ensuring that 100% of cases are reported to the Malaria Information System (MIS);
- Community outreach and the provision of pertinent malaria information;
- Measures to ensure that all populations at risk receive at least 95% coverage with key vector suppression strategies and interventions;
- Universal access to diagnosis and treatment in endemic and non-endemic areas according to national guidelines.
2. Sporadic Malaria in Low Incidence Settings
3. Assessing Risk and Receptivity in Endemic Areas Cleared of Malaria
4. Conclusions
5. Recommendations
- Low-incidence districts earmarked for malaria elimination should ensure the full implementation of proactive or reactive vector control methods year on year, even after malaria elimination is achieved.
- Low incidence districts earmarked for malaria elimination should plan, implement and maintain active and passive case detection, especially amongst migrant and immigrant communities.
- Assessments of malaria risk and receptivity in malaria-free districts in endemic provinces should be routinely conducted by provincial entomological surveillance officers on an annual basis.
- Annual vector control plans at the local (district/municipality) level should be based on Anopheles species assemblages and insecticide susceptibility profiles of known vector populations.
- Additional vector control methods including dual active ingredient insecticide-treated bed net distribution, community outreach in terms of personal protection methods, housing design and screening, and environmental management (such as drainage of non-utilized water bodies used by mosquitoes for breeding) should be considered pre- and post-malaria elimination at the local level.
- Political commitment and the resources required for ongoing surveillance and control operations will need to be sourced year on year from national and provincial governments. This will require a multi-stakeholder approach coordinated by the NDoH Malaria Directorate. Important government department stakeholders include Agriculture, Finance and Environment.
- Cross-border initiatives need to be maintained, sustained and strengthened as needed, especially in terms of vector and parasite surveillance at border crossings/posts.
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- WHO. A Framework for Malaria Elimination. World Health Organization 2017. Available online: https://www.who.int/publications/i/item/9789241511988 (accessed on 6 September 2022).
- Moonasar, D.; Maharaj, R.; Kunene, S.; Candrinho, B.; Saute, F.; Ntshalintshali, N.; Morris, N. Towards malaria elimination in the MOSASWA (Mozambique, South Africa and Swaziland) region. Malar. J. 2016, 15, 419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raman, J.; Morris, N.; Frean, J.; Brooke, B.; Blumberg, L.; Kruger, P.; Mabusa, A.; Raswiswi, E.; Shandukani, B.; Misani, E.; et al. Reviewing South Africa’s malaria elimination strategy (2012–2018): Progress, challenges and priorities. Malar. J. 2016, 15, 438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elimination 8. Annual Report 2021. Available online: https://malariaelimination8.org/sites/default/files/publications/e8_annual_report_2021_eng-compressed.pdf (accessed on 5 September 2022).
- Maharaj, R.; Raman, J.; Morris, N.; Moonasar, D.; Durrheim, D.N.; Seocharan, I.; Kruger, P.; Shandukani, B.; Kleinschmidt, I. Epidemiology of malaria in South Africa: From control to elimination. South Afr. Med. J. 2013, 103 Pt 2, 779–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Department of Health. Malaria. Available online: https://www.health.gov.za/malaria/ (accessed on 5 September 2022).
- National Department of Health. National Guidelines for the Treatment of Malaria, South Africa 2018. Available online: https://www.nicd.ac.za/wp-content/uploads/2019/03/National-Guidelines-for-prevention-of-Malaria_updated-08012019-1.pdf (accessed on 10 November 2022).
- Knight, S.E.; Anyachebelu, E.J.; Geddes, R.; Maharaj, R. Impact of delayed introduction of sulfadoxine-pyrimethamine and arthemeter-lumefantrine on malaria epidemiology in KwaZulu-Natal, South Africa. Trop. Med. Int. Health 2009, 14, 1086–1092. [Google Scholar] [CrossRef] [Green Version]
- Coetzee, M.; Kruger, P.; Hunt, R.H.; Durrheim, D.N.; Urbach, J.; Hansford, C.F. Malaria in South Africa: 110 years of learning to control the disease. South Afr. Med. J. 2013, 103 Pt 2, 770–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Department of Health. Malaria Elimination Strategic Plan for South Africa 2019–2023. Available online: https://www.nicd.ac.za/wp-content/uploads/2019/10/MALARIA-ELIMINATION-STRATEGIC-PLAN-FOR-SOUTH-AFRICA-2019-2023-MALARIA-ELIMINATION-STRATEGIC-PLAN-2019-2023.pdf (accessed on 5 September 2022).
