Intercepted Mosquitoes at New Zealand’s Ports of Entry, 2001 to 2018: Current Status and Future Concerns
Abstract
:1. Introduction
- To examine New Zealand exotic mosquito interception data, pathways, and ports of entry for the period from July 2001 to March 2018.
- To examine New Zealand import data for potential water receptacles (used tyres and used machinery) in the same period of time.
- To evaluate the role of used tyres and vehicles imports as a contributor to exotic mosquito introductions, especially for the container-breeding species, Ae. albopictus and Ae. aegypti.
- To examine interceptions of new vector mosquitoes as a risk factor for local transmission of arbovirus disease in New Zealand, and to consider implications of identified trends for present and projected climate conditions and for biosecurity practices.
2. Materials and Methods
2.1. The Interception Records
2.2. Interception Sites: Airports, Seaports, and Their Transitional Facilities
2.3. Trade Data Imports and International Flights
2.4. Statistical Analysis
3. Results
3.1. The Interception Records
3.2. Trade Data Imports and International Flights
4. Discussion
4.1. Main Findings
4.2. Current Risk Status for Arboviral Infections
4.3. Climatic Suitability for Aedes Mosquitos’ Establishment in New Zealand
4.4. Implications and Recommendations
- Regularly review mosquito interception practices as part of an integrated vector-borne disease surveillance system. Consider a surveillance sector approach [77] and advice from targeted research –based surveillance to identify potential improvements. Such surveillance will be essential to anticipate projected climatic influences
- As a component of regular reviews of mosquito surveillance and interception responses, there should be particular attention given to mosquito surveillance at major ports of entry, notably at the Ports of Auckland and Auckland Airport. As we recognise that interception data are, at least partially, relative to effort, this review should include improved standardisation of port surveillance procedures, recording, and schedules (e.g., install permanent traps and yearlong rather than seasonal operation) to provide a reliable baseline for future evaluation. This was a key limitation in the quality of data available for this present analysis and review.
- Increase the use of molecular methods to enhance mosquito interception surveillance. Effective biosecurity surveillance of mosquitoes will depend on having a high level of confidence in identifying mosquito species and origins. For example, only a third of interceptions linked to aircraft have a specified port of origin. Molecular identification (e.g., [78,79]) of unknown specimens and genetic origin analysis for unknown sources (e.g., [80]) are currently undertaken by an Australian laboratory [63]. It is essential to facilitate direct access to New Zealand and international molecular expertise and global reference material for this purpose.
- In addition to existing biosecurity practices, new regulations and requirements should be adopted for the discarding of waste tyres where they are within the 1600 meter-zone around ports (the dispersal distance of Aedes mosquitoes [81]).
- Review aircraft disinsection procedures for New Zealand. This review should pay particular attention to Auckland Airport and the recent increase in interceptions of Ae. aegypti [82] in view of the resistance to the pyrethroid pesticides [63] identified in specimens intercepted at New Zealand and Australian ports [63].
- Use research-based surveillance to regularly evaluate effectiveness and identify any specific gaps with regard to current biosecurity measures.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gratz, N.G.; Steffen, R.; Cocksedge, W. Why aircraft disinsection? Bull. World Health Organ. 2000, 78, 995–1004. [Google Scholar] [PubMed]
- Lounibos, L.P. Invasions by insect vectors of human disease. Annu. Rev. Entomol. 2002, 47, 233–266. [Google Scholar] [CrossRef] [PubMed]
- Tatem, A.J.; Rogers, D.J.; Hay, S. Global transport networks and infectious disease spread. Adv. Parasitol. 2006, 62, 293–343. [Google Scholar] [PubMed]
- Semenza, J.C.; Suk, J.E. Vector-borne diseases and climate change: A European perspective. FEMS Microbiol. Lett. 2017, 365, fnx244. [Google Scholar] [CrossRef] [PubMed]
