Development of an Anti-Zika and Anti-Dengue IgM ELISA Assay: Evaluation of Cross Reactivity and Validation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jayachandran, B.; Chanda, K.; Balamurali, M.M. Overview of Pathogenesis, Diagnostics, and Therapeutics of Infectious Diseases: Dengue and Zika. ACS Omega 2021, 6, 22487–22496. [Google Scholar] [CrossRef] [PubMed]
- Wongsawat, J.; Vivong, N.; Suttha, P.; Utayamakul, S.; Aumpornareekul, S.; Chewcharat, A.; Chokephaibulkit, K. Zika Virus Disease Comparing Children and Adults in a Dengue-Endemic Setting. Am. J. Trop. Med. Hyg. 2020, 104, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Petersen, L.R.; Jamieson, D.J.; Powers, A.M.; Honein, M.A. Zika Virus. N. Engl. J. Med. 2016, 374, 1552–1563. [Google Scholar] [CrossRef] [PubMed]
- D’Ortenzio, E.; Matheron, S.; Yazdanpanah, Y.; de Lamballerie, X.; Hubert, B.; Piorkowski, G.; Maquart, M.; Descamps, D.; Damond, F.; Leparc-Goffart, I. Evidence of Sexual Transmission of Zika Virus. N. Engl. J. Med. 2016, 374, 2195–2198. [Google Scholar] [CrossRef]
- Driggers, R.W.; Ho, C.Y.; Korhonen, E.M.; Kuivanen, S.; Jaaskelainen, A.J.; Smura, T.; Rosenberg, A.; Hill, D.A.; DeBiasi, R.L.; Vezina, G.; et al. Zika Virus Infection with Prolonged Maternal Viremia and Fetal Brain Abnormalities. N. Engl. J. Med. 2016, 374, 2142–2151. [Google Scholar] [CrossRef]
- Gonzalez-Salazar, C.; Tartaglia, J.S.; Teixeira Dourado, M.E., Jr.; Franca, M.C., Jr. Clinical Neurophysiology of Zika Virus-Related Disorders of the Peripheral Nervous System in Adults. J. Clin. Neurophysiol. 2022, 39, 253–258. [Google Scholar] [CrossRef]
- Gutierrez-Sanchez, L.A.; Becerra-Mojica, C.H.; Rojas, M.A.; Diaz-Martinez, L.A.; Perez Vera, L.A.; Contreras Garcia, G.A.; Pinilla Garcia, L.S. Fetal central nervous system anomalies according to RT-PCR and trimester of maternal infection with Zika virus: A prospective cohort study. Acta Obstet. Et Gynecol. Scand. 2022, 101, 221–231. [Google Scholar] [CrossRef]
- Arora, H.S. A to Z of Zika Virus: A Comprehensive Review for Clinicians. Glob. Pediatr. Health 2020, 7, 2333794X20919595. [Google Scholar] [CrossRef]
- Marban-Castro, E.; Gonce, A.; Fumado, V.; Romero-Acevedo, L.; Bardaji, A. Zika virus infection in pregnant women and their children: A review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 265, 162–168. [Google Scholar] [CrossRef]
- Ventura, C.V.; Maia, M.; Bravo-Filho, V.; Gois, A.L.; Belfort, R., Jr. Zika virus in Brazil and macular atrophy in a child with microcephaly. Lancet 2016, 387, 228. [Google Scholar] [CrossRef]
- Cauchemez, S.; Besnard, M.; Bompard, P.; Dub, T.; Guillemette-Artur, P.; Eyrolle-Guignot, D.; Salje, H.; Van Kerkhove, M.D.; Abadie, V.; Garel, C.; et al. Association between Zika virus and microcephaly in French Polynesia, 2013–2015: A retrospective study. Lancet 2016, 387, 2125–2132. [Google Scholar] [CrossRef] [Green Version]
- Pierson, T.C.; Diamond, M.S. The continued threat of emerging flaviviruses. Nat. Microbiol. 2020, 5, 796–812. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [Green Version]
- Bingham, A.M.; Cone, M.; Mock, V.; Heberlein-Larson, L.; Stanek, D.; Blackmore, C.; Likos, A. Comparison of Test Results for Zika Virus RNA in Urine, Serum, and Saliva Specimens from Persons with Travel-Associated Zika Virus Disease—Florida, 2016. Morb. Mortal. Wkly. Rep. 2016, 65, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Guidance for U.S. Laboratories Testing for ZIka Virus Infection; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2016. [Google Scholar]
- Oduyebo, T.; Igbinosa, I.; Petersen, E.E.; Polen, K.N.; Pillai, S.K.; Ailes, E.C.; Villanueva, J.M.; Newsome, K.; Fischer, M.; Gupta, P.M.; et al. Update: Interim Guidance for Health Care Providers Caring for Pregnant Women with Possible Zika Virus Exposure—United States, July 2016. Morb. Mortal. Wkly. Rep. 2016, 65, 739–744. [Google Scholar] [CrossRef] [Green Version]
- WHO. Global Startegy for Dengue Prevention and Control, 2012–2020; WHO Report: Geneva, Switzerland, 2012. [Google Scholar]
- Messina, J.P.; Brady, O.J.; Scott, T.W.; Zou, C.; Pigott, D.M.; Duda, K.A.; Bhatt, S.; Katzelnick, L.; Howes, R.E.; Battle, K.E.; et al. Global spread of dengue virus types: Mapping the 70 year history. Trends Microbiol. 2014, 22, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Guzman, M.G.; Harris, E. Dengue. Lancet 2015, 385, 453–465. [Google Scholar] [CrossRef]
- Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 25 October 2022).
