Intestinal Helminth Infections in Ghanaian Children from the Ashanti Region between 2007 and 2008—A Retrospective Cross-Sectional Real-Time PCR-Based Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Type and Sample Collection
2.2. Applied Real-Time PCRs for the Detection of Helminth DNA in Stool Samples, Inclusion and Exclusion Criteria and Statistical Assessment
2.3. Ethics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Ascaris lumbricoides-specific real-time PCR oligonucleotides | |
forward primer | 5′-GTAATAGCAGTCGGCGGTTTCTT-3′ |
reverse primer | 5′-GCCCAACATGCCACCTATTC-3′ |
probe | 5′-ROX-TTGGCGGACAATTGCATGCGAT-BHQ2-3′ |
positive control insert | 5′-GGTGATGTAATAGCAGTCGGCGGTTTCTTTTTTTTTGGCGGACAATTGCATGCGATTTGCTATGTGTTGAGGGAGAATAGGTGGCATGTTGGGCTTGTTA-3′ |
Strongyloides stercoralis-specific real-time PCR oligonucleotides | |
forward primer | 5′-GAATTCCAAGTAAACGTAAGTCATTAGC-3′ |
reverse primer | 5′-TGCCTCTGGATATTGCTCAGTTC-3′ |
probe | 5′-CY5-ACACACCGGCCGTCGCTGC-BHQ2-3′ |
positive control insert | 5′-AACGAGGAATTCCAAGTAAACGTAAGTCATTAGCTTACATTGATTACGTCCCTGCCCTTTGTACACACCGGCCGTCGCTGCCCGGAACTGAGCAATATCCAGAGGCAGGAAGA-3′ |
Ancyclostoma spp.-specific real-time PCR oligonucleotides | |
forward primer | 5′-GAATGACAGCAAACTCGTTGTTG-3′ |
reverse primer | 5′-ATACTAGCCACTGCCGAAACGT-3′ |
probe | 5′-YAKYE-ATCGTTTACCGACTTTAG-MGBEQ-3′ |
positive control insert | 5′-TGCGCTGAATGACAGCAAACTCGTTGTTGCTGCTGAATCGTTTACCGACTTTAGAACGTTTCGGCAGTGGCTAGTATAACAAC-3′ |
Necator americanus-specific real-time PCR oligonucleotides | |
forward primer | 5′-CTGTTTGTCGAACGGTACTTGC-3′ |
reverse primer | 5′-ATAACAGCGTGCACATGTTGC-3′ |
probe | 5′-FAM-CTGTACTACGCATTGTATAC-MGBEQ-3′ |
positive control insert | 5′-GAACACTGTTTGTCGAACGGTACTTGCTCTGTACTACGCATTGTATACGTGTTCAGCAATTCCCGTTTAAGTGAAGAACACACGTGCAACATGTGCACGCTGTTATTCACTACG-3′ |
Trichuris trichiura-specific real-time PCR oligonucleotides | |
forward primer | 5′-TTGAAACGACTTGCTCATCAACTT-3′ |
reverse primer | 5′-CTGATTCTCCGTTAACCGTTGTC-3′ |
probe | 5′-YAKYE-CGATGGTACGCTACGTGCTTACCATGG-MGBEQ-3′ |
positive control insert | 5′-CGACGATGCTTTGAAACGACTTGCTCATCAACTTTCGATGGTACGCTACGTGCTTACCATGGTGACAACGGTTAACGGAGAATCAGGGTTCGGCTC-3′ |
Schistosoma spp.-specific real-time PCR oligonucleotides | |
forward primer | 5′-GGTCTAGATGACTTGATYGAGATGCT-3′ |
reverse primer | 5′-TCCCGAGCGYGTATAATGTCATTA-3′ |
probe | 5′-FAM-TGGGTTGTGCTCGAGTCGTGGC-BHQ1-3′ |
positive control insert | 5′-TAGTCTGGTCTAGATGACTTGATTGAGATGCTGCGGTGGGTTGTGCTCGAGTCGTGGCTTAATGACATTATACACGCTCGGGATAATTC-3′ |
Taenia solium-specific real-time PCR oligonucleotides | |
forward primer | 5′-ATGGATCAATCTGGGTGGAGTT-3′ |
reverse primer | 5′-ATCGCAGGGTAAGAAAAGAAGGT-3′ |
probe | 5′-Cy5-TGGTACTGCTGTGGCGGCGG-BHQ2-3′ |
positive control insert | 5′-TTGACTGATGATGGATCAATCTGGGTGGAGTTGGTGGTACTGCTGTGGCGGCGGTATTGTCAACTTCTTCTGTACCTTCTTTTCTTACCCTGCGATGGGGTGCCTA-3′ |
Taenia saginata-specific real-time PCR oligonucleotides | |
forward primer | 5′-GCGTCGTCTTTGCGTTACAC-3′ |
reverse primer | 5′-TGACACAACCGCGCTCTG-3′ |
probe | 5′-ROX-CCACAGCACCAGCGACAGCAGCAA-BHQ2-3′ |