- Enserink, M. A mosquito goes global. Science 2008, 320, 864–866. [Google Scholar] [CrossRef]
- Scholte, E.-J.; Schaffner, F. Waiting for the tiger: Establishment and spread of the Aedes albopictus mosquito in Europe. In Emerging Pests and Vector-Borne Diseases in Europe; Chapter 14; Wageningen Academic Publishers: Wageningen, The Netherlands, 2007; Volume 1, p. 241. [Google Scholar]
- DeHart, R.L. Health issues of air travel. Annu. Rev. Public Health 2003, 24, 133–151. [Google Scholar] [CrossRef]
- Leta, S.; Beyene, T.J.; De Clercq, E.M.; Amenu, K.; Kraemer, M.U.; Revie, C.W. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int. J. Infect. Dis. 2018, 67, 25–35. [Google Scholar] [CrossRef]
- Gubler, D.J. The global emergence/resurgence of arboviral diseases as public health problems. Arch. Med. Res. 2002, 33, 330–342. [Google Scholar] [CrossRef]
- Benedict, M.Q.; Levine, R.S.; Hawley, W.A.; Lounibos, L.P. Spread of the tiger: Global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoonotic Dis. 2007, 7, 76–85. [Google Scholar] [CrossRef]
- Paupy, C.; Delatte, H.; Bagny, L.; Corbel, V.; Fontenille, D. Aedes albopictus, an arbovirus vector: From the darkness to the light. Microbes Infect. 2009, 11, 1177–1185. [Google Scholar] [CrossRef]
- Medlock, J.M.; Hansford, K.M.; Schaffner, F.; Versteirt, V.; Hendrickx, G.; Zeller, H.; Bortel, W.V. A review of the invasive mosquitoes in Europe: Ecology, public health risks, and control options. Vector Borne Zoonotic Dis. 2012, 12, 435–447. [Google Scholar] [CrossRef] [PubMed]
- Bonizzoni, M.; Gasperi, G.; Chen, X.; James, A.A. The invasive mosquito species Aedes albopictus: Current knowledge and future perspectives. Trends Parasitol. 2013, 29, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Soumahoro, M.-K.; Fontenille, D.; Turbelin, C.; Pelat, C.; Boyd, A.; Flahault, A.; Hanslik, T. Imported chikungunya virus infection. Emerg. Infect. Dis. 2010, 16, 162. [Google Scholar] [CrossRef] [PubMed]
- Reiter, P. Yellow fever and dengue: A threat to Europe? Eurosurveillance 2010, 15, 19509. [Google Scholar] [PubMed]
- Almeida, A.P.; Gonçalves, Y.; Novo, M.; Sousa, C.; Melim, M.; Gracio, A.J. Vector monitoring of Aedes aegypti in the Autonomous Region of Madeira, Portugal. Wkly. Releases (1997–2007) 2007, 12, 3311. [Google Scholar] [CrossRef] [PubMed]
- Yunicheva, Y.; Ryabova, T.; Markovich, N.; Bezzhonova, O.; Ganushkina, L.; Semenov, V.; Tarkhov, G.; Vasilenko, L.; Guzeeva, T.; Shevereva, T. First data on the presence of breeding populations of the Aedes aegypti L. mosquito in Greater Sochi and various cities of Abkhazia. Meditsinskaia Parazitol. I Parazit. Bolezn. 2008, 3, 40–43. [Google Scholar]
- Scholte, E.; Den Hartog, W.; Dik, M.; Schoelitsz, B.; Brooks, M.; Schaffner, F.; Foussadier, R.; Braks, M.; Beeuwkes, J. Introduction and control of three invasive mosquito species in the Netherlands, July–October 2010. Eurosurveillance 2010, 15, 19710. [Google Scholar] [PubMed]
- Trewin, B.J.; Darbro, J.M.; Jansen, C.C.; Schellhorn, N.A.; Zalucki, M.P.; Hurst, T.P.; Devine, G.J. The elimination of the dengue vector, Aedes aegypti, from Brisbane, Australia: The role of surveillance, larval habitat removal and policy. PLoS Negl. Trop. Dis. 2017, 11, e0005848. [Google Scholar] [CrossRef] [PubMed]
- Schaffner, F.; Chouin, S.; Guilloteau, J. First record of Ochlerotatus (Finlaya) japonicus japonicus (Theobald, 1901) in metropolitan France. J. Am. Mosq. Control Assoc. 2003, 19, 1–5. [Google Scholar]
- Snow, K.; Ramsdale, C. Mosquitoes and tyres. Biologist (Lond. Engl.) 2002, 49, 49–52. [Google Scholar]
- The European Centre for Disease Prevention and Control. Aedes Albopictus—Current Known Distribution in Europe, April 2017; ECDC: Solna, Sweden, 2017. [Google Scholar]
- Reiter, P. Aedes albopictus and the world trade in used tires, 1988–1995: The shape of things to come? J. Am. Mosq. Control Assoc. 1998, 14, 83–94. [Google Scholar] [PubMed]
- Ayres, C.; Romao, T.; Melo-Santos, M.; Furtado, A. Genetic diversity in Brazilian populations of Aedes albopictus. Mem. Do Inst. Oswaldo Cruz 2002, 97, 871–875. [Google Scholar] [CrossRef] [PubMed]
- O’meara, G.F. The Asian Tiger Mosquito in Florida. Tallahassee City: University of Florida IFAS Extension (EDIS). Available online: https://edis.ifas.ufl.edu/mg339 (accessed on 5 February 2019).