- Mulik, V.; Dad, N.; Buhmaid, S. Dengue in pregnancy: Review article. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 261, 205–210. [Google Scholar] [CrossRef]
- St John, A.L.; Rathore, A.P.S. Adaptive immune responses to primary and secondary dengue virus infections. Nat. Rev. Immunol. 2019, 19, 218–230. [Google Scholar] [CrossRef]
- Katzelnick, L.C.; Gresh, L.; Halloran, M.E.; Mercado, J.C.; Kuan, G.; Gordon, A.; Balmaseda, A.; Harris, E. Antibody-dependent enhancement of severe dengue disease in humans. Science 2017, 358, 929–932. [Google Scholar] [CrossRef]
- Heinz, F.X.; Stiasny, K. The Antigenic Structure of Zika Virus and Its Relation to Other Flaviviruses: Implications for Infection and Immunoprophylaxis. Microbiol. Mol. Biol. Rev. 2017, 81, e00055-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravichandran, S.; Hahn, M.; Belaunzaran-Zamudio, P.F.; Ramos-Castaneda, J.; Najera-Cancino, G.; Caballero-Sosa, S.; Navarro-Fuentes, K.R.; Ruiz-Palacios, G.; Golding, H.; Beigel, J.H.; et al. Differential human antibody repertoires following Zika infection and the implications for serodiagnostics and disease outcome. Nat. Commun. 2019, 10, 1943. [Google Scholar] [CrossRef] [Green Version]
- Gunawardana, S.A.; Shaw, R.H. Cross-reactive dengue virus-derived monoclonal antibodies to Zika virus envelope protein: Panacea or Pandora’s box? BMC Infect. Dis. 2018, 18, 641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Priyamvada, L.; Suthar, M.S.; Ahmed, R.; Wrammert, J. Humoral Immune Responses Against Zika Virus Infection and the Importance of Preexisting Flavivirus Immunity. J. Infect. Dis. 2017, 216, S906–S911. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.Y.; Youn, H.H.; Brites, C.; Tsai, J.J.; Tyson, J.; Pedroso, C.; Drexler, J.F.; Stone, M.; Simmons, G.; Busch, M.P.; et al. Distinguishing Secondary Dengue Virus Infection From Zika Virus Infection With Previous Dengue by a Combination of 3 Simple Serological Tests. Clin. Infect. Dis. 2017, 65, 1829–1836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inizan, C.; O’Connor, O.; Worwor, G.; Cabemaiwai, T.; Grignon, J.C.; Girault, D.; Minier, M.; Prot, M.; Ballan, V.; Pakoa, G.J.; et al. Molecular Characterization of Dengue Type 2 Outbreak in Pacific Islands Countries and Territories, 2017–2020. Viruses 2020, 12, 1081. [Google Scholar] [CrossRef]
- Rico-Hesse, R. Molecular evolution and distribution of dengue viruses type 1 and 2 in nature. Virology 1990, 174, 479–493. [Google Scholar] [CrossRef]
- Available online: https://www.diesse.it/en/products/chorustrio/ (accessed on 25 October 2022).
- Martins, M.M.; Medronho, R.A.; Cunha, A. Zika virus in Brazil and worldwide: A narrative review. Paediatr. Int. Child Health 2021, 41, 28–35. [Google Scholar] [CrossRef]
- WHO. WHO Director-General Summarizes the Outcome of the Emergency Committee Regarding Clusters of Microcephaly and Guillain-Barré Syndrome. 2016. Available online: http://www.who.int/mediacentre/news/statements/2016/emergency-committee-zika-microcephaly/en/ (accessed on 25 October 2022).