positive control insert | 5′-GCCCCATCATGCGTCGTCTTTGCGTTACACGTGGCGATGTTGCTGCTGTCGCTGGTGCTGTGGTGGCGGCGCAGAGCGCGGTTGTGTCACCGTTGGTGG-3′ |
Enterobius vermicularis-specific real-time PCR oligonucleotides | |
forward primer | 5′CGGTGTAATTTTGTTGGTGTCTATG-3′ |
reverse primer | 5′-TGGCAGCATTGCAAACTAATG-3′ |
probe | 5′-FAM-TGTGCCAGTCAACGCCTAAACCGT-C-BHQ1-3′ |
positive control insert | 5′-TGTAATATAACGGTGTAATTTTGTTGGTGTCTATGCTTTGTGCCAGTCAACGCCTAAACCGTCGTTGATGTGTGTATAAGATGAAGCATAAAGCAAAAGGTTTGCTACTTGTAGCAGA-CTAGACTTAATAAGCATTAGTTTGCAATGCTGCCAACTATGATAA-3′ |
Hymenolepis nana-specific real-time PCR oligonucleotides | |
forward primer | 5′-CATTGTGTACCAAATTGATGATGAGTA-3′ |
reverse primer | 5′-CAACTGACAGCATGTTTCGATATG-3′ |
probe | 5′-JOE-CGTGTGCGCCTCTGGCTTACCG-BHQ1-3′ |
positive control insert | 5′-ACACTTATTACATTGTGTACCAAATTGATGATGAGTAGACGTGTGCGCCTCTGGCTTACCGTTTACTGCCTCGTCATATCGAAACATGCTGTCAGTTGCTGCTGCTCA-3′ |
References
- Ananthakrishnan, S.; Nalini, P.; Pani, S.P. Intestinal geohelminthiasis in the developing world. Natl. Med. J. India 1997, 10, 67–71. [Google Scholar] [PubMed]
- Markell, E.K. Intestinal nematode infections. Pediatr. Clin. N. Am. 1985, 32, 971–986. [Google Scholar] [CrossRef]
- Shrestha, A.; Schindler, C.; Odermatt, P.; Gerold, J.; Erismann, S.; Sharma, S.; Koju, R.; Utzinger, J.; Cissé, G. Intestinal parasite infections and associated risk factors among schoolchildren in Dolakha and Ramechhap districts, Nepal: A cross-sectional study. Parasit. Vectors 2018, 11, 532. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.E.; Werkman, M.; Dunn, J.C.; Anderson, R.M. Current epidemiological evidence for predisposition to high or low intensity human helminth infection: A systematic review. Parasit. Vectors 2018, 11, 65. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.M. The population dynamics and epidemiology of intestinal nematode infections. Trans. R. Soc. Trop. Med. Hyg. 1986, 80, 686–696. [Google Scholar] [CrossRef]
- Karagiannis-Voules, D.A.; Biedermann, P.; Ekpo, U.F.; Garba, A.; Langer, E.; Mathieu, E.; Midzi, N.; Mwinzi, P.; Polderman, A.M.; Raso, G.; et al. Spatial and temporal distribution of soil-transmitted helminth infection in sub-Saharan Africa: A systematic review and geostatistical meta-analysis. Lancet Infect. Dis. 2015, 15, 74–84. [Google Scholar] [CrossRef]
- Basavaraju, S.V.; Schantz, P. Soil-transmitted helminths and Plasmodium falciparum malaria: Epidemiology, clinical manifestations, and the role of nitric oxide in malaria and geohelminth co-infection. Do worms have a protective role in P. falciparum infection? Mt. Sinai. J. Med. 2006, 73, 1098–1105. [Google Scholar]
- Eziefula, A.C.; Brown, M. Intestinal nematodes: Disease burden, deworming and the potential importance of co-infection. Curr. Opin. Infect. Dis. 2008, 21, 516–522. [Google Scholar] [CrossRef]
- Yatich, N.J.; Yi, J.; Agbenyega, T.; Turpin, A.; Rayner, J.C.; Stiles, J.K.; Ellis, W.O.; Funkhouser, E.; Ehiri, J.E.; Williams, J.H.; et al. Malaria and intestinal helminth co-infection among pregnant women in Ghana: Prevalence and risk factors. Am. J. Trop. Med. Hyg. 2009, 80, 896–901. [Google Scholar] [CrossRef] [Green Version]