- Linthicum, K.J.; Kramer, V.L.; Madon, M.B.; Fujioka, K. Introduction and potential establishment of Aedes albopictus in California in 2001. J. Am. Mosq. Control Assoc. 2003, 19, 301–308. [Google Scholar] [PubMed]
- Halstead, S.B. Successes and failures in dengue control global experience. In Proceedings of the International Conference on DF/DHF, Chiang Mai, Thailand, 20–24 November 2000. [Google Scholar]
- Brown, J.E.; Scholte, E.-J.; Dik, M.; Den Hartog, W.; Beeuwkes, J.; Powell, J.R. Aedes aegypti mosquitoes imported into the Netherlands, 2010. Emerg. Infect. Dis. 2011, 17, 2335. [Google Scholar] [CrossRef] [PubMed]
- Chadee, D.; Connell, N.; Le Maitre, A.; Ferreira, S. Surveillance for Aedes aegypti in Tobago, West Indies (1980-82). Mosq. News (USA) 1984, 44, 490–492. [Google Scholar]
- Mayers, P. Recent introduction of Aedes aegypti in Bermuda. Mosq. News 1983, 43, 361–362. [Google Scholar]
- Self, L. Vector Introductions Associated with Disease Outbreaks in the Western Pacific Region; WHO Regional Office for South-East Asia: New Delhi, India, 1984. [Google Scholar]
- Japan Meteorological Agency. Climate of Japan, General Information on Climate of Japan. 2019. Available online: https://www.data.jma.go.jp/gmd/cpd/longfcst/en/tourist.html (accessed on 5 May 2019).
- Kobayashi, M.; Nihei, N.; Kurihara, T. Analysis of northern distribution of Aedes albopictus (Diptera: Culicidae) in Japan by geographical information system. J. Med. Entomol. 2002, 39, 4–11. [Google Scholar] [CrossRef]
- Liu-Helmersson, J.; Quam, M.; Wilder-Smith, A.; Stenlund, H.; Ebi, K.; Massad, E.; Rocklöv, J. Climate change and Aedes vectors: 21st century projections for dengue transmission in Europe. EBioMedicine 2016, 7, 267–277. [Google Scholar] [CrossRef]
- Kobayashi, M.; Komagata, O.; Yonejima, M.; Maekawa, Y.; Hirabayashi, K.; Hayashi, T.; Nihei, N.; Yoshida, M.; Tsuda, Y.; Sawabe, K. Retrospective search for dengue vector mosquito Aedes albopictus in areas visited by a German traveler who contracted dengue in Japan. Int. J. Infect. Dis. 2014, 26, 135–137. [Google Scholar] [CrossRef] [Green Version]
- Bliss, A.R., Jr.; Gill, J.M. The effects of freezing on the larvae of Aedes aegypti1. Am. J. Trop. Med. Hyg. 1933, 1, 583–588. [Google Scholar] [CrossRef]
- Chandler, A.C. Factors influencing the uneven distribution of Aedes aegypti in Texas Cities1. Am. J. Trop. Med. Hyg. 1945, 1, 145–149. [Google Scholar] [CrossRef]
- Hales, S.; De Wet, N.; Maindonald, J.; Woodward, A. Potential effect of population and climate changes on global distribution of dengue fever: An empirical model. Lancet 2002, 360, 830–834. [Google Scholar] [CrossRef]
- Derraik, J.G.; Slaney, D. Anthropogenic environmental change, mosquito-borne diseases and human health in New Zealand. Ecohealth 2007, 4, 72–81. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018. [Google Scholar]
- Lafferty, K.D. The ecology of climate change and infectious diseases. Ecology 2009, 90, 888–900. [Google Scholar] [CrossRef] [PubMed]
- Åström, C.; Rocklöv, J.; Hales, S.; Béguin, A.; Louis, V.; Sauerborn, R. Potential distribution of dengue fever under scenarios of climate change and economic development. Ecohealth 2012, 9, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Frampton, E. Pathways of Entry and Spread of Exotic Mosquitoes, with Particular Reference to Southern Saltmarsh Mosquito, Ochlerotatus Camptorhynchus; Critique Limited: New Delhi, India, 2004. [Google Scholar]
- New Zealand Biosecure Entomology Laboratory (NZBEL), SMS Ltd. New Zealand Mosquitoes. Available online: https://www.smsl.co.nz/NZBEL/New+Zealand+Mosquitoes.html (accessed on 26 June 2019).
