Mediterranean Spotted Fever: Current Knowledge and Recent Advances
Abstract
:1. Introduction
2. Epidemiology
3. Pathogenesis
4. Clinical Features
5. Diagnosis
6. Treatment
7. Prevention
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Rovery, C.; Brouqui, P.; Raoult, D. Questions on Mediterranean spotted fever a century after its discovery. Emerg. Infect. Dis. 2008, 14, 1360–1367. [Google Scholar] [CrossRef]
- Paris, D.H.; Day, N.P.J. Tropical rickettsial infections. In Manson’s Tropical Diseases; Farrar, J., Hotez, P.J., Junghanss, T., Kang, G., Lalloo, D., White, N.J., Eds.; Elsevier Saunders: Edinburgh, UK, 2014; pp. 273–291. [Google Scholar]
- Delord, M.; Socolovschi, C.; Parola, P. Rickettsioses and Q fever in travelers (2004–2013). Travel Med. Infect. Dis. 2014, 12, 443–458. [Google Scholar] [CrossRef]
- Jensenius, M.; Fournier, P.E.; Raoult, D. Tick-borne rickettsioses in international travellers. Int. J. Infect. Dis. 2004, 8, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Parola, P.; Raoult, D. Ticks and tickborne bacterial diseases in humans: An emerging infectious threat. Clin. Infect. Dis. 2001, 32, 897–928. [Google Scholar] [CrossRef]
- Raoult, D.; Roux, V. Rickettsioses as paradigms of new or emerging infectious diseases. Clin. Microbiol. Rev. 1997, 10, 694–719. [Google Scholar] [CrossRef] [PubMed]
- Weinert, L.A.; Werren, J.H.; Aebi, A.; Stone, G.N.; Jiggins, F.M. Evolution and diversity of Rickettsia bacteria. BMC Biol. 2009, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Sahni, S.K.; Narra, H.P.; Sahni, A.; Walker, D.H. Recent molecular insights into rickettsial pathogenesis and immunity. Future Microbiol. 2013, 8, 1265–1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, D.; Beth-Din, A.; Cohen, R.; Lazar, S.; Glinert, I.; Zayyad, H.; Atiya-Nasagi, Y. New spotted fever group rickettsia isolate, identified by sequence analysis of conserved genomic regions. Pathogens 2019, 9, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogata, H.; Audic, S.; Renesto-Audiffren, P.; Fournier, P.E.; Barbe, V.; Samson, D.; Roux, V.; Cossart, P.; Weissenbach, J.; Claverie, J.M.; et al. Mechanisms of evolution in Rickettsia conorii and R. prowazekii. Science 2001, 293, 2093–2098. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Fournier, P.E.; Eremeeva, M.; Raoult, D. Proposal to create subspecies of Rickettsia conorii based on multi-locus sequence typing and an emended description of Rickettsia conorii. BMC Microbiol. 2005, 5, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karim, S.; Kumar, D.; Budachetri, K. Recent advances in understanding tick and rickettsiae interactions. Parasite Immunol. 2021, 43, e12830. [Google Scholar] [CrossRef] [PubMed]
- Walker, D.H.; Ismail, N. Emerging and re-emerging rickettsioses: Endothelial cell infection and early disease events. Nat. Rev. Microbiol. 2008, 6, 375–386. [Google Scholar] [CrossRef]
- Parola, P.; Socolovschi, C.; Raoult, D. Deciphering the relationships between Rickettsia conorii conorii and Rhipicephalus sanguineus in the ecology and epidemiology of Mediterranean spotted fever. Ann. N. Y. Acad. Sci. 2009, 1166, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Socolovschi, C.; Gaudart, J.; Bitam, I.; Huynh, T.P.; Raoult, D.; Parola, P. Why are there so few Rickettsia conorii conorii-infected Rhipicephalus sanguineus ticks in the wild? PLoS Negl. Trop. Dis. 2012, 6, e1697. [Google Scholar] [CrossRef]
- Raoult, D.; Dupont, H.T.; Chicheportiche, C.; Peter, O.; Gilot, B.; Drancourt, M. Mediterranean spotted fever in Marseille, France: Correlation between prevalence of hospitalized patients, seroepidemiology, and prevalence of infected ticks in three different areas. Am. J. Trop. Med. Hyg. 1993, 48, 249–256. [Google Scholar] [CrossRef]
- Fernández-Soto, P.; Pérez-Sánchez, R.; Alamo-Sanz, R.; Encinas-Grandes, A. Spotted fever group rickettsiae in ticks feeding on humans in northwestern Spain: Is Rickettsia conorii vanishing? Ann. N. Y. Acad. Sci. 2006, 1078, 331–333. [Google Scholar] [CrossRef] [PubMed]
- Marquez, F.J.; Rodriguez-Liebana, J.J.; Soriguer, R.C.; Muniain, M.A.; Bernabeu-Wittel, M.; Caruz, A.; Contreras-Chova, F. Spotted fever group Rickettsia in brown dog ticks Rhipicephalus sanguineus in southwestern Spain. Parasitol. Res. 2008, 103, 119–122. [Google Scholar] [CrossRef] [Green Version]
- Segura-Porta, F.; Diestre-Ortin, G.; Ortuno-Romero, A.; Sanfeliu-Sala, I.; Font-Creus, B.; Munoz-Espin, T.; de Antonio, E.M.; Casal-Fabrega, J. Prevalence of antibodies to spotted fever group rickettsiae in human beings and dogs from and endemic area of mediterranean spotted fever in Catalonia, Spain. Eur. J. Epidemiol. 1998, 14, 395–398. [Google Scholar] [CrossRef]
