Role of Arbovirus Infection in Arthritogenic Pain Manifestation—A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Study Selection and Data Extraction
3. Results
Study Selection
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wimalasiri-Yapa, B.; Yapa, H.E.; Huang, X.; Hafner, L.M.; Kenna, T.J.; Frentiu, F.D. Zika Virus and Arthritis/Arthralgia: A Systematic Review and Meta-Analysis. Viruses 2020, 12, 1137. [Google Scholar] [CrossRef] [PubMed]
- Waggoner, J.J.; Gresh, L.; Vargas, M.J.; Ballesteros, G.; Tellez, Y.; Soda, K.J.; Sahoo, M.K.; Nunez, A.; Balmaseda, A.; Harris, E.; et al. Viremia and Clinical Presentation in Nicaraguan Patients Infected With Zika Virus, Chikungunya Virus, and Dengue Virus. Clin. Infect. Dis. 2016, 63, 1584–1590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tritsch, S.R.; Encinales, L.; Pacheco, N.; Cadena, A.; Cure, C.; McMahon, E.; Watson, H.; Porras Ramirez, A.; Mendoza, A.R.; Li, G.; et al. Chronic Joint Pain 3 Years after Chikungunya Virus Infection Largely Characterized by Relapsing-remitting Symptoms. J. Rheumatol. 2020, 47, 1267–1274. [Google Scholar] [CrossRef]
- Azeredo, E.L.; Dos Santos, F.B.; Barbosa, L.S.; Souza, T.M.A.; Badolato-Corrêa, J.; Sánchez-Arcila, J.C.; Nunes, P.C.G.; de-Oliveira-Pinto, L.M.; de Filippis, A.M.; Dal Fabbro, M.; et al. Clinical and Laboratory Profile of Zika and Dengue Infected Patients: Lessons Learned From the Co-circulation of Dengue, Zika and Chikungunya in Brazil. PLoS Curr. 2018, 10. [Google Scholar] [CrossRef] [PubMed]
- Young, P.R. Arboviruses: A Family on the Move. Adv. Exp. Med. Biol. 2018, 1062, 1–10. [Google Scholar] [CrossRef]
- Brito Ferreira, M.L.; Militão de Albuquerque, M.F.P.; de Brito, C.A.A.; de Oliveira França, R.F.; Porto Moreira, Á.J.; de Morais Machado, M.; da Paz Melo, R.; Medialdea-Carrera, R.; Dornelas Mesquita, S.; Lopes Santos, M.; et al. Neurological disease in adults with Zika and chikungunya virus infection in Northeast Brazil: A prospective observational study. Lancet Neurol. 2020, 19, 826–839. [Google Scholar] [CrossRef]
- Burt, F.J.; Chen, W.; Miner, J.J.; Lenschow, D.J.; Merits, A.; Schnettler, E.; Kohl, A.; Rudd, P.A.; Taylor, A.; Herrero, L.J.; et al. Chikungunya virus: An update on the biology and pathogenesis of this emerging pathogen. Lancet Infect. Dis. 2017, 17, e107–e117. [Google Scholar] [CrossRef]
- Burt, F.J.; Rolph, M.S.; Rulli, N.E.; Mahalingam, S.; Heise, M.T. Chikungunya: A re-emerging virus. Lancet 2012, 379, 662–671. [Google Scholar] [CrossRef]
- Alves-Leon, S.V.; Ferreira, C.D.S.; Herlinger, A.L.; Fontes-Dantas, F.L.; Rueda-Lopes, F.C.; Francisco, R.D.S., Jr.; Goncalves, J.; de Araujo, A.D.; Rego, C.; Higa, L.M.; et al. Exome-Wide Search for Genes Associated With Central Nervous System Inflammatory Demyelinating Diseases Following CHIKV Infection: The Tip of the Iceberg. Front. Genet. 2021, 12, 639364. [Google Scholar] [CrossRef]
- Rueda-Lopes, F.C.; da Cruz, L.C.H.; Fontes, F.L.; Herlinger, A.L.; da Costa Ferreira Junior, O.; de Aguiar, R.S.; Vasconcelos, C.C.F.; do Nascimento, O.J.M.; Alves-Leon, S.V. Clinical and magnetic resonance imaging patterns of extensive Chikungunya virus-associated myelitis. J. Neurovirol. 2021, 27, 616–625. [Google Scholar] [CrossRef]
- Kumar, R.; Shrivastava, T.; Samal, S.; Ahmed, S.; Parray, H.A. Antibody-based therapeutic interventions: Possible strategy to counter chikungunya viral infection. Appl. Microbiol. Biotechnol. 2020, 104, 3209–3228. [Google Scholar] [CrossRef] [PubMed]