- New Zealand BioSecure. Medical Vectors: An Education Guide for Border Health and Integrated Pest Management; New Zealand BioSecure: Arrowtown, New Zealand, 2018. [Google Scholar]
- Laird, M.; Calder, L.; Thornton, R.C.; Syme, R.; Holder, P.; Mogi, M. Japanese Aedes albopictus among four mosquito species reaching New Zealand in used tires. J. Am. Mosq. Control Assoc. Mosq. News 1994, 10, 14–23. [Google Scholar]
- Laird, M. Background and findings of the 1993–94 New Zealand mosquito survey. N. Z. Entomol. 1995, 18, 77–90. [Google Scholar] [CrossRef]
- Derraik, J.G. Exotic mosquitoes in New Zealand: A review of species intercepted, their pathways and ports of entry. Aust. N. Z. J. Public Health 2004, 28, 433–444. [Google Scholar] [CrossRef]
- New Zealand Ministry of Health. Environmental Health Protection Manual Version 1.0. Section 5—Border Health (Unpublished); New Zealand Ministry of Health: Thorndon, New Zealand, 2018.
- The New Zealand Ministry of Health. Exotic Mosquitoes. Available online: https://www.health.govt.nz/your-health/healthy-living/environmental-health/pests-and-insects/mosquitoes/exotic-mosquitoes (accessed on 9 April 2019).
- Hustedt, S. A Risk Analysis of New Zealand’s Biosecurity Management System along Three Sea Importation Pathways. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, 2010. [Google Scholar]
- Stolwijk, A.; Straatman, H.; Zielhuis, G. Studying seasonality by using sine and cosine functions in regression analysis. J. Epidemiol. Community Health 1999, 53, 235–238. [Google Scholar] [CrossRef] [Green Version]
- Kay, B.; Russell, R. Mosquito Eradication: The Story of Killing Campto; CSIRO Publishing: Collingwood, Australia, 2013. [Google Scholar]
- Kamgang, B.; Brengues, C.; Fontenille, D.; Njiokou, F.; Simard, F.; Paupy, C. Genetic structure of the tiger mosquito, Aedes albopictus, in Cameroon (Central Africa). PLoS ONE 2011, 6, e20257. [Google Scholar] [CrossRef]
- Barrera, R.; Medialdea, V. Development time and resistance to starvation of mosquito larvae. J. Nat. Hist. 1996, 30, 447–458. [Google Scholar] [CrossRef]
- Mori, A. Effects of larval density and nutrition on some attributes of immature and adult Aedes albopictus. Trop. Med. 1979, 21, 85–103. [Google Scholar]
- Villena, O.C.; Terry, I.; Iwata, K.; Landa, E.R.; LaDeau, S.L.; Leisnham, P.T. Effects of tire leachate on the invasive mosquito Aedes albopictus and the native congener Aedes triseriatus. PeerJ 2017, 5, e3756. [Google Scholar] [CrossRef] [PubMed]
- Juliano, S.A.; O’Meara, G.F.; Morrill, J.R.; Cutwa, M.M. Desiccation and thermal tolerance of eggs and the coexistence of competing mosquitoes. Oecologia 2002, 130, 458–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shipping Guides Ltd. The Ships Atlas, 7th ed.; Shipping Guides Ltd.: Reigate, UK, 1998. [Google Scholar]
- MoveHub. Shipping Times and Costs from München (Munich), Germany to Auckland, New Zealand. Available online: https://www.movehub.com/de/international-shipping/new-zealand/auckland-from-muenchen-munich/ (accessed on 29 April 2019).