- Alexandre, N.; Santos, A.S.; Bacellar, F.; Boinas, F.J.; Núncio, M.S.; de Sousa, R. Detection of Rickettsia conorii strains in Portuguese dogs (Canis familiaris). Ticks Tick-Borne Dis. 2011, 2, 119–122. [Google Scholar] [CrossRef]
- Kelly, P.J.; Matthewman, L.A.; Mason, P.R.; Courtney, S.; Katsande, C.; Rukwava, J. Experimental infection of dogs with a Zimbabwean strain of Rickettsia conorii. J. Trop. Med. Hyg. 1992, 95, 322–326. [Google Scholar]
- Le Gac, P. Repercussions of myxomatosis on Mediterranean boutonneuse exanthematic fever. Bull. World Health Organ. 1966, 35, 143–147. [Google Scholar] [PubMed]
- De Sousa, R.; Nobrega, S.D.; Bacellar, F.; Torgal, J. Mediterranean spotted fever in Portugal: Risk factors for fatal outcome in 105 hospitalized patients. Ann. N. Y. Acad. Sci. 2003, 990, 285–294. [Google Scholar] [CrossRef]
- Vitale, G.; Mansuelo, S.; Rolain, J.M.; Raoult, D. Rickettsia massiliae human isolation. Emerg. Infect. Dis. 2006, 12, 174–175. [Google Scholar] [CrossRef] [PubMed]
- Colomba, C.; Trizzino, M.; Giammanco, A.; Bonura, C.; Di Bona, D.; Tolomeo, M.; Cascio, A. Israeli Spotted Fever in Sicily. Description of two cases and minireview. Int. J. Infect. Dis. 2017, 61, 7–12. [Google Scholar] [CrossRef]
- Guccione, C.; Colomba, C.; Tolomeo, M.; Trizzino, M.; Iaria, C.; Cascio, A. Rickettsiales in Italy. Pathogens 2021, 10, 181. [Google Scholar] [CrossRef] [PubMed]
- Pascucci, I.; Di Domenico, M.; Curini, V.; Cocco, A.; Averaimo, D.; D’Alterio, N.; Cammà, C. Diversity of Rickettsia in ticks collected in Abruzzi and Molise regions (central Italy). Microorganisms 2019, 7, 696. [Google Scholar] [CrossRef] [Green Version]
- Gilot, B.; Laforge, M.L.; Pichot, J.; Raoult, D. Relationships between the Rhipicephalus sanguineus complex ecology and Mediterranean spotted fever epidemiology in France. Eur. J. Epidemiol. 1990, 6, 357–362. [Google Scholar] [CrossRef]
- Raoult, D.; Tissot Dupont, H.; Caraco, P.; Brouqui, P.; Drancourt, M.; Charrel, C. Mediterranean spotted fever in Marseille: Descriptive epidemiology and the influence of climatic factors. Eur. J. Epidemiol. 1992, 8, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Parola, P.; Paddock, C.D.; Socolovschi, C.; Labruna, M.B.; Mediannikov, O.; Kernif, T.; Abdad, M.Y.; Stenos, J.; Bitam, I.; Fournier, P.E.; et al. Update on tick-borne rickettsioses around the world: A geographic approach. Clin. Microbiol. Rev. 2013, 26, 657–702. [Google Scholar] [CrossRef] [Green Version]
- Parola, P.; Socolovschi, C.; Jeanjean, L.; Bitam, I.; Fournier, P.E.; Sotto, A.; Labauge, P.; Raoult, D. Warmer weather linked to tick attack and emergence of severe rickettsioses. PLoS Negl. Trop. Dis. 2008, 2, e338. [Google Scholar] [CrossRef] [Green Version]
- Rovery, C.; Raoult, D. Mediterranean spotted fever. Infect. Dis. Clin. N. Am. 2008, 22, 515–530. [Google Scholar] [CrossRef] [PubMed]
- Macaluso, K.R.; Sonenshine, D.E.; Ceraul, S.M.; Azad, A.F. Rickettsial infection in Dermacentor variabilis (Acari: Ixodidae) inhibits transovarial transmission of a second Rickettsia. J. Med. Entomol. 2002, 39, 809–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, R.R.; Spencer, R.R. Rocky mountain spotted fever: A study of the relationship between the presence of Rickettsia-like organisms in tick smears and the infectiveness of the same ticks. In Public Health Reports (1896–1970); Sage Publications, Inc.: Thousand Oaks, CA, USA, 1926; Volume 41, pp. 461–469. [Google Scholar] [CrossRef]
- Chan, Y.G.; Riley, S.P.; Martinez, J.J. Adherence to and invasion of host cells by spotted fever group Rickettsia species. Front. Microbiol. 2010, 1, 139. [Google Scholar] [CrossRef] [Green Version]
- Cardwell, M.M.; Martinez, J.J. The Sca2 autotransporter protein from Rickettsia conorii is sufficient to mediate adherence to and invasion of cultured mammalian cells. Infect. Immun. 2009, 77, 5272–5280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, J.J.; Seveau, S.; Veiga, E.; Matsuyama, S.; Cossart, P. Ku70, a component of DNA-dependent protein kinase, is a mammalian receptor for Rickettsia conorii. Cell 2005, 123, 1013–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanc, G.; Ngwamidiba, M.; Ogata, H.; Fournier, P.-E.; Claverie, J.-M.; Raoult, D. Molecular evolution of Rickettsia surface antigens: Evidence of positive selection. Mol. Biol. Evol. 2005, 22, 2073–2083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanda, V.; D’Agostino, R.; Giudice, E.; Randazzo, K.; La Russa, F.; Villari, S.; Vullo, S.; Torina, A. New real-time PCRs to differentiate Rickettsia spp. and Rickettsia conorii. Molecules 2020, 25, 4431. [Google Scholar] [CrossRef]
