Agreement Document for the Study of Leishmaniasis from a One Health Approach in Spain
Abstract
1. Introduction
2. Objective 1: To Efficiently Integrate the Basic Knowledge Derived from Epidemiologic Studies on Leishmaniasis Carried out in Areas of Different Endemicities in Spain
Proposed Actions to Achieve Objective 1
- Organisation of discussion forums.
- Creation of a global database and application/validation of statistical models and GIS (geographical information systems) to predict the risk of leishmaniasis in our country, including vectors, dogs, and other hosts.
- To promote entomological and animal case surveillance.
- To include in the database results from other groups that have conducted epidemiological studies on leishmaniasis in our country.
- Training of network participants in vector/parasite/dog surveillance methodology and recognition of other animal hosts.
3. Objective 2: Consolidation of a Stable Reporting Structure for Human Leishmaniasis Cases and Promotion of the Incorporation of Optimised Detection Protocols
Proposed Actions to Achieve Objective 2
- To optimise the design of the information technology (IT) tool for efficient and simplified case collection and incorporation of new data of epidemiological interest.
- The possibility of providing retrospective cases in addition to prospective cases.
- To include not only clinical but also other epidemiological groups in the database.
- The possibility of monitoring the temporal evolution of the incidence and generating distribution maps.
4. Objective 3: Development of a Reference Method for Rapid and Complete Molecular Characterisation of Leishmania Isolates
Proposed Actions to Achieve Objective 3
- To encourage epidemiological and clinical groups to provide isolates.
- To encourage clinical groups to support the declaration of cases to official organisations and the access to characterisation of Leishmania in immigrant patients, which will provide epidemiological data and help in clinical management and prognosis.
- To share experimental procedures and software tools to enable isolate genomic characterisation and isolate-specific expression differences.
- Characterisation of possible drug resistance mechanisms in relation to cases of treatment failure.
- Training network members in the use of computer tools for genomic characterisation of isolates and analysing changes in gene expression, through training courses and work placements.
5. Objective 4: Establishment of a Procedure for the Selection of New Targets and the Development of New Therapeutic Strategies/Alternatives Against Leishmaniasis
Proposed Actions to Achieve Objective 4
- Compilation of potential targets, strategies of analysis, and therapeutic alternatives generated by the participating groups.
- Design, development, and implementation of a standardised procedure for the assessment of their therapeutic value.
- Include the initiative of other groups working in the development of new therapeutic leishmanicidal drugs in our country.
- Organisation of stays and training courses for network members in gene editing, use of automatic analysis tools, infection models, transcriptome analysis, and the impact of drugs on parasite metabolism.
- Characterisation of the possible mechanisms of resistance to the drugs currently used and the new alternatives.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. The Global Health Observatory. 2023. Available online: https://www.who.int/data/gho/data/themes/topics/gho-ntd-leishmaniasis (accessed on 20 May 2025).
- Ruiz-Postigo, J.A.; Jain, S.; Madjou, S.; Virrey Agua, J.F.; Ana Nilce Maia-Elkhoury, A.N.; Valadas, S.; Warusavithana, S.; Osman, M.; Yajima, A.; Zaw Lin, Z.; et al. World Health Organization. Global leishmaniasis surveillance, 2022: Assessing trends over the past 10 years. Weekly Epidemiol. Rec. 2023, 98, 471–487. Available online: https://iris.who.int/handle/10665/373229 (accessed on 20 May 2025).
- World Health Organization = Organisation mondiale de la Santé. Global leishmaniasis surveillance: 2019–2020, a baseline for the 2030 roadmap—Surveillance Mondiale de la leishmaniose: 2019–2020, une période de référence pour la feuille de route à l’horizon 2030. Wkly. Epidemiol. Rec. Relev. Épidémiol. Hebd. 2021, 96, 401–419. Available online: https://iris.who.int/handle/10665/344795 (accessed on 20 May 2025).