- Biosecurity New Zealand. Ministry of agriculture and forestry Wellington New Zealand. In Import Risk Analysis: Vehicle and Machinery; Biosecurity New Zealand: Wellington, New Zealand, 2007; p. 364. [Google Scholar]
- Hien, D.S. Biology of Aedes aegypti (L., 1762) and Aedes albopictus (Skuse, 1895) (Diptera, Culicidae). III. Effect of certain environmental conditions on the development of larvae and pupae. Acta Parasitol. Pol. 1975, 23, 553–568. [Google Scholar]
- Schmidt, T.L.; van Rooyen, A.R.; Chung, J.; Endersby-Harshman, N.M.; Griffin, P.C.; Sly, A.; Hoffmann, A.A.; Weeks, A.R. Tracking genetic invasions: Genome-wide single nucleotide polymorphisms reveal the source of pyrethroid-resistant Aedes aegypti (yellow fever mosquito) incursions at international ports. Evol. Appl. 2019, 12, 1136–1146. [Google Scholar] [CrossRef]
- Auckland Internatinal Airport. Monthly Traffic Update—June 2018; Auckland Internatinal Airport: Auckland, New Zealand, 2018. [Google Scholar]
- Bureau of Infrastructure, Transport and Regional Economics (BITRE). International Airline Activity, Statistical Report, BITRE, Canberra ACT; Australian Government, The Department of Infrastructure, Regional Development and Cities: Canberra, Australia, 2018.
- Crump, J.A.; Murdoch, D.R.; Baker, M.G. Emerging infectious diseases in an island ecosystem: The New Zealand perspective. Emerg. Infect. Dis. 2001, 7, 767. [Google Scholar] [CrossRef]
- Statistics New Zealand. New Zealand in Profile; Statistics New Zealand: Wellington, New Zealand, 2015.
- The Institute of Environmental Science and Research (ESR). Notifiable Diseases in New Zealand: Annual Report 2016; The Institute of Environmental Science and Research (ESR): Wellington, New Zealand, 2017. [Google Scholar]
- De Wet, N.; Ye, W.; Hales, S.; Warrick, R.; Woodward, A.; Weinstein, P. Use of a computer model to identify potential hotspots for dengue fever in New Zealand. N. Z. Med. J. 2001, 114, 420. [Google Scholar] [PubMed]
- Morrah, M. Thousands of NZ Cruise Ship Tourists Going Unchecked by MPI; Newshub: Wellington, New Zealand, 2019. [Google Scholar]
- Biosecurity New Zealand. Protection & Response: Culex Sitiens. Available online: https://www.mpi.govt.nz/protection-and-response/responding/alerts/culex-sitiens/ (accessed on 12 April 2019).