- Monferran, S.; Muller, C.; Mourey, L.; Frit, P.; Salles, B. The membrane-associated form of the DNA repair protein Ku is involved in cell adhesion to fibronectin. J. Mol. Biol. 2004, 337, 503–511. [Google Scholar] [CrossRef]
- Lucero, H.; Gae, D.; Taccioli, G.E. Novel localization of the DNA-PK complex in lipid rafts: A putative role in the signal transduction pathway of the ionizing radiation response. J. Biol. Chem. 2003, 278, 22136–22143. [Google Scholar] [CrossRef] [Green Version]
- Chan, Y.G.; Cardwell, M.M.; Hermanas, T.M.; Uchiyama, T.; Martinez, J.J. Rickettsial outer-membrane protein B (rOmpB) mediates bacterial invasion through Ku70 in an actin, c-Cbl, clathrin and caveolin 2-dependent manner. Cell. Microbiol. 2009, 11, 629–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, J.J.; Cossart, P. Early signaling events involved in the entry of Rickettsia conorii into mammalian cells. J. Cell Sci. 2004, 117, 5097–5106. [Google Scholar] [CrossRef] [Green Version]
- Riley, S.P.; Patterson, J.L.; Martinez, J.J. The rickettsial OmpB β-peptide of Rickettsia conorii is sufficient to facilitate factor H-mediated serum resistance. Infect. Immun. 2012, 80, 2735–2743. [Google Scholar] [CrossRef] [Green Version]
- Hillman, R.D., Jr.; Baktash, Y.M.; Martinez, J.J. OmpA-mediated rickettsial adherence to and invasion of human endothelial cells is dependent upon interaction with alpha2beta1 integrin. Cell. Microbiol. 2013, 15, 727–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahni, A.; Patel, J.; Narra, H.P.; Schroeder, C.L.C.; Walker, D.H.; Sahni, S.K. Fibroblast growth factor receptor-1 mediates internalization of pathogenic spotted fever rickettsiae into host endothelium. PLoS ONE 2017, 12, e0183181. [Google Scholar] [CrossRef] [PubMed]
- Radulovic, S.; Troyer, J.M.; Beier, M.S.; Lau, A.O.; Azad, A.F. Identification and molecular analysis of the gene encoding Rickettsia typhi hemolysin. Infect. Immun. 1999, 67, 6104–6108. [Google Scholar] [CrossRef] [Green Version]
- Renesto, P.; Dehoux, P.; Gouin, E.; Touqui, L.; Cossart, P.; Raoult, D. Identification and characterization of a phospholipase D-superfamily gene in Rickettsiae. J. Infect. Dis. 2003, 188, 1276–1283. [Google Scholar] [CrossRef]
- Whitworth, T.; Popov, V.L.; Yu, X.J.; Walker, D.H.; Bouyer, D.H. Expression of the Rickettsia prowazekii pld or tlyC gene in Salmonella enterica serovar typhimurium mediates phagosomal escape. Infect. Immun. 2005, 73, 6668–6673. [Google Scholar] [CrossRef] [Green Version]
- Gouin, E.; Egile, C.; Dehoux, P.; Villiers, V.; Adams, J.; Gertler, F.; Li, R.; Cossart, P. The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature 2004, 427, 457–461. [Google Scholar] [CrossRef]
- Heinzen, R.A.; Grieshaber, S.S.; Van Kirk, L.S.; Devin, C.J. Dynamics of actin-based movement by Rickettsia rickettsii in vero cells. Infect. Immun. 1999, 67, 4201–4207. [Google Scholar] [CrossRef] [Green Version]
- Van Kirk, L.S.; Hayes, S.F.; Heinzen, R.A. Ultrastructure of Rickettsia rickettsii actin tails and localization of cytoskeletal proteins. Infect. Immun. 2000, 68, 4706–4713. [Google Scholar] [CrossRef] [Green Version]
- Walker, D.H.; Gear, J.H. Correlation of the distribution of Rickettsia conorii, microscopic lesions, and clinical features in South African tick bite fever. Am. J. Trop. Med. Hyg. 1985, 34, 361–371. [Google Scholar] [CrossRef]
- Osterloh, A. Immune response against rickettsiae: Lessons from murine infection models. Med. Microbiol. Immunol. 2017, 206, 403–417. [Google Scholar] [CrossRef] [PubMed]
- Rydkina, E.; Sahni, A.; Baggs, R.B.; Silverman, D.J.; Sahni, S.K. Infection of human endothelial cells with spotted fever group rickettsiae stimulates cyclooxygenase 2 expression and release of vasoactive prostaglandins. Infect. Immun. 2006, 74, 5067–5074. [Google Scholar] [CrossRef] [Green Version]
- Mansueto, P.; Vitale, G.; Cascio, A.; Seidita, A.; Pepe, I.; Carroccio, A.; di Rosa, S.; Rini, G.B.; Cillari, E.; Walker, D.H. New insight into immunity and immunopathology of Rickettsial diseases. Clin. Dev. Immunol. 2012, 2012, 967852. [Google Scholar] [CrossRef]
- Sporn, L.A.; Sahni, S.K.; Lerner, N.B.; Marder, V.J.; Silverman, D.J.; Turpin, L.C.; Schwab, A.L. Rickettsia rickettsii infection of cultured human endothelial cells induces NF-kappaB activation. Infect. Immun. 1997, 65, 2786–2791. [Google Scholar] [CrossRef] [Green Version]