- Gállego, M. Zoonosis emergentes por patógenos parásitos: Las leishmaniasis [Emerging parasitic zoonoses: Leishmaniasis]. Rev. Sci. Tech. 2004, 23, 661–676. Available online: https://www.woah.org/app/uploads/2021/03/es-rt-index-2004.pdf (accessed on 22 May 2025). [CrossRef]
- Martín-Sánchez, J.; Rodríguez-Granger, J.; Morillas-Márquez, F.; Merino-Espinosa, G.; Sampedro, A.; Aliaga, L.; Corpas-López, V.; Tercedor-Sánchez, J.; Aneiros-Fernández, J.; Acedo-Sánchez, C.; et al. Leishmaniasis due to Leishmania infantum: Integration of human, animal and environmental data through a One Health approach. Transbound. Emerg. Dis. 2020, 67, 2423–2434. [Google Scholar] [CrossRef]
- Burguete-Mikeo, A.; Nguewa, P. Leishmaniasis in Navarra, Spain (1976–2018): An update. An. Sist. Sanit. Navar. 2022, 45, e0981. [Google Scholar] [CrossRef]
- Burguete-Mikeo, A.; Fernández-Rubio, C.; Peña-Guerrero, J.; El-Dirany, R.; Gainza, L.; Carasa Buj, B.; Nguewa, P.A. Characterization of Leishmania Parasites Isolated from Naturally Infected Mammals. Animals 2023, 13, 2153. [Google Scholar] [CrossRef]
- Gálvez, R.; Descalzo, M.A.; Miró, G.; Jiménez, M.I.; Martín, O.; Dos Santos-Brandao, F.; Guerrero, I.; Cubero, E.; Molina, R. Seasonal trends and spatial relations between environmental/meteorological factors and leishmaniasis sand fly vector abundances in Central Spain. Acta Trop. 2010, 115, 95–102. [Google Scholar] [CrossRef]
- Barón, S.D.; Morillas-Márquez, F.; Morales-Yuste, M.; Díaz-Sáez, V.; Irigaray, C.; Martín-Sánchez, J. Risk maps for the presence and absence of Phlebotomus perniciosus in an endemic area of leishmaniasis in southern Spain: Implications for the control of the disease. Parasitology 2011, 138, 1234–1244. [Google Scholar] [CrossRef]
- Ballart, C.; Barón, S.; Alcover, M.M.; Portús, M.; Gállego, M. Distribution of phlebotomine sand flies (Diptera: Psychodidae) in Andorra: First finding of P. perniciosus and wide distribution of P. ariasi. Acta Trop. 2012, 122, 155–159. [Google Scholar] [CrossRef]
- Alcover, M.M.; Ballart, C.; Martín-Sánchez, J.; Serra, T.; Castillejo, S.; Portús, M.; Gállego, M. Factors influencing the presence of sand flies in Majorca (Balearic Islands, Spain) with special reference to Phlebotomus pernicious, vector of Leishmania infantum. Parasit. Vectors 2014, 7, 421. [Google Scholar] [CrossRef]
- Risueño, J.; Muñoz, C.; Pérez-Cutillas, P.; Goyena, E.; Gonzálvez, M.; Ortuño, M.; Bernal, L.J.; Ortiz, J.; Alten, B.; Berriatua, E. Understanding Phlebotomus perniciosus abundance in south-east Spain: Assessing the role of environmental and anthropic factors. Parasit. Vectors 2017, 10, 189. [Google Scholar] [CrossRef]
- Molina, R.; Jiménez, M.I.; Cruz, I.; Iriso, A.; Martín-Martín, I.; Sevillano, O.; Melero, S.; Bernal, J. The hare (Lepus granatensis) as potential sylvatic reservoir of Leishmania infantum in Spain. Vet. Parasitol. 2012, 190, 268–271. [Google Scholar] [CrossRef]
- Díaz-Sáez, V.; Merino-Espinosa, G.; Morales-Yuste, M.; Corpas-López, V.; Pratlong, F.; Morillas-Márquez, F.; Martín-Sánchez, J. High rates of Leishmania infantum and Trypanosoma nabiasi infection in wild rabbits (Oryctolagus cuniculus) in sympatric and syntrophic conditions in an endemic canine leishmaniasis area: Epidemiological consequences. Vet. Parasitol. 2014, 202, 119–127. [Google Scholar] [CrossRef]