- Boyd, A.M.; Kay, B.H. Vector competence of Aedes aegypti, Culex sitiens, Culex annulirostris, and Culex quinquefasciatus (Diptera: Culicidae) for Barmah Forest virus. J. Med. Entomol. 2000, 37, 660–663. [Google Scholar] [CrossRef] [PubMed]
- Ryan, S.J.; Carlson, C.J.; Mordecai, E.A.; Johnson, L.R. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl. Trop. Dis. 2019, 13, e0007213. [Google Scholar] [CrossRef]
- National Institute of Water and Atmospheric Research (NIWA). Seasonal Climate Summary. Summer 2017–18. New Zealand’s Hottest Summer on Record; National Institute of Water and Atmospheric Research (NIWA): Auckland, New Zealand, 2018. [Google Scholar]
- Pearce, P.; Bell, R.; Bostock, H.; Carey-Smith, T.; Collins, D.; Fedaeff, N.; Kachhara, A.; Macara, G.; Mullan, B.; Paulik, R.; et al. Auckland Region Climate Change Projections and Impacts. Revised January 2018. Prepared by the National Institute of Water and Atmospheric Research, NIWA, for Auckland Council. Auckland Council Technical Report; National Institute of Water and Atmospheric Research (NIWA): Auckland, New Zealand, 2018; p. 359. [Google Scholar]
- Derraik, J.G. A scenario for invasion and dispersal of Aedes albopictus (Diptera: Culicidae) in New Zealand. J. Med Entomol. 2006, 43, 1–8. [Google Scholar] [CrossRef]
- Baker, M.G.; Easther, S.; Wilson, N. A surveillance sector review applied to infectious diseases at a country level. BMC Public Health 2010, 10, 332. [Google Scholar] [CrossRef] [PubMed]
- Werblow, A.; Flechl, E.; Klimpel, S.; Zittra, C.; Lebl, K.; Kieser, K.; Laciny, A.; Silbermayr, K.; Melaun, C.; Fuehrer, H.P. Direct PCR of indigenous and invasive mosquito species: A time-and cost-effective technique of mosquito barcoding. Med. Vet. Entomol. 2016, 30, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, B.L.; Shivas, M.A.; Hall-Mendelin, S.; Edwards, J.; Hamilton, N.A.; Jansen, C.C.; McMahon, J.L.; Warrilow, D.; van den Hurk, A.F. Rapid Surveillance for Vector Presence (RSVP): Development of a novel system for detecting Aedes aegypti and Aedes albopictus. PLoS Negl. Trop. Dis. 2017, 11, e0005505. [Google Scholar] [CrossRef] [PubMed]
- Beebe, N.W.; Whelan, P.; van den Hurk, A.; Ritchie, S.A.; Cooper, R.D. Genetic diversity of the dengue vector Aedes aegypti in Australia and implications for future surveillance and mainland incursion monitoring. Commun. Dis. Intell. 2005, 29, 299–303. [Google Scholar]
- Honório, N.A.; Silva, W.d.C.; Leite, P.J.; Gonçalves, J.M.; Lounibos, L.P.; Lourenço-de-Oliveira, R. Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an urban endemic dengue area in the State of Rio de Janeiro, Brazil. Memórias Do Inst. Oswaldo Cruz 2003, 98, 191–198. [Google Scholar]
- World Health Organization. Guidelines for Testing the Efficacy of Insecticide Products Used in Aircraft; WHO: Geneva, Switzerland, 2012. [Google Scholar]
Species | No. of Events (Larvae) |
---|---|
Culex | 107 (14) |
Cx. quinquefasciatus | 60 (11) |
Cx. sitiens * | 8 (1) |
Cx. australicus | 6 (0) |
Cx. pervigilans | 5 (0) |
Cx. pipiens * | 2 (0) |
Cx. gelidus * | 2 (0) |
Cx. nigripalpus | 1 (0) |
Cx. annulirostris * | 1(0) |
Cx. ocossa | 1 (0) |
Cx. tritaeniorhynchus | 1 (0) |
Cx. fuscocephala | 1 (0) |
Cx. sp. | 19 (2) |
Aedes | 108 (47) |
