Mosquitoes and the Lymphatic Filarial Parasites: Research Trends and Budding Roadmaps to Future Disease Eradication
Abstract
:1. Introduction
2. The Mosquito–Filaria System: Past and Present Research
3. Emerging Prospects of Achieving LF Eradication through Implementation of Mosquito–Parasite Approaches
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tolle, M.A. Mosquito-borne diseases. Curr. Probl. Pediatr. Adolesc. Health Care 2009, 4, 97–104. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. A Global Brief of Vector-Borne Diseases; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- World Health Organization. Lymphatic Filariasis: A Handbook of Practical Entomology for National Lymphatic Filariasis Elimination Programmes; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Chakraborty, S.; Gurusamy, M.; Zawieja, D.C.; Muthuchamy, M. Lymphatic filariasis: Perspectives on lymphatic filarial disease pathogenesis. Microcirculation 2013, 20, 349–364. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, G.; Noroes, J.; Addiss, D. The silent burden of sexual disability associated with lymphatic filariasis. Acta Trop. 1997, 63, 57–60. [Google Scholar] [CrossRef]
- Ton, T.G.N.; Mackenzie, C.; Molyneux, D.H. The burden of mental health in lymphatic filariasis. Infect. Dis. Poverty 2015, 4, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Obindo, J.; Abdulmalik, J.; Nwefoh, E.; Agbir, M.; Nwoga, C.; Armiya’u, A.; Davou, F.; Maigida, K.; Otache, E.; Ebiloma, A.; et al. Prevalence of depression and associated clinical and socio-demographic factors in people living with lymphatic filariasis in Plateau State, Nigeria. PLoS Negl. Trop. Dis. 2017, 11, e0005567. [Google Scholar] [CrossRef] [PubMed]
- Ichimori, K.; King, J.D.; Engels, D.; Yajima, A.; Mikhailov, A.; Lammie, P.; Ottesen, E.A. Global programme to eliminate lymphatic filariasis: The processes underlying programme success. PLoS Negl. Trop. Dis. 2014, 8, e3328. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Essential Medicines Donated to Control, Eliminate and Eradicate Neglected Tropical Diseases; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- World Health Organization. Guideline: Alternative Mass Drug Administration Regimens to Eliminate Lymphatic Filariasis; World Health organization: Geneva, Switzerland, 2017. [Google Scholar]
- World Health Organization. Global programme to eliminate lymphatic filariasis: Progress report 2014. Wkly. Epidemiol. Rec. 2015, 90, 489–504. [Google Scholar]
- Ramaiah, K.D.; Ottesen, E.A. Progress and impact of 13 years of the global programme to eliminate lymphatic filariasis on reducing the burden of filarial disease. PLoS Negl. Trop. Dis. 2014, 8, e3319. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Health Estimates Summary Tables. DALYs by Cause, Age and Sex, by WHO Region, 2000–2015; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- World Health Organization. Global programme to eliminate lymphatic filariasis: Progress report 2015. Wkly. Epidemiol. Rec. 2016, 91, 441–460. [Google Scholar]
- World Health Organization. Global programme to eliminate lymphatic filariasis: Progress report, 2016. Wkly. Epidemiol. Rec. 2017, 92, 594–607. [Google Scholar]
- Melrose, W.D. Chemotherapy for lymphatic filariasis: Progress but not perfection. Expert Rev. Anti-Infect. Ther. 2004, 1, 571–577. [Google Scholar] [CrossRef]