- Roldan, J.S.; Cassola, A.; Castillo, D.S. Development of a novel NS1 competitive enzyme-linked immunosorbent assay for the early detection of Zika virus infection. PLoS ONE 2021, 16, e0256220. [Google Scholar] [CrossRef]
- Crowther, J.R. The ELISA guidebook. Methods Mol. Biol. 2000, 149, 1–413. [Google Scholar] [CrossRef]
- Wen, J.; Shresta, S. Antigenic cross-reactivity between Zika and dengue viruses: Is it time to develop a universal vaccine? Curr. Opin. Immunol. 2019, 59, 1–8. [Google Scholar] [CrossRef] [PubMed]
mAb | IgG1 | IgG2a | IgG2b | IgG3 | IgM |
---|---|---|---|---|---|
ZIKV 8-8-11 | 1.049 | 0.069 | 0.072 | 0.086 | 0.067 |
DENV 8G2-12-21 | 1.317 | 0.121 | 0.117 | 0.105 | 0.047 |
ZIKV 8-8-11 | ZIKV NS1 | Pool DENV NS1 | His |
2.117 | 0.054 | 0.085 | |
DENV 8G2-12-21 | DENV EP | ZIKV EP | His |
2.117 | 0.196 | 0.172 |
Results | ZIKV (N Total Samples = 159) | DENV (N Positive Samples = 35) | WNV (N Positive Samples = 10) | |
CHORUS Zika IgM Capture | Positive | 15 | 0 | 2 |
Equivocal | 2 | 0 | 0 | |
Negative | 142 | 35 | 8 | |
Results | DENV (N Total Samples = 187) | ZIKV (N Positive Samples = 15) | WNV (N Positive Samples = 10) | |
CHORUS Dengue IgM Capture | Positive | 52 | 0 | 3 |
Negative | 135 | 15 | 7 |
Zika Virus IgM Micro-Capture ELISA (IBL International) | % of Sensitivity (95% CI) | % of Specificity (95% CI) | k Value (95% CI) | ||||
---|---|---|---|---|---|---|---|
+ | − | Total | 93.5% (70.0–98.7) | 98.6% (95.1–99.6) | 0.88 (0.83–0.98) | ||
CHORUS Zika IgM Capture | + | 14 | 2 | 16 | |||
− | 1 | 142 | 143 | ||||
Total | 15 | 144 | 159 |
Panbio Dengue IgM Capture ELISA | % of Sensitivity (95% CI) | % of Specificity (95% CI) | k Value (95% CI) | ||||
---|---|---|---|---|---|---|---|
CHORUS Dengue IgM Capture | + | − | Total | 91.5 (80–96.6) | 96.3 (88.1–96.5) | 0.82 | |
+ | 43 | 9 | 52 | ||||
− | 4 | 130 | 134 | ||||
Total | 47 | 139 | 186 |
Euroimmun Anti-Dengue Virus ELISA IgM | ||||
---|---|---|---|---|
CHORUS Dengue IgM Capture | + | − | Total | |
+ | 9 | 0 | 9 | |
− | 0 | 4 | 4 | |
Total | 9 | 4 | 13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerutti, H.; Tesi, G.; Soldatini, C.; Bandini, T.; Castria, M.; Brogi, A. Development of an Anti-Zika and Anti-Dengue IgM ELISA Assay: Evaluation of Cross Reactivity and Validation. Trop. Med. Infect. Dis. 2022, 7, 348. https://doi.org/10.3390/tropicalmed7110348
Cerutti H, Tesi G, Soldatini C, Bandini T, Castria M, Brogi A. Development of an Anti-Zika and Anti-Dengue IgM ELISA Assay: Evaluation of Cross Reactivity and Validation. Tropical Medicine and Infectious Disease. 2022; 7(11):348. https://doi.org/10.3390/tropicalmed7110348
Chicago/Turabian StyleCerutti, Helena, Giulia Tesi, Claudia Soldatini, Tommaso Bandini, Marinunzia Castria, and Alessandra Brogi. 2022. "Development of an Anti-Zika and Anti-Dengue IgM ELISA Assay: Evaluation of Cross Reactivity and Validation" Tropical Medicine and Infectious Disease 7, no. 11: 348. https://doi.org/10.3390/tropicalmed7110348
APA StyleCerutti, H., Tesi, G., Soldatini, C., Bandini, T., Castria, M., & Brogi, A. (2022). Development of an Anti-Zika and Anti-Dengue IgM ELISA Assay: Evaluation of Cross Reactivity and Validation. Tropical Medicine and Infectious Disease, 7(11), 348. https://doi.org/10.3390/tropicalmed7110348