Ae aegypti * | 29 (11) |
Ae. albopictus * | 20 (15) |
Ae. notoscriptus | 14 (6) |
Ae. vexans | 8 (0) |
Ae. camptorhynchus * | 6 (3) |
Ae. japonicus * | 6 (4) |
Ae. vigilax * | 6 (1) |
Ae. taeniorhynchus | 3 (0) |
Ae. polynesiensis * | 2 (2) |
Ae. vittiger | 2 (0) |
Ae. alternans | 2 (0) |
Ae. tremulus | 1 (1) |
Ae. cinereus | 1 (0) |
Ae. infirmatus | 1 (0) |
Ae. sollicitans | 1 (0) |
Ae. cooki | 1 (1) |
Ae. togoi * | 1 (1) |
Ae. sierrensis * | 1 (1) |
Ae. sp. | 3 (1) |
Anopheles | 6 (1) |
A. siniensis * | 1 (0) |
A. subpictus * | 1 (0) |
A. stephensi * | 1 (0) |
A. crucians * | 1 (0) |
A. culicifacies * | 1 (1) |
A. albimanus * | 1 (0) |
Other | 9 (3) |
Mansonia humeralis | 1 (0) |
Culiseta annulata | 1 (0) |
Coquillettidia nigricans | 1 (0) |
Uranotaenia sp. | 1 (0) |
Verralina funerea | 1 (0) |
Mansonia titillans | 1 (0) |
Toxorhynchites speciosus | 1 (1) |
Tripteroides bambusa | 1 (1) |
Uranotaenia novobscura | 1 (1) |
Mosquito spp. | 14 (1) |
Total | 244 (66) |
Origin of Transport | No. Events (Larvae) | % by Total |
---|---|---|
South Pacific | 95 (29) | 38.9 |
Australia | 48 (9) | 19.7 |
Fiji | 12 (0) | 4.9 |
Vanuatu | 7 (6) | 2.9 |
Samoa | 6 (4) | 2.5 |
New Caledonia | 6 (0) | 2.5 |
Cook Islands | 5 (5) | 2.0 |
Tonga | 5 (0) | 2.0 |
Wallis and Futuna | 2 (2) | 0.8 |
Niue | 1 (1) | 0.4 |
Papua New Guinea | 1 (1) | 0.4 |
Guam | 1 (0) | 0.4 |
Noumea | 1 (0) | 0.4 |
Asia | 52 (19) | 21.3 |
Japan | 23 (15) | 9.4 |
India | 4 (1) | 1.6 |
Philippines | 4 (0) | 1.6 |
China | 4 (0) | 1.6 |
Thailand | 3 (0) | 1.2 |
Hong Kong | 3 (0) | 1.2 |
Malaysia | 2 (1) | 0.8 |
Korea | 2 (1) | 0.8 |
Taiwan | 2 (0) | 0.8 |
Vietnam | 2 (0) | 0.8 |
Singapore | 2 (1) | 0.8 |
Cambodia | 1 (0) | 0.4 |
Americas | 46 (4) | 18.9 |
Ecuador | 21 (0) | 8.6 |
USA | 17 (4) | 7.0 |
Chile | 3 (0) | 1.2 |
Canada | 2 (0) | 0.8 |
Panama | 1 (0) | 0.4 |
Argentina | 1 (0) | 0.4 |
Colombia | 1 (0) | 0.4 |
Europe | 4 (0) | 1.6 |
Netherlands | 2 (0) | 0.8 |
Germany | 2 (0) | 0.8 |
Unknown | 47 (15) | 19.3 |
Total | 244 (66) | 100 |
Pathway | Port | No. of Events (Larvae) | % by Entrance Pathway | % by Total |
---|---|---|---|---|
By sea | Ports of Auckland | 134 (52) | 83.2 | 54.9 |
Lyttelton Port | 11 (5) | 6.8 | 4.5 | |
CentrePort Wellington | 7 (1) | 4.4 | 2.9 | |
Port of Tauranga | 7 (0) | 4.4 | 2.9 | |
Port of Whangarei | 1 (0) | 0.6 | 0.4 | |
Port Otago | 1 (0) | 0.6 | 0.4 | |
Total interceptions by sea | 161 (58) | 100 | 66 | |
By air | Auckland International Airport | 67 (6) | 80.7 | 27.5 |
Christchurch International Airport | 9 (0) | 10.8 | 4.4 | |
Wellington Airport | 3 (0) | 3.6 | 1.2 | |
Tauranga Airport | 1 (0) | 1.2 | 0.4 | |
Hamilton Airport | 1 (1) | 1.2 | 0.4 | |
Hastings airport | 1 (0) | 1.2 | 0.4 | |
Marlborough Airport | 1 (1) | 1.2 | 0.4 | |
Total interceptions by air | 83 (8) | 100 | 34 | |
Total interceptions | 244 (66) | 100 | 100 |
Stage | Entrance Pathway | No. of Events | % by Stage | % by Total |
---|---|---|---|---|
Adult | By air | 75 | 42 | 31 |
By sea | 103 | 58 | 42 | |
Total adult interceptions | 178 | 100 | 73 | |
Larvae | By air | 8 | 12 | 3 |
By sea | 58 | 88 | 24 | |
Total larvae interceptions | 66 | 100 | 27 | |
Total interceptions | 244 | 100 | 100 |
Pathway | Mean of Invasion | No. Events (Larvae) | % by Pathway | % by Total | |