- Sahni, S.K.; Van Antwerp, D.J.; Eremeeva, M.E.; Silverman, D.J.; Marder, V.J.; Sporn, L.A. Proteasome-independent activation of nuclear factor kappaB in cytoplasmic extracts from human endothelial cells by Rickettsia rickettsii. Infect. Immun. 1998, 66, 1827–1833. [Google Scholar] [CrossRef] [Green Version]
- Rydkina, E.; Silverman, D.J.; Sahni, S.K. Activation of p38 stress-activated protein kinase during Rickettsia rickettsii infection of human endothelial cells: Role in the induction of chemokine response. Cell. Microbiol. 2005, 7, 1519–1530. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A. The IL-1 family and inflammatory diseases. Clin. Exp. Rheumatol. 2002, 20, S1–S13. [Google Scholar] [PubMed]
- Kaplanski, G.; Teysseire, N.; Farnarier, C.; Kaplanski, S.; Lissitzky, J.C.; Durand, J.M.; Soubeyrand, J.; Dinarello, C.A.; Bongrand, P. IL-6 and IL-8 production from cultured human endothelial cells stimulated by infection with Rickettsia conorii via a cell-associated IL-1 alpha-dependent pathway. J. Clin. Investig. 1995, 96, 2839–2844. [Google Scholar] [CrossRef] [Green Version]
- Colonne, P.M.; Eremeeva, M.E.; Sahni, S.K. Beta interferon-mediated activation of signal transducer and activator of transcription protein 1 interferes with Rickettsia conorii replication in human endothelial cells. Infect. Immun. 2011, 79, 3733–3743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Valbuena, G.; Walker, D.H.; Gazi, M.; Hidalgo, M.; DeSousa, R.; Oteo, J.A.; Goez, Y.; Brasier, A.R. Endothelial cell proteomic response to Rickettsia conorii infection reveals activation of the Janus Kinase (JAK)-Signal Transducer and Activator of Transcription (STAT)-Inferferon Stimulated Gene (ISG)15 pathway and reprogramming plasma membrane integrin/cadherin signaling. Mol. Cell. Proteom. MCP 2016, 15, 289–304. [Google Scholar]
- Feng, H.M.; Walker, D.H. Mechanisms of intracellular killing of Rickettsia conorii in infected human endothelial cells, hepatocytes, and macrophages. Infect. Immun. 2000, 68, 6729–6736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, H.M.; Popov, V.L.; Walker, D.H. Depletion of gamma interferon and tumor necrosis factor alpha in mice with Rickettsia conorii-infected endothelium: Impairment of rickettsicidal nitric oxide production resulting in fatal, overwhelming rickettsial disease. Infect. Immun. 1994, 62, 1952–1960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narra, H.P.; Sahni, A.; Khanipov, K.; Fofanov, Y.; Sahni, S.K. Global transcriptomic profiling of pulmonary gene expression in an experimental murine model of Rickettsia conorii infection. Genes 2019, 10, 204. [Google Scholar] [CrossRef] [Green Version]
- Jordan, J.M.; Woods, M.E.; Feng, H.M.; Soong, L.; Walker, D.H. Rickettsiae-stimulated dendritic cells mediate protection against lethal rickettsial challenge in an animal model of spotted fever rickettsiosis. J. Infect. Dis. 2007, 196, 629–638. [Google Scholar] [CrossRef]
- Curto, P.; Santa, C.; Allen, P.; Manadas, B.; Simões, I.; Martinez, J.J. A pathogen and a non-pathogen spotted fever group rickettsia trigger differential proteome signatures in macrophages. Front. Cell. Infect. Microbiol. 2019, 9, 43. [Google Scholar] [CrossRef] [Green Version]
- Allen, P.E.; Noland, R.C.; Martinez, J.J. Rickettsia conorii survival in THP-1 macrophages involves host lipid droplet alterations and active rickettsial protein production. Cell. Microbiol. 2021, e13390. [Google Scholar] [CrossRef]
- Curto, P.; Riley, S.P.; Simões, I.; Martinez, J.J. Macrophages infected by a pathogen and a non-pathogen spotted fever group Rickettsia reveal differential reprogramming signatures early in infection. Front. Cell. Infect. Microbiol. 2019, 9, 97. [Google Scholar] [CrossRef]
- Sahni, A.; Narra, H.P.; Sahni, S.K. Activation of mechanistic target of rapamycin (mTOR) in human endothelial cells infected with pathogenic spotted fever group rickettsiae. Int. J. Mol. Sci. 2020, 21, 7179. [Google Scholar] [CrossRef]
- Chowdhury, I.H.; Narra, H.P.; Sahni, A.; Khanipov, K.; Fofanov, Y.; Sahni, S.K. Enhancer associated long non-coding RNA transcription and gene regulation in experimental models of rickettsial infection. Front. Immunol. 2019, 9, 3014. [Google Scholar] [CrossRef]
- Patel, J.G.; Narra, H.P.; Sepuru, K.M.; Sahni, A.; Golla, S.R.; Sahni, A.; Singh, A.; Schroeder, C.L.C.; Chowdhury, I.H.; Popov, V.L.; et al. Evolution, purification, and characterization of RC0497: A peptidoglycan amidase from the prototypical spotted fever species Rickettsia conorii. Biol. Chem. 2020, 401, 249–262. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Fang, R.; Zhang, J.; Zhang, Y.; Bechelli, J.; Smalley, C.; Valbuena, G.; Walker, D.H.; Oteo, J.A.; Brasier, A.R. Quantitative proteomics of the endothelial secretome identifies RC0497 as diagnostic of acute rickettsial spotted fever infections. Am. J. Pathol. 2020, 190, 306–322. [Google Scholar] [CrossRef] [Green Version]