- de Almeida Barreto, F.K.; Montenegro, R.M., Jr.; Fernandes, V.O.; Oliveira, R.; de Araujo Batista, L.A.; Hussain, A.; de Goes Cavalcanti, L.P. Chikungunya and diabetes, what do we know? Diabetol. Metab. Syndr. 2018, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- Kiely, P.D.W.; Lloyd, M.E. Ankle arthritis—An important signpost in rheumatologic practice. Rheumatology 2021, 60, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Benjamanukul, S.; Osiri, M.; Chansaenroj, J.; Chirathaworn, C.; Poovorawan, Y. Rheumatic manifestations of Chikungunya virus infection: Prevalence, patterns, and enthesitis. PLoS ONE 2021, 16, e0249867. [Google Scholar] [CrossRef] [PubMed]
- Zaid, A.; Gerardin, P.; Taylor, A.; Mostafavi, H.; Malvy, D.; Mahalingam, S. Chikungunya Arthritis: Implications of Acute and Chronic Inflammation Mechanisms on Disease Management. Arthritis Rheumatol. 2018, 70, 484–495. [Google Scholar] [CrossRef] [Green Version]
- Pathak, H.; Mohan, M.C.; Ravindran, V. Chikungunya arthritis. Clin. Med. 2019, 19, 381–385. [Google Scholar] [CrossRef]
- de Lima Cavalcanti, T.Y.V.; Pereira, M.R.; de Paula, S.O.; Franca, R.F.O. A Review on Chikungunya Virus Epidemiology, Pathogenesis and Current Vaccine Development. Viruses 2022, 14, 969. [Google Scholar] [CrossRef]
- Bedoui, Y.; Septembre-Malaterre, A.; Giry, C.; Jaffar-Bandjee, M.C.; Selambarom, J.; Guiraud, P.; Gasque, P. Robust COX-2-mediated prostaglandin response may drive arthralgia and bone destruction in patients with chronic inflammation post-chikungunya. PLoS Negl. Trop. Dis. 2021, 15, e0009115. [Google Scholar] [CrossRef]
- Pineda, C.; Munoz-Louis, R.; Caballero-Uribe, C.V.; Viasus, D. Chikungunya in the region of the Americas. A challenge for rheumatologists and health care systems. Clin. Rheumatol. 2016, 35, 2381–2385. [Google Scholar] [CrossRef] [Green Version]
- Venigalla, S.S.K.; Premakumar, S.; Janakiraman, V. A possible role for autoimmunity through molecular mimicry in alphavirus mediated arthritis. Sci. Rep. 2020, 10, 938. [Google Scholar] [CrossRef]
- Reddy, V.; Desai, A.; Krishna, S.S.; Vasanthapuram, R. Molecular Mimicry between Chikungunya Virus and Host Components: A Possible Mechanism for the Arthritic Manifestations. PLoS Negl. Trop. Dis. 2017, 11, e0005238. [Google Scholar] [CrossRef] [PubMed]
- Blettery, M.; Brunier, L.; Banydeen, R.; Derancourt, C.; de Bandt, M. Management of acute-stage chikungunya disease: Contribution of ultrasonographic joint examination. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2019, 84, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pouriayevali, M.H.; Rezaei, F.; Jalali, T.; Baniasadi, V.; Fazlalipour, M.; Mostafavi, E.; Khakifirouz, S.; Mohammadi, T.; Fereydooni, Z.; Tavakoli, M.; et al. Imported cases of Chikungunya virus in Iran. BMC Infect. Dis. 2019, 19, 1004. [Google Scholar] [CrossRef] [Green Version]
- Bouquillard, E.; Fianu, A.; Bangil, M.; Charlette, N.; Ribéra, A.; Michault, A.; Favier, F.; Simon, F.; Flipo, R.M. Rheumatic manifestations associated with Chikungunya virus infection: A study of 307 patients with 32-month follow-up (RHUMATOCHIK study). Jt. Bone Spine 2018, 85, 207–210. [Google Scholar] [CrossRef]