- Jiménez, M.; González, E.; Martín-Martín, I.; Hernández, S.; Molina, R. Could wild rabbits (Oryctolagus cuniculus) be reservoirs for Leishmania infantum in the focus of Madrid, Spain? Vet. Parasitol. 2014, 202, 296–300. [Google Scholar] [CrossRef]
- Martín-Sánchez, J.; Torres-Medina, N.; Morillas-Márquez, F.; Corpas-López, V.; Díaz-Sáez, V. Role of wild rabbits as reservoirs of leishmaniasis in a non-epidemic Mediterranean hot spot in Spain. Acta Trop. 2021, 222, 106036. [Google Scholar] [CrossRef]
- Martín-Sánchez, J.; Díaz-Sáez, V.; Morillas-Márquez, F.; Corpas-López, V.; Ibáñez-De Haro, P.; Torres-Llamas, A.; Morales-Yuste, M. Wild rabbits are Leishmania infantum reservoirs in southeastern Spain. Zoonoses Public Health 2024, 71, 584–590. [Google Scholar] [CrossRef]
- Portús, M.; Gállego, M.; Riera, C.; Fisa, R.; Aisa, M.J.; Botet, J.; Carrió, J.; Castillejo, S.; Iniesta, L.; López, P.; et al. A review of human and canine leishmaniasis in Catalonia, and associated vector distribution. Rev. Ibér. Parasitol. 2007, 67, 59–67. Available online: https://bibliotecavirtual.ranf.com/es/catalogo_imagenes/grupo.do?path=1001751 (accessed on 11 June 2025).
- Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; den Boer, M. WHO Leishmaniasis Control Team. Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE 2012, 7, e35671. [Google Scholar] [CrossRef]
- Merino-Espinosa, G.; Corpas-López, V.; Díaz-Sáez, V.; Morillas-Márquez, F.; Tercedor-Sánchez, J.; Azaña-Defez, J.M.; López-Hidalgo, J.; Aneiros-Fernández, J.; Martín-Sánchez, J. Cutaneous leishmaniasis by Leishmania infantum: Behind granulomatous lesions of unknown aetiology. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 117–124. [Google Scholar] [CrossRef]
- Solano-Gallego, L.; Miró, G.; Koutinas, A.; Cardoso, L.; Pennisi, M.G.; Ferrer, L.; Bourdeau, P.; Oliva, G.; Baneth, G. The LeishVet Group. LeishVet guidelines for the practical management of canine leishmaniosis. Parasit. Vectors 2011, 4, 86. [Google Scholar] [CrossRef]
- Pineda, J.A.; Macías, J.; Morillas, F.; Fernandez-Ochoa, J.; Cara, J.; de La Rosa, R.; Mira, J.A.; Martín-Sánchez, J.; González, M.; Delgado, J.; et al. Evidence of increased risk for Leishmania infantum infection among HIV-seronegative intravenous drug users from southern Spain. Eur. J. Clin. Microbiol. Infect. Dis. 2001, 20, 354–357. [Google Scholar] [CrossRef]
- Morillas-Marquez, F.; Martin-Sanchez, J.; Acedo-Sanchez, C.; Pineda, J.A.; Macias, J.; Sanjuan-Garcia, J. Leishmania infantum (Protozoa, kinetoplastida): Transmission from infected patients to experimental animal under conditions that simulate needle-sharing. Exp. Parasitol. 2002, 100, 71–74. [Google Scholar] [CrossRef]
- Jimenez-Marco, T.; Fisa, R.; Girona-Llobera, E.; Cancino-Faure, B.; Tomás-Pérez, M.; Berenguer, D.; Guillen, C.; Pujol, A.; Iniesta, L.; Serra, T.; et al. Transfusion-transmitted leishmaniasis: A practical review. Transfusion 2016, 56 (Suppl. S1), S45–S51. [Google Scholar] [CrossRef]
- Martín-Sánchez, J.; Torres-Medina, N.; Corpas-López, V.; Morillas-Márquez, F.; Díaz-Sáez, V. Vertical transmission may play a greater role in the spread of Leishmania infantum in synanthropic Mus musculus rodents than previously believed. Transbound. Emerg. Dis. 2020, 67, 1113–1118. [Google Scholar] [CrossRef]