- Martín Farfán, A.; Juárez Fernández, C.; Calbo Torrecillas, F.; Porras Ballesteros, J.; Díaz Recio, M.; Bermúndez Recio, F. Clinico-epidemiological study of 164 cases of boutonneuse fever. Rev. Clin. Esp. 1985, 176, 333–339. [Google Scholar]
- Crespo, P.; Seixas, D.; Marques, N.; Oliveira, J.; da Cunha, S.; Melico-Silvestre, A. Mediterranean spotted fever: Case series of 24 years (1989–2012). SpringerPlus 2015, 4, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anton, E.; Font, B.; Munoz, T.; Sanfeliu, I.; Segura, F. Clinical and laboratory characteristics of 144 patients with Mediterranean spotted fever. Eur. J. Clin. Microbiol. Infect. Dis. 2003, 22, 126–128. [Google Scholar] [CrossRef] [PubMed]
- Colomba, C.; Saporito, L.; Polara, V.F.; Rubino, R.; Titone, L. Mediterranean spotted fever: Clinical and laboratory characteristics of 415 Sicilian children. BMC Infect. Dis. 2006, 6, 60. [Google Scholar] [CrossRef] [PubMed]
- Raoult, D.; Weiller, P.J.; Chagnon, A.; Chaudet, H.; Gallais, H.; Casanova, P. Mediterranean spotted fever: Clinical, laboratory and epidemiological features of 199 cases. Am. J. Trop. Med. Hyg. 1986, 35, 845–850. [Google Scholar] [CrossRef] [PubMed]
- López Parés, P.; Muñoz Espín, T.; Espejo Arenas, E.; Font Creus, B.; Segura Porta, F.; Martínez Vila, I.; Travería Casanova, J.; Bella Cueto, F. Mediterranean spotted fever in childhood. Prospective study of 130 cases. An. Esp. Pediatr. 1988, 28, 293–296. [Google Scholar]
- Vitaliti, G.; Falsaperla, R.; Lubrano, R.; Rapisarda, V.; Cocuzza, S.; Nunnari, G.; Pavone, P. Incidence of Mediterranean spotted fever in Sicilian children: A clinical-epidemiological observational retrospective study from 1987 to 2010. Int. J. Infect. Dis. 2015, 31, 35–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peixoto, S.; Ferreira, J.; Carvalho, J.; Martins, V. Mediterranean spotted fever in children: Study of a Portuguese endemic region. Acta Med. Port. 2018, 31, 196–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cascio, A.; Dones, P.; Romano, A.; Titone, L. Clinical and laboratory findings of boutonneuse fever in Sicilian children. Eur. J. Pediatr. 1998, 157, 482–486. [Google Scholar] [CrossRef] [PubMed]
- Baltadzhiev, I.; Kevorkyan, A.; Popivanova, N. Mediterranean spotted fever in child and adult patients: Investigation from an endemic region in Bulgaria. Cent. Eur. J. Public Health 2020, 28, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Herrador, Z.; Fernandez-Martinez, A.; Gomez-Barroso, D.; Leon, I.; Vieira, C.; Muro, A.; Benito, A. Mediterranean spotted fever in Spain, 1997–2014: Epidemiological situation based on hospitalization records. PLoS ONE 2017, 12, e0174745. [Google Scholar] [CrossRef] [Green Version]
- Mansueto, S.; Vitale, G.; Miceli, M.D.; Tringali, G.; Quartararo, P.; Picone, D.M.; Occhino, C. A sero-epidemiological survey of asymptomatic cases of Boutonneuse fever in western Sicily. Trans. R. Soc. Trop. Med. Hyg. 1984, 78, 16–18. [Google Scholar] [CrossRef]
- Raoult, D.; Nicolas, D.; De Micco, P.; Gallais, H.; Casanova, P. Epidemiologic aspects of Mediterranean Boutonneuse fever in the south of Corsica. Bull. Soc. Pathol. Exot. Fil. 1985, 78, 446–451. [Google Scholar]
- Demeester, R.; Claus, M.; Hildebrand, M.; Vlieghe, E.; Bottieau, E. Diversity of life-threatening complications due to Mediterranean spotted fever in returning travelers. J. Travel Med. 2010, 17, 100–104. [Google Scholar] [CrossRef]
- Raoult, D.; Zuchelli, P.; Weiller, P.J.; Charrel, C.; San Marco, J.L.; Gallais, H.; Casanova, P. Incidence, clinical observations and risk factors in the severe form of Mediterranean spotted fever among patients admitted to hospital in Marseilles 1983–1984. J. Infect. 1986, 12, 111–116. [Google Scholar] [CrossRef]
- Botelho-Nevers, E.; Rovery, C.; Richet, H.; Raoult, D. Analysis of risk factors for malignant Mediterranean spotted fever indicates that fluoroquinolone treatment has a deleterious effect. J. Antimicrob. Chemother. 2011, 66, 1821–1830. [Google Scholar] [CrossRef]
- Piras, M.A.; Calia, G.; Saba, F.; Gakis, C.; Andreoni, G. Glucose-6-phosphate dehydrogenase deficiency in male patients with Mediterranean spotted fever in Sardinia. J. Infect. Dis. 1983, 147, 607–608. [Google Scholar] [CrossRef]