- Blumberg, L.; Frean, J.; Moonasar, D.; South African Malaria Elimination Committee. Successfully controlling malaria in South Africa. South Afr. Med. J. 2014, 104 (Suppl. 1), 224–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bath, D.; Cook, J.; Govere, J.; Mathebula, P.; Morris, N.; Hlongwana, K.; Raman, J.; Seocharan, I.; Zitha, A.; Zitha, M.; et al. Effectiveness and cost-effectiveness of reactive, targeted indoor residual spraying for malaria control in low-transmission settings: A cluster-randomised, non-inferiority trial in South Africa. Lancet 2021, 397, 816–827. [Google Scholar] [CrossRef]
- Brooke, B.; Koekemoer, L.; Kruger, P.; Urbach j Misiani, E.; Coetzee, M. Malaria vector control in South Africa. South Afr. Med. J. 2013, 103 Pt 2, 784–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munhenga, G.; Oliver, S.V.; Lobb, L.N.; Mazarire, T.T.; Sekgele, W.; Mashatola, T.; Mabaso, N.; Dlamini, D.M.; Zulu, M.; Moletsane, F.; et al. Malaria risk and receptivity: Continuing development of insecticide resistance in the major malaria vector Anopheles arabiensis in northern KwaZulu-Natal, South Africa. South Afr. Med. J. 2022, 118. [Google Scholar] [CrossRef]
- Cotter, C.; Sturrock, H.J.; Hsiang, M.S.; Liu, J.; Phillips, A.A.; Hwang, J.; Gueye, C.S.; Fullman, N.; Gosling, R.D.; Feachem, R.G. The changing epidemiology of malaria elimination: New strategies for new challenges. Lancet 2013, 382, 900–911. [Google Scholar] [CrossRef]
- Gwarinda, H.B.; Tessema, S.K.; Raman, J.; Greenhouse, B.; Birkholtz, L.M. Parasite genetic diversity reflects continued residual malaria transmission in Vhembe District, a hotspot in the Limpopo Province of South Africa. Malar. J. 2021, 20, 96. [Google Scholar] [CrossRef] [PubMed]
- Frean, J.; Brooke, B.; Thomas, J.; Blumberg, L. Odyssean malaria outbreaks in Gauteng Province, South Africa, 2007–2013. South Afr. Med. J. 2014, 104, 335–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burkot, T.R.; Bugoro, H.; Apairamo, A.; Cooper, R.D.; Echeverry, D.F.; Odabasi, D.; Beebe, N.W.; Makuru, V.; Xiao, H.; Davidson, J.R.; et al. Spatial-temporal heterogeneity in malaria receptivity is best estimated by vector biting rates in areas nearing elimination. Parasites Vectors 2018, 11, 606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, A.; Dandalo, L.; Munhenga, G.; Dahan-Moss, Y.; Mbokazi, F.; Ngxongo, S.; Coetzee, M.; Koekemoer, L.L.; Brooke, B.D. A new malaria vector mosquito in South Africa. Sci. Rep. 2017, 7, 43779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, A.; Dahan-Moss, Y.; Duncan, F.; Qwabe, B.; Coetzee, M.; Koekemoer, L.L.; Brooke, B.D. Anopheles parensis contributes to residual malaria transmission in South Africa. Malar. J. 2019, 18, 257. [Google Scholar] [CrossRef] [PubMed]
- Dandalo, L.C.; Brooke, B.D.; Munhenga, G.; Lobb, L.N.; Zikhali, J.; Ngxongo, S.P.; Zikhali, P.M.; Msimang, S.; Wood, O.R.; Mofokeng, M.; et al. Population dynamics and Plasmodium falciparum (Haemosporida: Plasmodiidae) infectivity rates for the malaria vector Anopheles arabiensis (Diptera: Culicidae) at Mamfene, KwaZulu-Natal, South Africa. J. Med. Entomol. 2017, 54, 1758–1766. [Google Scholar] [CrossRef] [PubMed]
- malERA Consultative Group on Vector Control. A research agenda for malaria eradication: Vector control. PLoS Med. 2011, 8, e1000401. [Google Scholar] [CrossRef] [Green Version]
- Nkya, T.E.; Fillinger, U.; Sangoro, O.P.; Marubu, R.; Chanda, E.; Mutero, C.M. Six decades of malaria vector control in southern Africa: A review of the entomological evidence-base. Malar. J. 2022, 21, 279. [Google Scholar] [CrossRef]
- Njau, J.; Silal, S.P.; Kollipara, A.; Fox, K.; Balawanth, R.; Yuen, A.; White, L.J.; Moya, M.; Pillay, Y.; Moonasar, D. Investment case for malaria elimination in South Africa: A financing model for resource mobilization to accelerate regional malaria elimination. Malar. J. 2021, 20, 344. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brooke, B.D. Malaria Vector Surveillance and Control in an Elimination Setting in South Africa. Trop. Med. Infect. Dis. 2022, 7, 391. https://doi.org/10.3390/tropicalmed7110391
Brooke BD. Malaria Vector Surveillance and Control in an Elimination Setting in South Africa. Tropical Medicine and Infectious Disease. 2022; 7(11):391. https://doi.org/10.3390/tropicalmed7110391
Chicago/Turabian StyleBrooke, Basil D. 2022. "Malaria Vector Surveillance and Control in an Elimination Setting in South Africa" Tropical Medicine and Infectious Disease 7, no. 11: 391. https://doi.org/10.3390/tropicalmed7110391
APA StyleBrooke, B. D. (2022). Malaria Vector Surveillance and Control in an Elimination Setting in South Africa. Tropical Medicine and Infectious Disease, 7(11), 391. https://doi.org/10.3390/tropicalmed7110391