- McNulty, S.N.; Mitreva, M.; Weil, G.J.; Fischer, P.U. Inter and intra-specific diversity of parasites that cause lymphatic filariasis. Infect. Genet. Evol. 2013, 14, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Schwab, A.E.; Boakye, D.A.; Kyelem, D.; Prichard, R.K. Detection of benzimidazole resistance-associated mutations in the filarial nematode Wuchereria bacrofti and evidence for selection by albendazole and ivermectin combination treatment. Am. J. Trop. Med. Hyg. 2005, 73, 234–238. [Google Scholar] [PubMed]
- Schwab, A.E.; Churcher, T.S.; Schwab, A.J.; Basáñez, M.G.; Prichard, R.K. Population genetics of concurrent selection with albendazole and ivermectin or diethylcarbamazine on the possible spread of albendazole resistance in Wuchereria bancrofti. Parasitology 2006, 133, 598–601. [Google Scholar] [CrossRef] [PubMed]
- Wiwanitkit, V. Beta-tubulin isotype 1 conferred benzimidazole-resistance in lymphatic filariasis: An explanation by molecular concern. J. Blood Lymph 2017, 7, 1000123. [Google Scholar] [CrossRef]
- McGreevy, P.B.; Bryan, J.H.; Oothuman, P.; Kolstrup, N. The lethal effects of the cibarial and pharyngeal armatures of mosquitoes on microfilariae. Trans. Roy. Soc. Trop. Med. Hyg. 1978, 72, 361–368. [Google Scholar] [CrossRef]
- Bartholomay, L.; Christensen, B. Vector-parasite interactions in mosquito-borne filariasis. In The Filaria (World Class Parasites); Springer: Boston, MA, USA, 2002; Volume 5, pp. 9–19. [Google Scholar]
- Paily, K.P.; Hoti, S.L.; Das, P.K. A review of the complexity of biology of lymphatic filarial parasites. J. Parasit. Dis. 2009, 33, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Hillyer, J.F. Mosquito immunity. Adv. Exp. Med. Biol. 2010, 708, 218–238. [Google Scholar] [CrossRef]
- Beerntsen, B.T.; James, A.A.; Christensen, B.M. Genetics of mosquito vector competence. Microbiol. Mol. Biol. Rev. 2000, 64, 115–137. [Google Scholar] [CrossRef] [PubMed]
- Beckett, E.B.; Boothroyd, B. Mode of nutrition of the larvae of the filarial nematode Brugia pahangi. Parasitology 1970, 60, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Kan, S.P.; Ho, B.C. Development of Brugia pahangi in the flight muscles of Aedes togoi: Ultrastructural changes in the infected muscle fibers and the infecting filarial larvae. Am. J. Trop. Med. Hyg. 1973, 22, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Lehane, M.J.; Laurence, B.R. Flight muscle ultrastructure of susceptible and refractory mosquitoes parasitized by larval Brugia pahangi. Parasitology 1977, 74, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Shih, C.M. Exsheathment of microfilariae of Brugia pahangi in the susceptible and refractory strains of Aedes aegypti. Ann. Trop. Med. Parasitol. 1988, 82, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Bennuru, S.; Meng, Z.; Ribeiro, J.M.; Semnani, R.T.; Ghedin, E.; Chan, K.; Lucas, D.A.; Veenstra, T.D.; Nutman, T.B. Stage-specific proteomic expression patterns of the human lymphatic filarial parasite Brugia malayi and its endosymbiont Wolbachia. Proc. Natl. Acad. Sci. USA 2011, 108, 9649–9654. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.-J.; Ghedin, E.; Berrimen, M.; McQuillan, J.; Holroyd, N.; Mayhew, G.F.; Christensen, B.M.; Michalski, M.L. A deep sequencing approach to comparatively analyze the transcriptome of lifecycle stages of the filarial worm, Brugia malayi. PLoS Negl. Trop. Dis. 2011, 5, e1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Wang, Z.; Rush, A.C.; Mitreva, M.; Weil, G.J. Transcription profiling reveals stage- and function-dependent expression patterns in the filarial nematode Brugia malayi. BMC Genom. 2012, 13, 184. [Google Scholar] [CrossRef] [PubMed]