- Sousa, R.; Franca, A.; Doria Nobrega, S.; Belo, A.; Amaro, M.; Abreu, T.; Pocas, J.; Proenca, P.; Vaz, J.; Torgal, J.; et al. Host- and microbe-related risk factors for and pathophysiology of fatal Rickettsia conorii infection in Portuguese patients. J. Infect. Dis. 2008, 198, 576–585. [Google Scholar] [CrossRef] [Green Version]
- Baltadzhiev, I.G.; Popivanova, N.I.; Stoilova, Y.M.; Kevorkian, A.K. Mediterranean spotted fever–classification by disease course and criteria for determining the disease severity. Folia Med. (Plovdiv) 2012, 54, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Walker, D.H.; Herrero-Herrero, J.I.; Ruiz-Beltran, R.; Bullon-Sopelana, A.; Ramos-Hidalgo, A. The pathology of fatal Mediterranean spotted fever. Am. J. Clin. Pathol. 1987, 87, 669–672. [Google Scholar] [CrossRef] [PubMed]
- Cascio, A.; Maggio, M.C.; Cardella, F.; Zangara, V.; Accomando, S.; Costa, A.; Iaria, C.; Mansueto, P.; Giordano, S. Coronary involvement in Mediterranean spotted fever. New Microbiol. 2011, 34, 421–424. [Google Scholar] [PubMed]
- Colomba, C.; Saporito, L.; Colletti, P.; Mazzola, G.; Rubino, R.; Pampinella, D.; Titone, L. Atrial fibrillation in Mediterranean spotted fever. J. Med. Microbiol. 2008, 57, 1424–1426. [Google Scholar] [CrossRef] [PubMed]
- Botelho-Nevers, E.; Foucault, C.; Lepidi, H.; Brouqui, P. Cerebral infarction: An unusual complication of Mediterranean spotted fever. Eur. J. Intern. Med. 2005, 16, 525–527. [Google Scholar] [CrossRef] [PubMed]
- Bougteba, A.; Basir, A.; Charradi, N. Meningoencephalitis caused by Rickettsia conorii in a young infant. Rev. Neurol. 2011, 167, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Tsiachris, D.; Deutsch, M.; Vassilopoulos, D.; Zafiropoulou, R.; Archimandritis, A.J. Sensorineural hearing loss complicating severe rickettsial diseases: Report of two cases. J. Infect. 2008, 56, 74–76. [Google Scholar] [CrossRef] [PubMed]
- Montasser, D.I.; Zajjari, Y.; Alayoud, A.; Bahadi, A.; Aatif, T.; Hassani, K.; Hamzi, A.; Allam, M.; Benyahia, M.; Oualim, Z. Acute renal failure as a complication of Mediterranean spotted fever. Nephrol. Ther. 2011, 7, 245–247. [Google Scholar] [CrossRef]
- Agahan, A.L.; Torres, J.; Fuentes-Paez, G.; Martinez-Osorio, H.; Orduna, A.; Calonge, M. Intraocular inflammation as the main manifestation of Rickettsia conorii infection. Clin. Ophthalmol. 2011, 5, 1401–1407. [Google Scholar] [CrossRef] [Green Version]
- Rombola, F. Mediterranean spotted fever presenting as an acute pancreatitis. Acta Gastroenterol. Belg. 2011, 74, 91–92. [Google Scholar]
- Cascio, A.; Giordano, S.; Dones, P.; Venezia, S.; Iaria, C.; Ziino, O. Haemophagocytic syndrome and rickettsial diseases. J. Med. Microbiol. 2011, 60, 537–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letaief, A.; Souissi, J.; Trabelsi, H.; Ghannem, H.; Jemni, L. Evaluation of clinical diagnosis scores for Boutonneuse fever. Ann. N. Y. Acad. Sci. 2003, 990, 327–330. [Google Scholar] [CrossRef] [PubMed]
- Fang, R.; Blanton, L.S.; Walker, D.H. Rickettsiae as emerging infectious agents. Clin. Lab. Med. 2017, 37, 383–400. [Google Scholar] [CrossRef]
- La Scola, B.; Raoult, D. Laboratory diagnosis of rickettsioses: Current approaches to diagnosis of old and new rickettsial diseases. J. Clin. Microbiol. 1997, 35, 2715–2727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portillo, A.; de Sousa, R.; Santibanez, S.; Duarte, A.; Edouard, S.; Fonseca, I.P.; Marques, C.; Novakova, M.; Palomar, A.M.; Santos, M.; et al. Guidelines for the detection of Rickettsia spp. Vector-Borne Zoonotic Dis. 2017, 17, 23–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brouqui, P.; Bacellar, F.; Baranton, G.; Birtles, R.J.; Bjoersdorff, A.; Blanco, J.R.; Caruso, G.; Cinco, M.; Fournier, P.E.; Francavilla, E.; et al. Guidelines for the diagnosis of tick-borne bacterial diseases in Europe. Clin. Microbiol. Infect. 2004, 10, 1108–1132. [Google Scholar] [CrossRef] [PubMed]
- Biggs, H.M.; Behravesh, C.B.; Bradley, K.K.; Dahlgren, F.S.; Drexler, N.A.; Dumler, J.S.; Folk, S.M.; Kato, C.Y.; Lash, R.R.; Levin, M.L.; et al. Diagnosis and management of tickborne rickettsial diseases: Rocky mountain spotted fever and other spotted fever group rickettsioses, ehrlichioses, and anaplasmosis—United States. MMWR Recomm. Rep. 2016, 65, 1–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teysseire, N.; Raoult, D. Comparison of Western immunoblotting and microimmunofluorescence for diagnosis of Mediterranean spotted fever. J. Clin. Microbiol. 1992, 30, 455–460. [Google Scholar] [CrossRef] [Green Version]
- Robinson, M.T.; Satjanadumrong, J.; Hughes, T.; Stenos, J.; Blacksell, S.D. Diagnosis of spotted fever group Rickettsia infections: The Asian perspective. Epidemiol. Infect. 2019, 147, e286. [Google Scholar] [CrossRef] [Green Version]