- Ribeiro, A.M.B.M.; Pimentel, C.M.; Guerra, A.C.C.G.; Lima, M.R.D.O. Physiotherapeutic approach on the late phase of chikungunya: A case report. Rev. Bras. Saúde Matern. Infant. 2016, 16, S51–S56. [Google Scholar] [CrossRef] [Green Version]
- Mostafavi, H.; Abeyratne, E.; Zaid, A.; Taylor, A. Arthritogenic Alphavirus-Induced Immunopathology and Targeting Host Inflammation as A Therapeutic Strategy for Alphaviral Disease. Viruses 2019, 11, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Andrade, D.C.; Jean, S.; Clavelou, P.; Dallel, R.; Bouhassira, D. Chronic pain associated with the Chikungunya Fever: Long lasting burden of an acute illness. BMC Infect. Dis. 2010, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Brito, C.A.; Sohsten, A.K.; Leitao, C.C.; Brito, R.C.; Valadares, L.D.; Fonte, C.A.; Mesquita, Z.B.; Cunha, R.V.; Luz, K.; Leao, H.M.; et al. Pharmacologic management of pain in patients with Chikungunya: A guideline. Rev. Soc. Bras. Med. Trop. 2016, 49, 668–679. [Google Scholar] [CrossRef] [Green Version]
- Bouhassira, D. Neuropathic pain: Definition, assessment and epidemiology. Rev. Neurol. 2019, 175, 16–25. [Google Scholar] [CrossRef]
- National Collaborating Centre for Methods and Tools. Critical Appraisal Skills Programme (CASP) Tools. Available online: https://casp-uk.net/glossary/systematic-review (accessed on 25 July 2022).
- Rosso, F.; Rodriguez, S.; Cedano, J.A.; Mora, B.L.; Moncada, P.A.; Velez, J.D. Chikungunya in solid organ transplant recipients, a case series and literature review. Transpl Infect Dis 2018, 20, e12978. [Google Scholar] [CrossRef]
- Ravindran, V.; Alias, G. Efficacy of combination DMARD therapy vs. hydroxychloroquine monotherapy in chronic persistent chikungunya arthritis: A 24-week randomized controlled open label study. Clin. Rheumatol. 2017, 36, 1335–1340. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, M.; Pandey, N.; Rastogi, M.; Dogra, S.; Singh, S.K. Chikungunya virus modulates the miRNA expression patterns in human synovial fibroblasts. J. Med. Virol. 2020, 92, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Hoarau, J.J.; Jaffar Bandjee, M.C.; Krejbich Trotot, P.; Das, T.; Li-Pat-Yuen, G.; Dassa, B.; Denizot, M.; Guichard, E.; Ribera, A.; Henni, T.; et al. Persistent chronic inflammation and infection by Chikungunya arthritogenic alphavirus in spite of a robust host immune response. J. Immunol. 2010, 184, 5914–5927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, M.; de Lima, R.C.; de Azeredo, E.L.; Dos Santos, F.B. Analysis of a Routinely Used Commercial Anti-Chikungunya IgM ELISA Reveals Cross-Reactivities with Dengue in Brazil: A New Challenge for Differential Diagnosis? Diagnostics 2021, 11, 819. [Google Scholar] [CrossRef]
- Hua, C.; Combe, B. Chikungunya Virus-Associated Disease. Curr. Rheumatol. Rep. 2017, 19, 69. [Google Scholar] [CrossRef]
- Tiwari, V.; Bergman, M.J. Viral Arthritis. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2022. [Google Scholar]
- Laine, M.; Luukkainen, R.; Toivanen, A. Sindbis viruses and other alphaviruses as cause of human arthritic disease. J. Intern. Med. 2004, 256, 457–471. [Google Scholar] [CrossRef]
- Deane, K.D.; Holers, V.M. Rheumatoid Arthritis Pathogenesis, Prediction, and Prevention: An Emerging Paradigm Shift. Arthritis Rheumatol. 2021, 73, 181–193. [Google Scholar] [CrossRef]