- Hartgers, F.C.; Obeng, B.B.; Boakye, D.; Yazdanbakhsh, M. Immune responses during helminth-malaria co-infection: A pilot study in Ghanaian school children. Parasitology 2008, 135, 855–860. [Google Scholar] [CrossRef]
- Donohue, R.E.; Cross, Z.K.; Michael, E. The extent, nature, and pathogenic consequences of helminth polyparasitism in humans: A meta-analysis. PLoS Negl. Trop. Dis. 2019, 13, e0007455. [Google Scholar] [CrossRef] [PubMed]
- McCarty, T.R.; Turkeltaub, J.A.; Hotez, P.J. Global progress towards eliminating gastrointestinal helminth infections. Curr. Opin. Gastroenterol. 2014, 30, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Watkins, W.E.; Pollitt, E. “Stupidity or worms”: Do intestinal worms impair mental performance? Psychol. Bull. 1997, 121, 171–191. [Google Scholar] [CrossRef] [PubMed]
- Guyatt, H. Do intestinal nematodes affect productivity in adulthood? Parasitol. Today 2000, 16, 153–158. [Google Scholar] [CrossRef]
- Yatich, N.J.; Jolly, P.E.; Funkhouser, E.; Agbenyega, T.; Rayner, J.C.; Ehiri, J.E.; Turpin, A.; Stiles, J.K.; Ellis, W.O.; Jiang, Y.; et al. The effect of malaria and intestinal helminth coinfection on birth outcomes in Kumasi, Ghana. Am. J. Trop. Med. Hyg. 2010, 82, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Roberts, T.; Gravett, C.A.; Velu, P.P.; Theodoratou, E.; Wagner, T.A.; Zhang, J.S.; Campbell, H.; Rubens, C.E.; Gravett, M.G.; Rudan, I. Epidemiology and aetiology of maternal parasitic infections in low- and middle-income countries. J. Glob. Health 2011, 1, 189–200. [Google Scholar]
- Orr, A.R.; Quagraine, J.E.; Suwondo, P.; George, S.; Harrison, L.M.; Dornas, F.P.; Evans, B.; Caccone, A.; Humphries, D.; Wilson, M.D.; et al. Genetic Markers of Benzimidazole Resistance among Human Hookworms (Necator americanus) in Kintampo North Municipality, Ghana. Am. J. Trop. Med. Hyg. 2019, 100, 351–356. [Google Scholar] [CrossRef] [Green Version]
- Humphries, D.; Nguyen, S.; Kumar, S.; Quagraine, J.E.; Otchere, J.; Harrison, L.M.; Wilson, M.; Cappello, M. Effectiveness of Albendazole for Hookworm Varies Widely by Community and Correlates with Nutritional Factors: A Cross-Sectional Study of School-Age Children in Ghana. Am. J. Trop. Med. Hyg. 2017, 96, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Humphries, D.; Simms, B.T.; Davey, D.; Otchere, J.; Quagraine, J.; Terryah, S.; Newton, S.; Berg, E.; Harrison, L.M.; Boakye, D.; et al. Hookworm infection among school age children in Kintampo north municipality, Ghana: Nutritional risk factors and response to albendazole treatment. Am. J. Trop. Med. Hyg. 2013, 89, 540–548. [Google Scholar] [CrossRef]
- Orish, V.N.; Ofori-Amoah, J.; Amegan-Aho, K.H.; Osisiogu, E.U.; Osei-Yeboah, J.; Lokpo, S.Y.; Allotey, E.A.; Adu-Amankwaah, J.; Azuma, D.E.; Agordoh, P.D. Eosinophilia in school-going children with Plasmodium falciparum and helminth infections in the Volta Region of Ghana. Pan. Afr. Med. J. 2021, 38, 277. [Google Scholar] [CrossRef]
