Development of an Anti-Zika and Anti-Dengue IgM ELISA Assay: Evaluation of Cross Reactivity and Validation
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jayachandran, B.; Chanda, K.; Balamurali, M.M. Overview of Pathogenesis, Diagnostics, and Therapeutics of Infectious Diseases: Dengue and Zika. ACS Omega 2021, 6, 22487–22496. [Google Scholar] [CrossRef] [PubMed]
- Wongsawat, J.; Vivong, N.; Suttha, P.; Utayamakul, S.; Aumpornareekul, S.; Chewcharat, A.; Chokephaibulkit, K. Zika Virus Disease Comparing Children and Adults in a Dengue-Endemic Setting. Am. J. Trop. Med. Hyg. 2020, 104, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Petersen, L.R.; Jamieson, D.J.; Powers, A.M.; Honein, M.A. Zika Virus. N. Engl. J. Med. 2016, 374, 1552–1563. [Google Scholar] [CrossRef] [PubMed]
- D’Ortenzio, E.; Matheron, S.; Yazdanpanah, Y.; de Lamballerie, X.; Hubert, B.; Piorkowski, G.; Maquart, M.; Descamps, D.; Damond, F.; Leparc-Goffart, I. Evidence of Sexual Transmission of Zika Virus. N. Engl. J. Med. 2016, 374, 2195–2198. [Google Scholar] [CrossRef]
- Driggers, R.W.; Ho, C.Y.; Korhonen, E.M.; Kuivanen, S.; Jaaskelainen, A.J.; Smura, T.; Rosenberg, A.; Hill, D.A.; DeBiasi, R.L.; Vezina, G.; et al. Zika Virus Infection with Prolonged Maternal Viremia and Fetal Brain Abnormalities. N. Engl. J. Med. 2016, 374, 2142–2151. [Google Scholar] [CrossRef]
- Gonzalez-Salazar, C.; Tartaglia, J.S.; Teixeira Dourado, M.E., Jr.; Franca, M.C., Jr. Clinical Neurophysiology of Zika Virus-Related Disorders of the Peripheral Nervous System in Adults. J. Clin. Neurophysiol. 2022, 39, 253–258. [Google Scholar] [CrossRef]
- Gutierrez-Sanchez, L.A.; Becerra-Mojica, C.H.; Rojas, M.A.; Diaz-Martinez, L.A.; Perez Vera, L.A.; Contreras Garcia, G.A.; Pinilla Garcia, L.S. Fetal central nervous system anomalies according to RT-PCR and trimester of maternal infection with Zika virus: A prospective cohort study. Acta Obstet. Et Gynecol. Scand. 2022, 101, 221–231. [Google Scholar] [CrossRef]
- Arora, H.S. A to Z of Zika Virus: A Comprehensive Review for Clinicians. Glob. Pediatr. Health 2020, 7, 2333794X20919595. [Google Scholar] [CrossRef]
- Marban-Castro, E.; Gonce, A.; Fumado, V.; Romero-Acevedo, L.; Bardaji, A. Zika virus infection in pregnant women and their children: A review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 265, 162–168. [Google Scholar] [CrossRef]
- Ventura, C.V.; Maia, M.; Bravo-Filho, V.; Gois, A.L.; Belfort, R., Jr. Zika virus in Brazil and macular atrophy in a child with microcephaly. Lancet 2016, 387, 228. [Google Scholar] [CrossRef]
- Cauchemez, S.; Besnard, M.; Bompard, P.; Dub, T.; Guillemette-Artur, P.; Eyrolle-Guignot, D.; Salje, H.; Van Kerkhove, M.D.; Abadie, V.; Garel, C.; et al. Association between Zika virus and microcephaly in French Polynesia, 2013–2015: A retrospective study. Lancet 2016, 387, 2125–2132. [Google Scholar] [CrossRef]
- Pierson, T.C.; Diamond, M.S. The continued threat of emerging flaviviruses. Nat. Microbiol. 2020, 5, 796–812. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef]
- Bingham, A.M.; Cone, M.; Mock, V.; Heberlein-Larson, L.; Stanek, D.; Blackmore, C.; Likos, A. Comparison of Test Results for Zika Virus RNA in Urine, Serum, and Saliva Specimens from Persons with Travel-Associated Zika Virus Disease—Florida, 2016. Morb. Mortal. Wkly. Rep. 2016, 65, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Guidance for U.S. Laboratories Testing for ZIka Virus Infection; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2016. [Google Scholar]
- Oduyebo, T.; Igbinosa, I.; Petersen, E.E.; Polen, K.N.; Pillai, S.K.; Ailes, E.C.; Villanueva, J.M.; Newsome, K.; Fischer, M.; Gupta, P.M.; et al. Update: Interim Guidance for Health Care Providers Caring for Pregnant Women with Possible Zika Virus Exposure—United States, July 2016. Morb. Mortal. Wkly. Rep. 2016, 65, 739–744. [Google Scholar] [CrossRef]
- WHO. Global Startegy for Dengue Prevention and Control, 2012–2020; WHO Report: Geneva, Switzerland, 2012. [Google Scholar]
- Messina, J.P.; Brady, O.J.; Scott, T.W.; Zou, C.; Pigott, D.M.; Duda, K.A.; Bhatt, S.; Katzelnick, L.; Howes, R.E.; Battle, K.E.; et al. Global spread of dengue virus types: Mapping the 70 year history. Trends Microbiol. 2014, 22, 138–146. [Google Scholar] [CrossRef]
- Guzman, M.G.; Harris, E. Dengue. Lancet 2015, 385, 453–465. [Google Scholar] [CrossRef]
- Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 25 October 2022).