- Adebayo, J.M.; Geoffrey, N.G.; McManus, D.P. Serine protease inhibitors of parasitic helminths. Parasitology 2012, 139, 681–695. [Google Scholar] [CrossRef]
- Fuhrman, J.A.; Piessens, W.F. Chitin synthesis and sheath morphogenesis in Brugia malayi microfilariae. Mol. Biochem. Parasitol. 1985, 17, 93–104. [Google Scholar] [CrossRef]
- Fuhrman, J.A.; Lee, J.; Dalamagas, D. Structure and function of a family of chitinase isozymes from brugian microfilariae. Exp. Parasitol. 1995, 80, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Guiliano, D.B.; Hong, X.; McKerrow, J.H.; Blaxter, M.L.; Oksov, Y.; Liu, J.; Ghedin, E.; Lustigman, S. A gene family of cathepsin L-like proteases of filarial nematodes are associated with larval molting and cuticle and eggshell remodeling. Mol. Biochem. Parasitol. 2004, 136, 227–242. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Preston, G.; Bianco, A.E. Chitinase is stored and secreted from the inner body of microfilariae and has a role in exsheathment in the parasitic nematode Brugia malayi. Mol. Biochem. Parasitol. 2008, 161, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Razin, S.V.; Borunova, W.; Maksimenko, O.G.; Kantidze, O.L. Cys2His2 zinc finger protein family: Classification, function, and major members. Biochem. Biokhimiiâ 2012, 77, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.-J.; Aliota, M.T.; Mayhew, G.F.; Erickson, S.M.; Christensen, B.M. Dual RNA-seq of parasite and host reveals gene expression dynamics during filarial worm–mosquito interactions. PLoS Negl. Trop. Dis. 2014, 8, e2905. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, W.W. The genetic basis of susceptibility to infection with semi-periodic Brugia malayi in Aedes aegypti. Ann. Trop. Med. Parasitol. 1962, 56, 373–382. [Google Scholar] [CrossRef]
- Macdonald, W.W. The influence of the gene ƒm (filarial susceptibility, Brugia malayi) on the susceptibility of Aedes aegypti to seven strains of Brugia, Wuchereria and Dirofilaria. Ann. Trop. Med. Parasitol. 1965, 59, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Severson, D.W.; Mori, A.; Zhang, Y.; Christensen, B.M. Chromosomal mapping of two loci affecting filarial worm susceptibility in Aedes aegypti. Insect Mol. Biol. 1994, 3, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Beerntsen, B.T.; Severson, D.W.; Klinkhammer, J.A.; Kassner, V.A.; Christensen, B.M. Aedes aegypti: A quantitative trait locus (QTL) influencing filarial worm intensity is linked to QTL for susceptibility to other mosquito-borne pathogens. Exp. Parasitol. 1995, 81, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Juneja, P.; Osei-Poku, J.; Ho, Y.S.; Ariani, C.V.; Palmer, W.J.; Pain, A.; Jiggins, F.M. Assembly of the genome of the disease vector Aedes aegypti onto a genetic linkage map allows mapping of genes affecting disease transmission. PLoS Negl. Trop. Dis. 2014, 8, e2652. [Google Scholar] [CrossRef] [PubMed]
- Juneja, P.; Ariana, C.V.; Ho, Y.S.; Akorli, J.; Palmer, W.J.; Pain, A.; Jiggins, F.M. Exome and transcriptome sequencing of Aedes aegypti identifies a locus that confers resistance to Brugia malayi and alters the immune response. PLoS Pathog. 2015, 11, e1004765. [Google Scholar] [CrossRef] [PubMed]