- Adu-Gyasi, D.; Asante, K.P.; Frempong, M.T.; Gyasi, D.K.; Iddrisu, L.F.; Ankrah, L.; Dosoo, D.; Adeniji, E.; Agyei, O.; Gyaase, S.; et al. Epidemiology of soil transmitted Helminth infections in the middle-belt of Ghana, Africa. Parasite Epidemiol. Control 2018, 3, e00071. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, L.J.; Odoom, J.; Pratt, D.; Boatemaa, L.; Asante-Ntim, N.; Attiku, K.; Banahene, B.; Osei-Atweneboana, M.; Verweij, J.J.; Molyneux, D.; et al. Expanding molecular diagnostics of helminthiasis: Piloting use of the GPLN platform for surveillance of soil transmitted helminthiasis and schistosomiasis in Ghana. PLoS Negl. Trop. Dis. 2018, 12, e0006129. [Google Scholar] [CrossRef] [PubMed]
- Mirisho, R.; Neizer, M.L.; Sarfo, B. Prevalence of Intestinal Helminths Infestation in Children Attending Princess Marie Louise Children’s Hospital in Accra, Ghana. J. Parasitol. Res. 2017, 2017, 8524985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayeh-Kumi, P.F.; Addo-Osafo, K.; Attah, S.K.; Tetteh-Quarcoo, P.B.; Obeng-Nkrumah, N.; Awuah-Mensah, G.; Abbey, H.N.; Forson, A.; Cham, M.; Asare, L.; et al. Malaria, helminths and malnutrition: A cross-sectional survey of school children in the South-Tongu district of Ghana. BMC Res. Notes 2016, 9, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armoo, S.; Cunningham, L.J.; Campbell, S.J.; Aboagye, F.T.; Boampong, F.K.; Hamidu, B.A.; Osei-Atweneboana, M.Y.; Stothard, J.R.; Adams, E.R. Detecting Schistosoma mansoni infections among pre-school-aged children in southern Ghana: A diagnostic comparison of urine-CCA, real-time PCR and Kato-Katz assays. BMC Infect. Dis. 2020, 20, 301. [Google Scholar] [CrossRef]
- Kulinkina, A.V.; Kosinski, K.C.; Adjei, M.N.; Osabutey, D.; Gyamfi, B.O.; Biritwum, N.K.; Bosompem, K.M.; Naumova, E.N. Contextualizing Schistosoma haematobium transmission in Ghana: Assessment of diagnostic techniques and individual and community water-related risk factors. Acta Trop. 2019, 194, 195–203. [Google Scholar] [CrossRef]
- Kosinski, K.C.; Kulinkina, A.V.; Tybor, D.; Osabutey, D.; Bosompem, K.M.; Naumova, E.N. Agreement among Four Prevalence Metrics for Urogenital Schistosomiasis in the Eastern Region of Ghana. Biomed. Res. Int. 2016, 2016, 7627358. [Google Scholar] [CrossRef]
- Kulinkina, A.V.; Walz, Y.; Koch, M.; Biritwum, N.K.; Utzinger, J.; Naumova, E.N. Improving spatial prediction of Schistosoma haematobium prevalence in southern Ghana through new remote sensors and local water access profiles. PLoS Negl. Trop. Dis. 2018, 12, e0006517. [Google Scholar] [CrossRef]
- Tetteh, I.K.; Adjei, R.O.; Sasu, S.; Appiah-Kwakye, L. Index of potential contamination: Schistosoma haematobium infections in school children in the Ashanti Region of Ghana. East Afr. Med. J. 2004, 81, 520–523. [Google Scholar] [CrossRef] [Green Version]
- Klumpp, R.K.; Webbe, G. Focal, seasonal and behavioural patterns of infection and transmission of Schistosoma haematobium in a farming village at the Volta Lake, Ghana. J. Trop. Med. Hyg. 1987, 90, 265–281. [Google Scholar]
- Scott, D.; Senker, K.; England, E.C. Epidemiology of human Schistosoma haematobium infection around Volta Lake, Ghana, 1973-75. Bull. World Health Organ. 1982, 60, 89–100. [Google Scholar] [PubMed]