- Mulik, V.; Dad, N.; Buhmaid, S. Dengue in pregnancy: Review article. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 261, 205–210. [Google Scholar] [CrossRef]
- St John, A.L.; Rathore, A.P.S. Adaptive immune responses to primary and secondary dengue virus infections. Nat. Rev. Immunol. 2019, 19, 218–230. [Google Scholar] [CrossRef]
- Katzelnick, L.C.; Gresh, L.; Halloran, M.E.; Mercado, J.C.; Kuan, G.; Gordon, A.; Balmaseda, A.; Harris, E. Antibody-dependent enhancement of severe dengue disease in humans. Science 2017, 358, 929–932. [Google Scholar] [CrossRef]
- Heinz, F.X.; Stiasny, K. The Antigenic Structure of Zika Virus and Its Relation to Other Flaviviruses: Implications for Infection and Immunoprophylaxis. Microbiol. Mol. Biol. Rev. 2017, 81, e00055-16. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, S.; Hahn, M.; Belaunzaran-Zamudio, P.F.; Ramos-Castaneda, J.; Najera-Cancino, G.; Caballero-Sosa, S.; Navarro-Fuentes, K.R.; Ruiz-Palacios, G.; Golding, H.; Beigel, J.H.; et al. Differential human antibody repertoires following Zika infection and the implications for serodiagnostics and disease outcome. Nat. Commun. 2019, 10, 1943. [Google Scholar] [CrossRef]
- Gunawardana, S.A.; Shaw, R.H. Cross-reactive dengue virus-derived monoclonal antibodies to Zika virus envelope protein: Panacea or Pandora’s box? BMC Infect. Dis. 2018, 18, 641. [Google Scholar] [CrossRef] [PubMed]
- Priyamvada, L.; Suthar, M.S.; Ahmed, R.; Wrammert, J. Humoral Immune Responses Against Zika Virus Infection and the Importance of Preexisting Flavivirus Immunity. J. Infect. Dis. 2017, 216, S906–S911. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.Y.; Youn, H.H.; Brites, C.; Tsai, J.J.; Tyson, J.; Pedroso, C.; Drexler, J.F.; Stone, M.; Simmons, G.; Busch, M.P.; et al. Distinguishing Secondary Dengue Virus Infection From Zika Virus Infection With Previous Dengue by a Combination of 3 Simple Serological Tests. Clin. Infect. Dis. 2017, 65, 1829–1836. [Google Scholar] [CrossRef] [PubMed]
- Inizan, C.; O’Connor, O.; Worwor, G.; Cabemaiwai, T.; Grignon, J.C.; Girault, D.; Minier, M.; Prot, M.; Ballan, V.; Pakoa, G.J.; et al. Molecular Characterization of Dengue Type 2 Outbreak in Pacific Islands Countries and Territories, 2017–2020. Viruses 2020, 12, 1081. [Google Scholar] [CrossRef]
- Rico-Hesse, R. Molecular evolution and distribution of dengue viruses type 1 and 2 in nature. Virology 1990, 174, 479–493. [Google Scholar] [CrossRef]
- Available online: https://www.diesse.it/en/products/chorustrio/ (accessed on 25 October 2022).
- Martins, M.M.; Medronho, R.A.; Cunha, A. Zika virus in Brazil and worldwide: A narrative review. Paediatr. Int. Child Health 2021, 41, 28–35. [Google Scholar] [CrossRef]
- WHO. WHO Director-General Summarizes the Outcome of the Emergency Committee Regarding Clusters of Microcephaly and Guillain-Barré Syndrome. 2016. Available online: http://www.who.int/mediacentre/news/statements/2016/emergency-committee-zika-microcephaly/en/ (accessed on 25 October 2022).