- Megalhaes, T.; Oliveira, I.F.; Melo-Santos, M.A.; Oliveira, C.M.; Lima, C.A.; Ayres, C.F. Expression of defensin, cecropin, and transferrin in Aedes aegypti (Diptera: Culicidae) infected with Wuchereria bancrofti (Spirurida: Onchocercidae), and the abnormal development of nematodes in mosquito. Exp. Parasitol. 2008, 120, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Aliota, M.T.; Fuchs, J.F.; Rocheleau, T.A.; Clark, A.K.; Hillyer, J.F.; Chen, C.-C.; Christensen, B.M. Mosquito transcriptome profiles and filarial worm susceptibility in Armigeres subalbatus. PLoS Negl. Trop. Dis. 2010, 4, e666. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.A.; Paily, K.P. Up-regulation of lipophorin (Lp) and lipophorin receptor (LpR) gene in the mosquito, Culex quinquefasciatus (Diptera: Culicidae), infected with the filarial parasite, Wuchereria bancrofti (Spirurida: Onchocercidae). Parasitol. Res. 2011, 108, 377. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, R.; Gupta, K.; Kajla, M.; Kakani, P.; Choudhury, T.P.; Kumar, S.; Kumar, V.; Gupta, L. Apolipohorin-III acts as a positive regulator of Plasmodium development in Anopheles stephensi. Front. Physiol. 2017, 8, 185. [Google Scholar] [CrossRef] [PubMed]
- Zdybicka-Barabas, A.; Cytryńska, M. Apolipophorins and insect immune response. Invertebr. Surviv. J. 2013, 10, 58–68. [Google Scholar]
- Rono, M.K.; Whitten, M.M.A.; Oulad-Abdelghani, M.; Levashina, E.A.; Marios, E. The major yolk protein vitellogenin interferes with the anti-Plasmodium response in the malaria mosquito Anopheles gambiae. PLoS Biol. 2010, 8, e1000434. [Google Scholar] [CrossRef] [PubMed]
- Tzertzinis, G.; Egaña, A.L.; Palli, S.B.; Robinson-Rechavi, M.; Gissendanner, C.R.; Liu, C.; Unnasch, T.R.; Maina, C.V. Molecular evidence for a functional ecdysone signaling system in Brugia malayi. PLoS Negl. Trop. Dis. 2010, 4, e625. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Gallup, J.M.; Day, T.A.; Bartholomay, L.C.; Kimber, M.J. Development of an in vivo RNAi protocol to investigate gene function in the filarial nematode, Brugia malayi. PLoS Pathog. 2010, 6, e1001239. [Google Scholar] [CrossRef] [PubMed]
- Sangshetti, J.N.; Shinde, D.B.; Kulkarni, A.; Arote, R. Two decades of antifilarial drug discovery: A review. RSC Adv. 2017, 7, 20628–20666. [Google Scholar] [CrossRef]
- Sinden, R.E. Developing transmission-blocking strategies for malaria control. PLoS Pathog. 2017, 13, e1006336. [Google Scholar] [CrossRef] [PubMed]
- Coutinho-Abreu, I.V.; Ramalho-Ortigao, M. Transmission blocking vaccines to control insect-borne diseases—A review. Mem. Inst. Oswaldo Cruz 2010, 105, 1–12. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Malaria Vaccine Pipeline; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Gonçalves, D.; Hunziker, P. Transmission-blocking strategies: The road map from laboratory bench to the community. Malar. J. 2016, 15, 95. [Google Scholar] [CrossRef] [PubMed]
- Sauerwein, R.W.; Bousema, T. Transmission blocking malaria vaccines: Assays and candidates in clinical development. Vaccine 2015, 33, 7476–7482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alphey, L. Genetic control of mosquitoes. Annu. Rev. Entomol. 2014, 59, 205–224. [Google Scholar] [CrossRef] [PubMed]
- Gabrieli, P.; Smidler, A.; Catteruccia, F. Engineering the control of mosquito-borne infectious diseases. Genome Biol. 2014, 15, 535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macias, V.M.; Ohm, J.R.; Rasgon, J.L. Gene drive for mosquito control: Where did it come from and where are we headed? Int. J. Environ. Res. Public Health 2017, 14, 1006. [Google Scholar] [CrossRef] [PubMed]