---|---|---|---|---|---|
By air | Air Containers | Roses, fresh fruits, and vegetables | 11 (0) | 13.3 | 4.5 |
Unspecified | 9 (0) | 10.8 | 3.7 | ||
Luggage | 7 (1) | 8.4 | 2.9 | ||
Unknown | Inspection at and around ports/transitional facilities | 35 (1) | 42.2 | 14.3 | |
Aircrafts inspection | 14 (2) | 16.9 | 5.7 | ||
Surveillance traps | 7 (4) | 8.4 | 2.9 | ||
Total interceptions by air | 83 (8) | 100 | 34 | ||
By sea | Used tyres | 25 (19) | 15.5 | 10.2 | |
Used machinery | 29 (20) | 18 | 11.9 | ||
Containers | Fresh fruits and vegetables | 30 (1) | 18.6 | 12.3 | |
Manufactured goods | 9 (0) | 5.6 | 3.7 | ||
Empty | 5 (0) | 3.1 | 2 | ||
Unspecified | 20 (2) | 12.4 | 8.2 | ||
Unknown | Ports/ transitional facilities inspection | 14 (3) | 8.7 | 5.7 | |
On ships- inspection | 25 (12) | 15.5 | 10.2 | ||
Surveillance traps | 4 (1) | 2.5 | 1.6 | ||
Total interceptions by sea | 161 (58) | 100 | 66 | ||
Total interceptions | 244 (66) | 100 | 100 |
Species (No.) | Location of Interception (No.) | Stage (No.) | Mode of Entry (No.) | Origin of Transport (No.) |
---|---|---|---|---|
Ae. aegypti (29) | Auckland International Airport (19) | Adult (15) Larvae (4) | Unknown (17), Fruit container (1), Luggage (1) | Unknown (12), USA (1), New Caledonia (1), Japan (1), Australia (1), Philippines (1), Fiji (1), Cambodia (1) |
Ports of Auckland (10) | Adult (3) Larvae (7) | Used machinery (4), Used tyres (2), Unknown (2), Empty Container (1), Unspecified good container (1) | Unknown (3), Cook Islands (2), Tonga (1), Samoa (1), Papua New Guinea (1), Vanuatu (1), Futuna (1) | |
Ae. albopictus (20) | Auckland International Airport (1) | Adult (1) | Luggage (1) | Taiwan (1) |
Ports of Auckland (17) and their transitional facility (2) | Adult (4) Larvae (15) | Used machinery (8), Used tyres (4), Unknown (6), Unspecified good Container (1) | Japan (8), Vanuatu (3), USA (2), Unknown (2), Cook Islands (1), Malaysia (1), Korea (1), Vietnam (1) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ammar, S.E.; Mclntyre, M.; Swan, T.; Kasper, J.; Derraik, J.G.B.; Baker, M.G.; Hales, S. Intercepted Mosquitoes at New Zealand’s Ports of Entry, 2001 to 2018: Current Status and Future Concerns. Trop. Med. Infect. Dis. 2019, 4, 101. https://doi.org/10.3390/tropicalmed4030101
Ammar SE, Mclntyre M, Swan T, Kasper J, Derraik JGB, Baker MG, Hales S. Intercepted Mosquitoes at New Zealand’s Ports of Entry, 2001 to 2018: Current Status and Future Concerns. Tropical Medicine and Infectious Disease. 2019; 4(3):101. https://doi.org/10.3390/tropicalmed4030101
Chicago/Turabian StyleAmmar, Sherif E., Mary Mclntyre, Tom Swan, Julia Kasper, José G. B. Derraik, Michael G. Baker, and Simon Hales. 2019. "Intercepted Mosquitoes at New Zealand’s Ports of Entry, 2001 to 2018: Current Status and Future Concerns" Tropical Medicine and Infectious Disease 4, no. 3: 101. https://doi.org/10.3390/tropicalmed4030101
APA StyleAmmar, S. E., Mclntyre, M., Swan, T., Kasper, J., Derraik, J. G. B., Baker, M. G., & Hales, S. (2019). Intercepted Mosquitoes at New Zealand’s Ports of Entry, 2001 to 2018: Current Status and Future Concerns. Tropical Medicine and Infectious Disease, 4(3), 101. https://doi.org/10.3390/tropicalmed4030101