- Lyons, G.R. Schistosomiasis in north-western Ghana. Bull. World Health Organ. 1974, 51, 621–632. [Google Scholar] [PubMed]
- Bozdĕch, V. Das Vorkommen von Schistosoma haematobium (Bilharz) und Schistosoma mansoni (Sambon) in städtische Populationen von Accra-Ghana und Kaduna-Nigeria [The incidence of Schistosoma haematobium (Bilharz) and Schistosoma mansoni (Sambon) in urban populations of Accra-Ghana and of Kaduna-Nigeria (author’s transl)]. Zentralbl. Bakteriol. Orig. A 1973, 224, 264–269. [Google Scholar]
- Kretchy, J.P.; Dzodzomenyo, M.; Ayi, I.; Dwomoh, D.; Agyabeng, K.; Konradsen, F.; Dalsgaard, A. The Incidence, Intensity, and Risk Factors for Soil Transmissible Helminthes Infections among Waste Handlers in a Large Coastal Periurban Settlement in Southern Ghana. J. Environ. Public Health 2021, 2021, 5205793. [Google Scholar] [CrossRef] [PubMed]
- Squire, S.A.; Yang, R.; Robertson, I.; Ayi, I.; Squire, D.S.; Ryan, U. Gastrointestinal helminths in farmers and their ruminant livestock from the Coastal Savannah zone of Ghana. Parasitol, Res. 2018, 117, 3183–3194. [Google Scholar] [CrossRef] [PubMed]
- Amoah, I.D.; Abubakari, A.; Stenström, T.A.; Abaidoo, R.C.; Seidu, R. Contribution of Wastewater Irrigation to Soil Transmitted Helminths Infection among Vegetable Farmers in Kumasi, Ghana. PLoS Negl. Trop. Dis. 2016, 10, e0005161. [Google Scholar] [CrossRef] [Green Version]
- Zoli, A.; Shey-Njila, O.; Assana, E.; Nguekam, J.P.; Dorny, P.; Brandt, J.; Geerts, S. Regional status, epidemiology and impact of Taenia solium cysticercosis in Western and Central Africa. Acta Trop. 2003, 87, 35–42. [Google Scholar] [CrossRef]
- Addy, F.; Romig, T.; Wassermann, M. Genetic characterisation of Fasciola gigantica from Ghana. Vet. Parasitol. Reg. Stud. Rep. 2018, 14, 106–110. [Google Scholar] [CrossRef]
- Ofori, M.; Bogoch, I.I.; Ephraim, R.K. Prevalence of Dicrocoelium dendriticum ova in Ghanaian school children. J. Trop. Pediatr. 2015, 61, 229–230. [Google Scholar] [CrossRef] [Green Version]
- Asare, K.K.; Boampong, J.N.; Ameyaw, E.O.; Thomford, A.K.; Afoakwah, R.; Kwakye-Nuako, G.; Thomford, K.P.; Quashie, N.B. Microscopic identification of possible Clonorchis/Opisthorchis infection in two Ghanaian women with undiagnosed abdominal discomfort: Two case reports. J. Med. Case Rep. 2014, 8, 369. [Google Scholar] [CrossRef]
- Boyko, R.H.; Harrison, L.M.; Humphries, D.; Galvani, A.P.; Townsend, J.P.; Otchere, J.; Wilson, M.D.; Cappello, M. Dogs and pigs are transport hosts of Necator americanus: Molecular evidence for a zoonotic mechanism of human hookworm transmission in Ghana. Zoonoses Public Health 2020, 67, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Egbi, G.; Steiner-Asiedu, M.; Kwesi, F.S.; Ayi, I.; Ofosu, W.; Setorglo, J.; Klobodu, S.S.; Armar-Klemesu, M. Anaemia among school children older than five years in the Volta Region of Ghana. Pan Afr. Med. J. 2014, 17 (Suppl. 1), 10. [Google Scholar] [CrossRef] [PubMed]
- Bakker, H. Ancylostomiasis in the Dormaa area, Ghana. Trop. Geogr. Med. 1969, 21, 84–87. [Google Scholar] [PubMed]