- Marrero, M.; Raoult, D. Centrifugation-shell vial technique for rapid detection of Mediterranean spotted fever rickettsia in blood culture. Am. J. Trop. Med. Hyg. 1989, 40, 197–199. [Google Scholar] [CrossRef] [PubMed]
- Gouriet, F.; Fenollar, F.; Patrice, J.Y.; Drancourt, M.; Raoult, D. Use of shell-vial cell culture assay for isolation of bacteria from clinical specimens: 13 years of experience. J. Clin. Microbiol. 2005, 43, 4993–5002. [Google Scholar] [CrossRef] [Green Version]
- La Scola, B.; Raoult, D. Diagnosis of Mediterranean spotted fever by cultivation of Rickettsia conorii from blood and skin samples using the centrifugation-shell vial technique and by detection of R. conorii in circulating endothelial cells: A 6-year follow-up. J. Clin. Microbiol. 1996, 34, 2722–2727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bechah, Y.; Socolovschi, C.; Raoult, D. Identification of rickettsial infections by using cutaneous swab specimens and PCR. Emerg. Infect. Dis. 2011, 17, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Mouffok, N.; Socolovschi, C.; Renvoise, A.; Parola, P.; Raoult, D. Diagnosis of rickettsioses from eschar swab samples, Algeria. Emerg. Infect. Dis. 2011, 17, 1968–1969. [Google Scholar] [CrossRef]
- Angelakis, E.; Richet, H.; Rolain, J.M.; La Scola, B.; Raoult, D. Comparison of real-time quantitative PCR and culture for the diagnosis of emerging Rickettsioses. PLoS Negl. Trop. Dis. 2012, 6, e1540. [Google Scholar] [CrossRef] [PubMed]
- Roux, V.; Raoult, D. Phylogenetic analysis of members of the genus Rickettsia using the gene encoding the outer-membrane protein rOmpB (ompB). Int. J. Syst. Evol. Microbiol. 2000, 50 Pt 4, 1449–1455. [Google Scholar] [CrossRef] [Green Version]
- Ishikura, M.; Ando, S.; Shinagawa, Y.; Matsuura, K.; Hasegawa, S.; Nakayama, T.; Fujita, H.; Watanabe, M. Phylogenetic analysis of spotted fever group rickettsiae based on gltA, 17-kDa, and rOmpA genes amplified by nested PCR from ticks in Japan. Microbiol. Immunol. 2003, 47, 823–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roux, V.; Fournier, P.E.; Raoult, D. Differentiation of spotted fever group rickettsiae by sequencing and analysis of restriction fragment length polymorphism of PCR-amplified DNA of the gene encoding the protein rOmpA. J. Clin. Microbiol. 1996, 34, 2058–2065. [Google Scholar] [CrossRef] [Green Version]
- Botelho-Nevers, E.; Socolovschi, C.; Raoult, D.; Parola, P. Treatment of Rickettsia spp. infections: A review. Expert Rev. Anti-Infect. Ther. 2012, 10, 1425–1437. [Google Scholar] [CrossRef] [PubMed]
- Raoult, D.; Roussellier, P.; Vestris, G.; Tamalet, J. In vitro antibiotic susceptibility of Rickettsia rickettsii and Rickettsia conorii: Plaque assay and microplaque colorimetric assay. J. Infect. Dis. 1987, 155, 1059–1062. [Google Scholar] [CrossRef] [PubMed]
- Rolain, J.M.; Maurin, M.; Vestris, G.; Raoult, D. In vitro susceptibilities of 27 rickettsiae to 13 antimicrobials. Antimicrob. Agents Chemother. 1998, 42, 1537–1541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cascio, A.; Colomba, C.; Antinori, S.; Paterson, D.L.; Titone, L. Clarithromycin versus azithromycin in the treatment of Mediterranean spotted fever in children: A randomized controlled trial. Clin. Infect. Dis. 2002, 34, 154–158. [Google Scholar] [CrossRef]
- Anton, E.; Munoz, T.; Traveria, F.J.; Navarro, G.; Font, B.; Sanfeliu, I.; Segura, F. Randomized trial of clarithromycin for Mediterranean spotted fever. Antimicrob. Agents Chemother. 2015, 60, 1642–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botelho-Nevers, E.; Edouard, S.; Leroy, Q.; Raoult, D. Deleterious effect of ciprofloxacin on Rickettsia conorii-infected cells is linked to toxin-antitoxin module up-regulation. J. Antimicrob. Chemother. 2012, 67, 1677–1682. [Google Scholar] [CrossRef] [PubMed]
- Blanton, L.S. The Rickettsioses: A practical update. Infect. Dis. Clin. N. Am. 2019, 33, 213–229. [Google Scholar] [CrossRef]
- Cross, R.; Ling, C.; Day, N.P.; McGready, R.; Paris, D.H. Revisiting doxycycline in pregnancy and early childhood—Time to rebuild its reputation? Expert Opin. Drug Saf. 2016, 15, 367–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nahum, G.G.; Uhl, K.; Kennedy, D.L. Antibiotic use in pregnancy and lactation: What is and is not known about teratogenic and toxic risks. Obstet. Gynecol. 2006, 107, 1120–1138. [Google Scholar] [CrossRef]
- Doryx Drug Label. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/050582s029lbl.pdf (accessed on 25 July 2021).