- van Steenbergen, H.W.; Aletaha, D.; Beaart-van de Voorde, L.J.; Brouwer, E.; Codreanu, C.; Combe, B.; Fonseca, J.E.; Hetland, M.L.; Humby, F.; Kvien, T.K.; et al. EULAR definition of arthralgia suspicious for progression to rheumatoid arthritis. Ann. Rheum. Dis. 2017, 76, 491–496. [Google Scholar] [CrossRef] [Green Version]
- Ten Brinck, R.M.; van Steenbergen, H.W.; Mangnus, L.; Burgers, L.E.; Reijnierse, M.; Huizinga, T.W.; van der Helm-van Mil, A.H. Functional limitations in the phase of clinically suspect arthralgia are as serious as in early clinical arthritis; a longitudinal study. RMD Open 2017, 3, e000419. [Google Scholar] [CrossRef] [Green Version]
- Amdekar, S.; Parashar, D.; Alagarasu, K. Chikungunya Virus-Induced Arthritis: Role of Host and Viral Factors in the Pathogenesis. Viral Immunol. 2017, 30, 691–702. [Google Scholar] [CrossRef]
- Chirathaworn, C.; Chansaenroj, J.; Poovorawan, Y. Cytokines and Chemokines in Chikungunya Virus Infection: Protection or Induction of Pathology. Pathogens 2020, 9, 415. [Google Scholar] [CrossRef] [PubMed]
- de Hair, M.J.; Leclerc, P.; Newsum, E.C.; Maijer, K.I.; van de Sande, M.G.; Ramwadhdoebe, T.H.; van Schaardenburg, D.; van Baarsen, L.G.; Korotkova, M.; Gerlag, D.M.; et al. Expression of Prostaglandin E2 Enzymes in the Synovium of Arthralgia Patients at Risk of Developing Rheumatoid Arthritis and in Early Arthritis Patients. PLoS ONE 2015, 10, e0133669. [Google Scholar] [CrossRef] [PubMed]
- Crofford, L.J. Use of NSAIDs in treating patients with arthritis. Arthritis Res. Ther. 2013, 15 (Suppl. 3), S2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol. 2020, 180, 114147. [Google Scholar] [CrossRef]
- Piantadosi, A.; Kanjilal, S. Diagnostic Approach for Arboviral Infections in the United States. J. Clin. Microbiol. 2020, 58. [Google Scholar] [CrossRef]
- Kumar, R.; Ahmed, S.; Parray, H.A.; Das, S. Chikungunya and arthritis: An overview. Travel Med. Infect. Dis. 2021, 44, 102168. [Google Scholar] [CrossRef]
- Kellstein, D.; Fernandes, L. Symptomatic treatment of dengue: Should the NSAID contraindication be reconsidered? Postgrad. Med. 2019, 131, 109–116. [Google Scholar] [CrossRef]
- Pan, T.; Peng, Z.; Tan, L.; Zou, F.; Zhou, N.; Liu, B.; Liang, L.; Chen, C.; Liu, J.; Wu, L.; et al. Nonsteroidal Anti-inflammatory Drugs Potently Inhibit the Replication of Zika Viruses by Inducing the Degradation of AXL. J. Virol. 2018, 92. [Google Scholar] [CrossRef] [Green Version]
- Marin, G.E.; Neag, M.A.; Burlacu, C.C.; Buzoianu, A.D. The Protective Effects of Nutraceutical Components in Methotrexate-Induced Toxicity Models-An Overview. Microorganisms 2022, 10, 2053. [Google Scholar] [CrossRef]
- Alqarni, A.M.; Zeidler, M.P. How does methotrexate work? Biochem. Soc. Trans. 2020, 48, 559–567. [Google Scholar] [CrossRef]
- Trevethick, M.A.; Mantell, S.J.; Stuart, E.F.; Barnard, A.; Wright, K.N.; Yeadon, M. Treating lung inflammation with agonists of the adenosine A2A receptor: Promises, problems and potential solutions. Br. J. Pharmacol. 2008, 155, 463–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cronstein, B.N.; Aune, T.M. Methotrexate and its mechanisms of action in inflammatory arthritis. Nat. Rev. Rheumatol. 2020, 16, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Harrington, R.; Al Nokhatha, S.A.; Conway, R. JAK Inhibitors in Rheumatoid Arthritis: An Evidence-Based Review on the Emerging Clinical Data. J. Inflamm. Res. 2020, 13, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Gibson, W.; Wand, B.M.; Meads, C.; Catley, M.J.; O’Connell, N.E. Transcutaneous electrical nerve stimulation (TENS) for chronic pain—An overview of Cochrane Reviews. Cochrane Database Syst. Rev. 2019, 4, CD011890. [Google Scholar] [CrossRef]