- Osei, F.B.; Stein, A. Spatio-temporal analysis of small-area intestinal parasites infections in Ghana. Sci. Rep. 2017, 7, 12217. [Google Scholar] [CrossRef] [PubMed]
- Amoah, A.S.; Boakye, D.A.; Yazdanbakhsh, M.; van Ree, R. Influence of Parasitic Worm Infections on Allergy Diagnosis in Sub-Saharan Africa. Curr. Allergy Asthma Rep. 2017, 17, 65. [Google Scholar] [CrossRef] [Green Version]
- Brooker, S.J.; Nikolay, B.; Balabanova, D.; Pullan, R.L. Global feasibility assessment of interrupting the transmission of soil-transmitted helminths: A statistical modelling study. Lancet Infect. Dis. 2015, 15, 941–950. [Google Scholar] [CrossRef] [Green Version]
- Agyei, A.D. Epidemiological observations on helminth infections of calves in southern Ghana. Trop. Anim. Health Prod. 1991, 23, 134–140. [Google Scholar] [CrossRef]
- Krumkamp, R.; Sarpong, N.; Schwarz, N.G.; Adlkofer, J.; Loag, W.; Eibach, D.; Hagen, R.M.; Adu-Sarkodie, Y.; Tannich, E.; May, J. Gastrointestinal infections and diarrheal disease in Ghanaian infants and children: An outpatient case-control study. PLoS Negl. Trop. Dis. 2015, 9, e0003568. [Google Scholar]
- Eibach, D.; Krumkamp, R.; Hahn, A.; Sarpong, N.; Adu-Sarkodie, Y.; Leva, A.; Käsmaier, J.; Panning, M.; May, J.; Tannich, E. Application of a multiplex PCR assay for the detection of gastrointestinal pathogens in a rural African setting. BMC Infect. Dis. 2016, 16, 150. [Google Scholar] [CrossRef] [Green Version]
- Eibach, D.; Krumkamp, R.; Al-Emran, H.M.; Sarpong, N.; Hagen, R.M.; Adu-Sarkodie, Y.; Tannich, E.; May, J. Molecular characterization of Cryptosporidium spp. among children in rural Ghana. PLoS Negl. Trop. Dis. 2015, 9, e0003551. [Google Scholar] [CrossRef] [Green Version]
- Leva, A.; Eibach, D.; Krumkamp, R.; Käsmaier, J.; Rubbenstroth, D.; Adu-Sarkodie, Y.; May, J.; Tannich, E.; Panning, M. Diagnostic performance of the Luminex xTAG gastrointestinal pathogens panel to detect rotavirus in Ghanaian children with and without diarrhoea. Virol. J. 2016, 13, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graul, S.; Böttcher, S.; Eibach, D.; Krumkamp, R.; Käsmaier, J.; Adu-Sarkodie, Y.; May, J.; Tannich, E.; Panning, M. High diversity of human parechovirus including novel types in stool samples from Ghanaian children. J. Clin. Virol. 2017, 96, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Vinnemeier, C.D.; Klupp, E.M.; Krumkamp, R.; Rolling, T.; Fischer, N.; Owusu-Dabo, E.; Addo, M.M.; Adu-Sarkodie, Y.; Käsmaier, J.; Aepfelbacher, M.; et al. Tropheryma whipplei in children with diarrhoea in rural Ghana. Clin. Microbiol. Infect. 2016, 22, e1–e65. [Google Scholar] [CrossRef] [PubMed]
- Köller, T.; Hahn, A.; Altangerel, E.; Verweij, J.J.; Landt, O.; Kann, S.; Dekker, D.; May, J.; Loderstädt, U.; Podbielski, A.; et al. Comparison of commercial and in-house real-time PCR platforms for 15 parasites and microsporidia in human stool samples without a gold standard. Acta Trop. 2020, 207, 105516. [Google Scholar] [CrossRef]