- Todd, S.R.; Dahlgren, F.S.; Traeger, M.S.; Beltran-Aguilar, E.D.; Marianos, D.W.; Hamilton, C.; McQuiston, J.H.; Regan, J.J. No visible dental staining in children treated with doxycycline for suspected Rocky Mountain Spotted Fever. J. Pediatr. 2015, 166, 1246–1251. [Google Scholar] [CrossRef] [Green Version]
- Pöyhönen, H.; Nurmi, M.; Peltola, V.; Alaluusua, S.; Ruuskanen, O.; Lähdesmäki, T. Dental staining after doxycycline use in children. J. Antimicrob. Chemother. 2017, 72, 2887–2890. [Google Scholar] [CrossRef] [Green Version]
- Stultz, J.S.; Eiland, L.S. Doxycycline and tooth discoloration in children: Changing of recommendations based on evidence of safety. Ann. Pharmacother. 2019, 53, 1162–1166. [Google Scholar] [CrossRef] [PubMed]
- Bella-Cueto, F.; Font-Creus, B.; Segura-Porta, F.; Espejo-Arenas, E.; Lopez-Pares, P.; Munoz-Espin, T. Comparative, randomized trial of one-day doxycycline versus 10-day tetracycline therapy for Mediterranean spotted fever. J. Infect. Dis. 1987, 155, 1056–1058. [Google Scholar] [CrossRef] [PubMed]
- Shaked, Y.; Samra, Y.; Maier, M.K.; Rubinstein, E. Relapse of rickettsial Mediterranean spotted fever and murine typhus after treatment with chloramphenicol. J. Infect. 1989, 18, 35–37. [Google Scholar] [CrossRef]
- Chan, Y.G.; Riley, S.P.; Chen, E.; Martinez, J.J. Molecular basis of immunity to rickettsial infection conferred through outer membrane protein B. Infect. Immun. 2011, 79, 2303–2313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazar, J.; Brezina, R. Control of rickettsial diseases. Eur. J. Epidemiol. 1991, 7, 282–286. [Google Scholar] [PubMed]
- Faulde, M.K.; Rutenfranz, M.; Keth, A.; Hepke, J.; Rogge, M.; Gorner, A. Pilot study assessing the effectiveness of factory-treated, long-lasting permethrin-impregnated clothing for the prevention of tick bites during occupational tick exposure in highly infested military training areas, Germany. Parasitol. Res. 2015, 114, 671–678. [Google Scholar] [CrossRef]
- Vaughn, M.F.; Funkhouser, S.W.; Lin, F.C.; Fine, J.; Juliano, J.J.; Apperson, C.S.; Meshnick, S.R. Long-lasting permethrin impregnated uniforms: A randomized-controlled trial for tick bite prevention. Am. J. Prev. Med. 2014, 46, 473–480. [Google Scholar] [CrossRef]
- Walker, A.R. Eradication and control of livestock ticks: Biological, economic and social perspectives. Parasitology 2011, 138, 945–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osterloh, A. The neglected challenge: Vaccination against rickettsiae. PLoS Negl. Trop. Dis. 2020, 14, e0008704. [Google Scholar] [CrossRef]
- Rego, R.O.M.; Trentelman, J.J.A.; Anguita, J.; Nijhof, A.M.; Sprong, H.; Klempa, B.; Hajdusek, O.; Tomas-Cortazar, J.; Azagi, T.; Strnad, M.; et al. Counterattacking the tick bite: Towards a rational design of anti-tick vaccines targeting pathogen transmission. Parasites Vectors 2019, 12, 229. [Google Scholar] [CrossRef]
- Petchampai, N.; Sunyakumthorn, P.; Banajee, K.H.; Verhoeve, V.I.; Kearney, M.T.; Macaluso, K.R. Identification of host proteins involved in rickettsial invasion of tick cells. Infect. Immun. 2015, 83, 1048–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spernovasilis, N.; Markaki, I.; Papadakis, M.; Mazonakis, N.; Ierodiakonou, D. Mediterranean Spotted Fever: Current Knowledge and Recent Advances. Trop. Med. Infect. Dis. 2021, 6, 172. https://doi.org/10.3390/tropicalmed6040172
Spernovasilis N, Markaki I, Papadakis M, Mazonakis N, Ierodiakonou D. Mediterranean Spotted Fever: Current Knowledge and Recent Advances. Tropical Medicine and Infectious Disease. 2021; 6(4):172. https://doi.org/10.3390/tropicalmed6040172
Chicago/Turabian StyleSpernovasilis, Nikolaos, Ioulia Markaki, Michail Papadakis, Nikolaos Mazonakis, and Despo Ierodiakonou. 2021. "Mediterranean Spotted Fever: Current Knowledge and Recent Advances" Tropical Medicine and Infectious Disease 6, no. 4: 172. https://doi.org/10.3390/tropicalmed6040172
APA StyleSpernovasilis, N., Markaki, I., Papadakis, M., Mazonakis, N., & Ierodiakonou, D. (2021). Mediterranean Spotted Fever: Current Knowledge and Recent Advances. Tropical Medicine and Infectious Disease, 6(4), 172. https://doi.org/10.3390/tropicalmed6040172