- Roldan, J.S.; Cassola, A.; Castillo, D.S. Development of a novel NS1 competitive enzyme-linked immunosorbent assay for the early detection of Zika virus infection. PLoS ONE 2021, 16, e0256220. [Google Scholar] [CrossRef]
- Crowther, J.R. The ELISA guidebook. Methods Mol. Biol. 2000, 149, 1–413. [Google Scholar] [CrossRef]
- Wen, J.; Shresta, S. Antigenic cross-reactivity between Zika and dengue viruses: Is it time to develop a universal vaccine? Curr. Opin. Immunol. 2019, 59, 1–8. [Google Scholar] [CrossRef] [PubMed]
mAb | IgG1 | IgG2a | IgG2b | IgG3 | IgM |
---|---|---|---|---|---|
ZIKV 8-8-11 | 1.049 | 0.069 | 0.072 | 0.086 | 0.067 |
DENV 8G2-12-21 | 1.317 | 0.121 | 0.117 | 0.105 | 0.047 |
ZIKV 8-8-11 | ZIKV NS1 | Pool DENV NS1 | His |
2.117 | 0.054 | 0.085 | |
DENV 8G2-12-21 | DENV EP | ZIKV EP | His |
2.117 | 0.196 | 0.172 |
Results | ZIKV (N Total Samples = 159) | DENV (N Positive Samples = 35) | WNV (N Positive Samples = 10) | |
CHORUS Zika IgM Capture | Positive | 15 | 0 | 2 |
Equivocal | 2 | 0 | 0 | |
Negative | 142 | 35 | 8 | |
Results | DENV (N Total Samples = 187) | ZIKV (N Positive Samples = 15) | WNV (N Positive Samples = 10) | |
CHORUS Dengue IgM Capture | Positive | 52 | 0 | 3 |
Negative | 135 | 15 | 7 |
Zika Virus IgM Micro-Capture ELISA (IBL International) | % of Sensitivity (95% CI) | % of Specificity (95% CI) | k Value (95% CI) | ||||
---|---|---|---|---|---|---|---|
+ | − | Total | 93.5% (70.0–98.7) | 98.6% (95.1–99.6) | 0.88 (0.83–0.98) | ||
CHORUS Zika IgM Capture | + | 14 | 2 | 16 | |||
− | 1 | 142 | 143 | ||||
Total | 15 | 144 | 159 |
Panbio Dengue IgM Capture ELISA | % of Sensitivity (95% CI) | % of Specificity (95% CI) | k Value (95% CI) | ||||
---|---|---|---|---|---|---|---|
CHORUS Dengue IgM Capture | + | − | Total | 91.5 (80–96.6) | 96.3 (88.1–96.5) | 0.82 | |
+ | 43 | 9 | 52 | ||||
− | 4 | 130 | 134 | ||||
Total | 47 | 139 | 186 |
Euroimmun Anti-Dengue Virus ELISA IgM | ||||
---|---|---|---|---|
CHORUS Dengue IgM Capture | + | − | Total | |
+ | 9 | 0 | 9 | |
− | 0 | 4 | 4 | |
Total | 9 | 4 | 13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerutti, H.; Tesi, G.; Soldatini, C.; Bandini, T.; Castria, M.; Brogi, A. Development of an Anti-Zika and Anti-Dengue IgM ELISA Assay: Evaluation of Cross Reactivity and Validation. Trop. Med. Infect. Dis. 2022, 7, 348. https://doi.org/10.3390/tropicalmed7110348
Cerutti H, Tesi G, Soldatini C, Bandini T, Castria M, Brogi A. Development of an Anti-Zika and Anti-Dengue IgM ELISA Assay: Evaluation of Cross Reactivity and Validation. Tropical Medicine and Infectious Disease. 2022; 7(11):348. https://doi.org/10.3390/tropicalmed7110348
Chicago/Turabian StyleCerutti, Helena, Giulia Tesi, Claudia Soldatini, Tommaso Bandini, Marinunzia Castria, and Alessandra Brogi. 2022. "Development of an Anti-Zika and Anti-Dengue IgM ELISA Assay: Evaluation of Cross Reactivity and Validation" Tropical Medicine and Infectious Disease 7, no. 11: 348. https://doi.org/10.3390/tropicalmed7110348
APA StyleCerutti, H., Tesi, G., Soldatini, C., Bandini, T., Castria, M., & Brogi, A. (2022). Development of an Anti-Zika and Anti-Dengue IgM ELISA Assay: Evaluation of Cross Reactivity and Validation. Tropical Medicine and Infectious Disease, 7(11), 348. https://doi.org/10.3390/tropicalmed7110348