- Ageep, T.B.; Damiens, D.; Alsharif, B.; Ahmed, A.; Salih, E.H.O.; Diabaté, A.; Lees, R.S.; Gilles, J.R.L.; El Sayed, B.B. Participation of irradiated Anopheles arabiensis males in swarms following field release in Sudan. Malar. J. 2014, 13, 484. [Google Scholar] [CrossRef] [PubMed]
- Bellini, R.; Medici, A.; Puggioli, A.; Balestrino, F.; Carrieri, M. Pilot field trials with Aedes albopictus irradiated sterile males in Italian urban areas. J. Med. Entomol. 2013, 50, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Nurhayati, S.; Yunianto, B.; Ramadhani, T.; Ikawati, B.; Santoso, B.; Rahayu, A. Controlling Aedes aegypti population as DHF vector with radiation based-sterile insect technique in Banjarnegara Regency, Central Java. Indones. J. Nucl. Sci. Technol. 2013, 14, 1–10. [Google Scholar] [CrossRef]
- Wilke, A.B.B.; Gomes, A.D.; Natal, D.; Marrelli, M.T. Control of vector populations using genetically modified mosquitoes. Rev. Saúde Pública 2009, 43, 1–5. [Google Scholar] [CrossRef]
- Harris, A.F.; Nimmo, D.; McKemey, A.R.; Kelly, N.; Scaife, S.; Donelly, C.A.; Beech, C.; Petrie, W.D.; Alphey, L. Field performance of engineered male mosquitoes. Nat. Biotechnol. 2011, 29, 1034–1037. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.F.; McKemey, A.R.; Nimmo, D.; Curtis, Z.; Black, I.; Morgan, S.A.; Oviedo, M.N.; Lacroix, R.; Naish, N.; Morrison, N.I.; et al. Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes. Nat. Biotechnol. 2012, 30, 828–830. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, R.; McKemey, A.R.; Raduan, N.; Wee, L.K.; Ming, W.H.; Ney, T.G.; Rahidah, A.A.S.; Salman, S.; Subramaniam, S.; Nordin, O.; et al. Open field release of genetically engineered sterile male Aedes aegypti in Malaysia. PLoS ONE 2012, 7, e42771. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, D.O.; McKemey, A.R.; Garziera, L.; Lacroix, R.; Donnelly, C.A.; Alphey, L.; Malavasi, A.; Capurro, M.L. Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes. PLoS Negl. Trop. Dis. 2015, 9, e0003864. [Google Scholar] [CrossRef] [PubMed]
- De Andrade, P.P.; Aragão, F.J.L.; Colli, W.; Dellagostin, O.A.; Finardi-Filho, F.; Hirata, M.H.; Lira-Neto, A.C.; de Melo, M.A.; Nepomuceno, A.L.; da Nóbrega, F.G.; et al. Use of transgenic Aedes aegypti in Brazil: Risk perception and assessment. Bull. World Health Organ. 2016, 94, 766–771. [Google Scholar] [CrossRef] [PubMed]
- Fu, G.; Lees, R.S.; Nimmo, D.; Aw, D.; Jin, L.; Gray, P.; Berendonk, T.U.; White-Cooper, H.; Scaife, S.; Phuc, H.K.; et al. Female-specific flightless phenotype for mosquito control. Proc. Natl. Acad. Sci. USA 2010, 107, 4550–4554. [Google Scholar] [CrossRef] [PubMed]
- Facchinelli, L.; Valerio, L.; Ramsey, J.M.; Gould, F.; Walsh, R.K.; Bond, G.; Robert, M.A.; Lloyd, A.L.; James, A.A.; Alphey, L.; et al. Field cage studies and progressive evaluation of genetically-engineered mosquitoes. PLoS Negl. Trop. Dis. 2013, 7, e2001. [Google Scholar] [CrossRef] [PubMed]
- Labbé, G.M.C.; Scaife, S.; Morgan, S.A.; Curtis, Z.H.; Alphey, L. Female-specific flightless (fsRIDL) phenotype for control of Aedes albopictus. PLoS Negl. Trop. Dis. 2012, 6, e1724. [Google Scholar] [CrossRef] [PubMed]
- Marinotti, O.; Jasinskiene, N.; Fazekas, A.; Scaife, S.; Fu, G.; Mattingly, S.T.; Chow, K.; Brown, D.M.; Alphey, L.; James, A.A. Development of a population suppression strain of the human malaria vector mosquito, Anopheles stephensi. Malar. J. 2013, 12, 142. [Google Scholar] [CrossRef] [PubMed]