- Cools, P.; van Lieshout, L.; Koelewijn, R.; Addiss, D.; Ajjampur, S.S.R.; Ayana, M.; Bradbury, R.S.; Cantera, J.L.; Dana, D.; Fischer, K.; et al. First international external quality assessment scheme of nucleic acid amplification tests for the detection of Schistosoma and soil-transmitted helminths, including Strongyloides: A pilot study. PLoS Negl. Trop. Dis. 2020, 14, e0008231. [Google Scholar] [CrossRef]
- Ahiadorme, M.; Morhe, E. Soil transmitted helminth infections in Ghana: A ten year review. Pan. Afr. Med. J. 2020, 35, 131. [Google Scholar] [CrossRef]
- Harhay, M.O.; Horton, J.; Olliaro, P.L. Epidemiology and control of human gastrointestinal parasites in children. Expert Rev. Anti. Infect. Ther. 2010, 8, 219–234. [Google Scholar] [CrossRef] [Green Version]
- Hotez, P.J.; Kamath, A. Neglected tropical diseases in sub-saharan Africa: Review of their prevalence, distribution, and disease burden. PLoS Negl. Trop. Dis. 2009, 3, e412. [Google Scholar] [CrossRef] [Green Version]
- Anyan, W.K.; Abonie, S.D.; Aboagye-Antwi, F.; Tettey, M.D.; Nartey, L.K.; Hanington, P.C.; Anang, A.K.; Muench, S.B. Concurrent Schistosoma mansoni and Schistosoma haematobium infections in a peri-urban community along the Weija dam in Ghana: A wake up call for effective National Control Programme. Acta Trop. 2019, 199, 105116. [Google Scholar] [CrossRef]
- Wen, S.T.; Chu, K.Y. Preliminary schistosomiasis survey in the lower Volta River below Akosombo Dam, Ghana. Ann. Trop. Med. Parasitol. 1984, 78, 129–133. [Google Scholar] [CrossRef]
- Amankwa, J.A.; Bloch, P.; Meyer-Lassen, J.; Olsen, A.; Christensen, N.O. Urinary and intestinal schistosomiasis in the Tono Irrigation Scheme, Kassena/Nankana District, upper east region, Ghana. Trop. Med. Parasitol. 1994, 45, 319–323. [Google Scholar] [PubMed]
- Abaka-Yawson, A.; Sosu, S.Q.; Kwadzokpui, P.K.; Afari, S.; Adusei, S.; Arko-Mensah, J. Prevalence and Determinants of Intestinal Parasitic Infections among Pregnant Women Receiving Antenatal Care in Kasoa Polyclinic, Ghana. J. Environ. Public Health 2020, 2020, 9315025. [Google Scholar] [CrossRef] [PubMed]
- Weinreich, F.; Hahn, A.; Eberhardt, K.A.; Kann, S.; Köller, T.; Warnke, P.; Dupke, S.; Dekker, D.; May, J.; Frickmann, H.; et al. Multicentric Evaluation of SeeGene Allplex Real-Time PCR Assays Targeting 28 Bacterial, Microsporidal and Parasitic Nucleic Acid Sequences in Human Stool Samples. Diagnostics 2022, 12, 1007. [Google Scholar] [CrossRef] [PubMed]
- Loderstädt, U.; Hagen, R.M.; Hahn, A.; Frickmann, H. New Developments in PCR-Based Diagnostics for Bacterial Pathogens Causing Gastrointestinal Infections-A Narrative Mini-Review on Challenges in the Tropics. Trop. Med. Infect. Dis. 2021, 6, 96. [Google Scholar] [CrossRef]
- Hoffmann, T.; Hahn, A.; Verweij, J.J.; Leboulle, G.; Landt, O.; Strube, C.; Kann, S.; Dekker, D.; May, J.; Frickmann, H.; et al. Differing Effects of Standard and Harsh Nucleic Acid Extraction Procedures on Diagnostic Helminth Real-Time PCRs Applied to Human Stool Samples. Pathogens 2021, 10, 188. [Google Scholar] [CrossRef]