- Macedo, L.B.; Josue, A.M.; Maia, P.H.; Camara, A.E.; Brasileiro, J.S. Effect of burst TENS and conventional TENS combined with cryotherapy on pressure pain threshold: Randomised, controlled, clinical trial. Physiotherapy 2015, 101, 155–160. [Google Scholar] [CrossRef]
Author; Year | Country | Ethnicity | Study Design | Diagnoses | Treatments | Relevant Key Findings |
---|---|---|---|---|---|---|
F. Rosso et al., 2018 [31] | Colombia | Colombian | Case Report and Literature Review | Not mentioned | Corticosteroids in the management of inflammatory arthritis | Patients in this study underwent organ transplantation. Some of them developed leucopenia, neutropenia, and thrombocytopenia, and all of them developed lymphopenia. None developed graft rejection or died in process. |
E. Bouquillard et al., 2017 [24] | France | French | Original article | Serological test and clinical symptoms | After the acute phase, joint pain is well-controlled with analgesics and NSAIDs; corticotherapy may be effective at moderate doses; and Chloroquine salt are sometimes prescribed, particularly in the case of chronic joints that are non-responsive to analgesics and NSAIDs. | Chronic joint pain was associated with synovitis of the patients, affecting primarily the wrists, the proximal interphalangeal joints of the fingers, and the ankles. Attempts to detect the viral genome in joint fluid and synovial tissue using the RT-PCR technique were repeatedly unsuccessful. |
Ravindran et al., 2016 [32] | India | Indian | Original article | Clinical symptoms and serological test | DMARD combination to Chikungunya arthritis (CA); triple combination with methotrexate, sulfasalazine, and hydroxychloroquine; monotherapy with hydroxychloroquine | Treatment with combination therapy leads to substantial improvement and reduces disability and pain in CA; levels of cytokines such as interleukin (IL)-6, IL-8 IL-13, and TNF; (MCP)-1; and (MIP)-1 also appear to play important roles in the pathogenesis of CA. Triple therapy is superior than monotherapy. |
M. Blettery et al., 2019 [22] | France | French | Original article | Serological tests or PCR, then joints imaging studies by Doppler ultrasonography (DUS) | Not mentioned | DUS of painful joints revealed effusions in 92.8%of them (unilateral). Subcutaneous inflammatory infiltrations of the ankles were revealed at 29% of patients. Bone erosion was not observed. |
A. Ribeiro et al., 2016 [25] | Brazil | Brazilian | Case Reports | Clinical symptoms. | Anti-inflammatory and analgesics drugs; in parallel, for local joints, applications include continuous ultrasound, infrared laser, and TENS-burst | The association of ultrasound, infrared laser, and TENS may accelerate the healing process by collaborating in different ways in cell recovery, speed of nerve conductions and collagen production, and extensibility. It could reduce inflammation, pain, and joints stiffness. |
M.H. Pouriayevali, et al., 2019 [23] | Iran | Iranian | Original article | Serological test (ELISA and PCR tests) and clinical symptoms | Not mentioned | Correlation between abroad travel history and CHIKV infection; also, Iran-5300 strain showed a rare non-synonymous substitution T/C at nucleotide 10,560. |