- Zamanian, M.; Andersen, E.C. Prospects and challenges of CRISPR/Cas genome editing for the study and control of neglected vector-borne nematode diseases. FEBS J. 2016, 283, 3204–3221. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.L.; Christensen, B.M. Flight muscle-specific expression of act88F: GFP in transgenic Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol. Int. 2004, 53, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Ernst, K.C.; Haenchen, S.; Dickinson, K.; Doyle, M.S.; Walker, K.; Monaghan, A.J.; Hayden, M.H. Awareness and support of release of genetically modified ‘sterile’ mosquitoes, Key West, Florida, USA. Emerg. Infect. Dis. 2015, 21, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Adalja, A.; Sell, T.K.; McGinty, M.; Boddie, C. Genetically modified (GM) mosquito use to reduce mosquito-transmitted disease in the US: A community opinion survey. PLoS Curr. Outbreaks 2016, 1. [Google Scholar] [CrossRef] [PubMed]
- Panjwani, A.; Wilson, A. What is stopping the use of genetically modified insects for disease control? PLoS Pathog. 2016, 12, e1005830. [Google Scholar] [CrossRef] [PubMed]
Period | Upregulated Genes Ontology | Parasite Activity |
---|---|---|
Day 1–2 | Mitochondrial ATP synthase complex, glycolysis, integral to membrane, DNA replication, signal peptidase complex, phosphoric diester hydrolase activity | Rearrangement and growth of preexisting microfilarial structure, extensive cuticular reorganisation, mf transforms into L1 |
Day 2–3 | Calcium ion binding, response to stress, serine-type endopeptidase inhibitor activity, structural constituent of the cuticle | L1 development |
Day 3–4 | Ion channel activity, transmembrane transport, membrane, metallopeptidase activity, steroid hormone receptor activity | Middle to late L1 development: numerous mitotic divisions, lengthening of body, differentiation of internal structures, e.g., well-defined intestine |
Day 4–5 | Calcium ion binding, response to stress | First moulting into L2 |
Day 5–6 | Serine-type endopeptidase inhibitor activity, structural constituent of the cuticle, metallopeptidase activity | L2 start to feed and develop: genital primordium is formed |
Day 6–7 | Glycolysis, integral to membrane, cysteine-type peptidase activity, structural constituent of the cuticle, steroid hormone receptor activity | L2 feed, elongate and further develop: rectum remains closed with anal plug |
Day 7–8 | Structural constituent of the cuticle, transmembrane transport, chloride transport | Second moulting into L3 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Famakinde, D.O. Mosquitoes and the Lymphatic Filarial Parasites: Research Trends and Budding Roadmaps to Future Disease Eradication. Trop. Med. Infect. Dis. 2018, 3, 4. https://doi.org/10.3390/tropicalmed3010004
Famakinde DO. Mosquitoes and the Lymphatic Filarial Parasites: Research Trends and Budding Roadmaps to Future Disease Eradication. Tropical Medicine and Infectious Disease. 2018; 3(1):4. https://doi.org/10.3390/tropicalmed3010004
Chicago/Turabian StyleFamakinde, Damilare O. 2018. "Mosquitoes and the Lymphatic Filarial Parasites: Research Trends and Budding Roadmaps to Future Disease Eradication" Tropical Medicine and Infectious Disease 3, no. 1: 4. https://doi.org/10.3390/tropicalmed3010004
APA StyleFamakinde, D. O. (2018). Mosquitoes and the Lymphatic Filarial Parasites: Research Trends and Budding Roadmaps to Future Disease Eradication. Tropical Medicine and Infectious Disease, 3(1), 4. https://doi.org/10.3390/tropicalmed3010004