- Kyei, G.; Ayi, I.; Boampong, J.N.; Turkson, P.K. Sero-Epidemiology of Toxocara Canis Infection in Children Attending Four Selected Health Facilities in the Central Region of Ghana. Ghana Med. J. 2015, 49, 77–83. [Google Scholar] [CrossRef]
Target Pathogen | Number of Positives (n) | Proportion of Positives (%) | Minimum Recorded Ct Value | Maximum Recorded Ct Value | Mean Ct Value | Standard Deviation (SD) | Median Ct Value |
---|---|---|---|---|---|---|---|
Ascaris lumbricoides | 0 | 0 | n.a. | n.a. | n.a. | n.a. | n.a. |
Ancylostoma spp. | 0 | 0 | n.a. | n.a. | n.a. | n.a. | n.a. |
Enterobius vermicularis | 2 | 0.1 | 27.0 | 33.0 | 30.0 | 3.0 | 30.0 |
Hymenolepis nana | 16 | 0.8 | 19.0 | 35.0 | 28.7 | 4.4 | 31.0 |
Necator americanus | 14 | 0.7 | 27.0 | 41.2 | 34.0 | 3.4 | 34.0 |
Schistosoma spp. | 2 | 0.1 | 18.0 | 24.0 | 21.0 | 3.0 | 21.0 |
Strongyloides stercoralis | 41 | 2.0 | 23.0 | 44.0 | 30.3 | 5.0 | 30.3 |
Taenia saginata | 1 | 0.1 | 28.0 | 28.0 | 28.0 | n.a. | 28.0 |
Taenia solium | 0 | 0 | n.a. | n.a. | n.a. | n.a. | n.a. |
Trichuris trichiura | 1 | 0.1 | 28.0 | 28.0 | 28.0 | n.a. | 28.0 |
Helminth | Mean Ct Value from Samples of Patients with Diarrhea (± Standard Deviation SD) | Mean Ct Value from Samples of Patients without Diarrhea (± Standard Deviation SD) | Significance p * |
---|---|---|---|
Strongyloides stercoralis | 30.0 (6.5) | 30.2 (4.5) | p = 0.73 (n.s.) |
Hymenolepis nana | 30.7 (3.2) | 28.2 (4.8) | p = 0.28 (n.s.) |
Necator americanus | 37.0 (4.6) | 33.3 (3.1) | p = 0.21 (n.s.) |
Schistosoma spp. | 18 (-) | 24 (-) | n.e. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akenten, C.W.; Weinreich, F.; Paintsil, E.K.; Amuasi, J.; Fosu, D.; Loderstädt, U.; May, J.; Frickmann, H.; Dekker, D. Intestinal Helminth Infections in Ghanaian Children from the Ashanti Region between 2007 and 2008—A Retrospective Cross-Sectional Real-Time PCR-Based Assessment. Trop. Med. Infect. Dis. 2022, 7, 374. https://doi.org/10.3390/tropicalmed7110374
Akenten CW, Weinreich F, Paintsil EK, Amuasi J, Fosu D, Loderstädt U, May J, Frickmann H, Dekker D. Intestinal Helminth Infections in Ghanaian Children from the Ashanti Region between 2007 and 2008—A Retrospective Cross-Sectional Real-Time PCR-Based Assessment. Tropical Medicine and Infectious Disease. 2022; 7(11):374. https://doi.org/10.3390/tropicalmed7110374
Chicago/Turabian StyleAkenten, Charity Wiafe, Felix Weinreich, Ellis Kobina Paintsil, John Amuasi, Dennis Fosu, Ulrike Loderstädt, Jürgen May, Hagen Frickmann, and Denise Dekker. 2022. "Intestinal Helminth Infections in Ghanaian Children from the Ashanti Region between 2007 and 2008—A Retrospective Cross-Sectional Real-Time PCR-Based Assessment" Tropical Medicine and Infectious Disease 7, no. 11: 374. https://doi.org/10.3390/tropicalmed7110374
APA StyleAkenten, C. W., Weinreich, F., Paintsil, E. K., Amuasi, J., Fosu, D., Loderstädt, U., May, J., Frickmann, H., & Dekker, D. (2022). Intestinal Helminth Infections in Ghanaian Children from the Ashanti Region between 2007 and 2008—A Retrospective Cross-Sectional Real-Time PCR-Based Assessment. Tropical Medicine and Infectious Disease, 7(11), 374. https://doi.org/10.3390/tropicalmed7110374