Y. Bedoui et al., 2021 [18] | France | French | Original article | Serological test, RT-PCR, immunohistochemistry, cytotoxicity assays | Methotrexate and dexamethasone | PIC and CHIKV enhanced mRNA expression of COX-2; PIC increased the mRNA levels of cPLA2α and of mPGES-1, two other central enzymes in PGE2 production; IFNβ upregulated cPLA2α and COX-2 transcription levels; MTX failed to control the expression of all these enzymes, but dexamethasone was able to control the capacity of pro-inflammatory cytokines. |
M. Agrawal et al., 2019 [33] | India | Indian | Original article | Not applicable | Not applicable | The modulation of AKT3 induces the TNF-α-mediated autophagy and cytokine secretion. Additionally, AKT3 has been reported to act via PI3K/AKT/mTOR pathway, which activates the antiapoptotic genes and sensitizes the fibroblasts to TNF-α and TRAIL-mediated apoptosis. Therefore, during CHIKV infection, suppression of the robust inflammatory response may be regulated by the induction of hsa-miR-4717-3p through AKT3 gene target. |
J. J. Hoarau et al., 2010 [34] | France | French | Original article | RT-PCR, Mac-ELISA, Clinical examinations and biological symptoms; PFU evaluation, immunochemistry and Western blot analysis | Methotrexate | CHIKV (mRNA and proteins) persisting in synovial macrophages could contribute to tissue injuries, apoptosis in vitro, fibrosis, and a polarized inflammatory response reminiscent of rheumatoid arthritis. The expression of immunoregulatory cytokines, such as IL-10 and TGF-β1, was demonstrated at T0 (time 0, considered before symptoms appearance) and M6 (Month 6). |
M.d.R.Q. Lima et al., 2021 [35] | Brazil | Brazilian | Original article | Mac-ELISA, RT-PCR | Not mentioned | The Euroimmun anti-CHIKV IgM ELISA test showed 100% sensitivity and 25.3% specificity due to cross reactivities observed with dengue. IgM positive and acute cases of dengue, the assay showed cross-reactivity of 46.7% and 31.6%, respectively, and so, molecular tests, such as RT-PCR, was used as an option to confirm cross-reactivity or not. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Carvalho Cardoso, R.; Rezende, B.; Alencar, A.K.N.; Fontes-Dantas, F.L.; Montes, G.C. Role of Arbovirus Infection in Arthritogenic Pain Manifestation—A Systematic Review. Trop. Med. Infect. Dis. 2022, 7, 390. https://doi.org/10.3390/tropicalmed7110390
de Carvalho Cardoso R, Rezende B, Alencar AKN, Fontes-Dantas FL, Montes GC. Role of Arbovirus Infection in Arthritogenic Pain Manifestation—A Systematic Review. Tropical Medicine and Infectious Disease. 2022; 7(11):390. https://doi.org/10.3390/tropicalmed7110390
Chicago/Turabian Stylede Carvalho Cardoso, Rafaella, Bismarck Rezende, Allan Kardec Nogueira Alencar, Fabrícia Lima Fontes-Dantas, and Guilherme Carneiro Montes. 2022. "Role of Arbovirus Infection in Arthritogenic Pain Manifestation—A Systematic Review" Tropical Medicine and Infectious Disease 7, no. 11: 390. https://doi.org/10.3390/tropicalmed7110390
APA Stylede Carvalho Cardoso, R., Rezende, B., Alencar, A. K. N., Fontes-Dantas, F. L., & Montes, G. C. (2022). Role of Arbovirus Infection in Arthritogenic Pain Manifestation—A Systematic Review. Tropical Medicine and Infectious Disease, 7(11), 390. https://doi.org/10.3390/tropicalmed7110390