- Riera, C.; Fisa, R.; López-Chejade, P.; Serra, T.; Girona, E.; Jiménez, M.; Muncunill, J.; Sedeño, M.; Mascaró, M.; Udina, M.; et al. Asymptomatic infection by Leishmania infantum in blood donors from the Balearic Islands (Spain). Transfusion 2008, 48, 1383–1389. [Google Scholar] [CrossRef]
- García-García, J.A.; Martín-Sánchez, J.; Gállego, M.; Rivero-Román, A.; Camacho, A.; Riera, C.; Morillas-Márquez, F.; Vergara, S.; Macías, J.; Pineda, J.A. Use of noninvasive markers to detect Leishmania infection in asymptomatic human immunodeficiency virus-infected patients. J. Clin. Microbiol. 2006, 44, 4455–4458. [Google Scholar] [CrossRef]
- Pérez-Cutillas, P.; Goyena, E.; Chitimia, L.; De la Rúa, P.; Bernal, L.J.; Fisa, R.; Riera, C.; Iborra, A.; Murcia, L.; Segovia, M.; et al. Spatial distribution of human asymptomatic Leishmania infantum infection in southeast Spain: A study of environmental, demographic and social risk factors. Acta Trop. 2015, 146, 127–134. [Google Scholar] [CrossRef]
- Aliaga, L.; Ceballos, J.; Sampedro, A.; Cobo, F.; López-Nevot, M.A.; Merino-Espinosa, G.; Morillas-Márquez, F.; Martín-Sánchez, J. Asymptomatic Leishmania infection in blood donors from the Southern of Spain. Infection 2019, 47, 739–747. [Google Scholar] [CrossRef]
- Iniesta, L.; Fernández-Barredo, S.; Bulle, B.; Gómez, M.T.; Piarroux, R.; Gállego, M.; Alunda, J.M.; Portús, M. Diagnostic techniques to detect cryptic leishmaniasis in dogs. Clin. Diagn. Lab. Immunol. 2002, 9, 1137–1141. [Google Scholar] [CrossRef]
- Gálvez, R.; Miró, G.; Descalzo, M.A.; Nieto, J.; Dado, D.; Martín, O.; Cubero, E.; Molina, R. Emerging trends in the seroprevalence of canine leishmaniasis in the Madrid region (central Spain). Vet. Parasitol. 2010, 169, 327–334. [Google Scholar] [CrossRef]
- Ballart, C.; Alcover, M.M.; Picado, A.; Nieto, J.; Castillejo, S.; Portús, M.; Gállego, M. First survey on canine leishmaniasis in a non-classical area of the disease in Spain (Lleida, Catalonia) based on a veterinary questionnaire and a cross-sectional study. Prev. Vet. Med. 2013, 109, 116–127. [Google Scholar] [CrossRef]
- Molina, R.; Jiménez, M.; García-Martínez, J.; San Martín, J.V.; Carrillo, E.; Sánchez, C.; Moreno, J.; Alves, F.; Alvar, J. Role of asymptomatic and symptomatic humans as reservoirs of visceral leishmaniasis in a Mediterranean context. PLoS Negl. Trop. Dis. 2020, 14, e0008253. [Google Scholar] [CrossRef]
- Molina, R.; Amela, C.; Nieto, J.; San-Andrés, M.; González, F.; Castillo, J.A.; Lucientes, J.; Alvar, J. Infectivity of dogs naturally infected with Leishmania infantum to colonized Phlebotomus perniciosus. Trans. R. Soc. Trop. Med. Hyg. 1994, 88, 491–493. [Google Scholar] [CrossRef]
- Alvar, J.; Cañavate, C.; Molina, R.; Moreno, J.; Nieto, J. Canine leishmaniasis. Adv. Parasitol. 2004, 57, 1–88. [Google Scholar]
- Laurenti, M.D.; Rossi, C.N.; da Matta, V.L.; Tomokane, T.Y.; Corbett, C.E.; Secundino, N.F.; Pimenta, P.F.; Marcondes, M. Asymptomatic dogs are highly competent to transmit Leishmania (Leishmania) infantum chagasi to the natural vector. Vet. Parasitol. 2013, 196, 296–300. [Google Scholar] [CrossRef]
- Aslan, H.; Oliveira, F.; Meneses, C.; Castrovinci, P.; Gomes, R.; Teixeira, C.; Derenge, C.A.; Orandle, M.; Gradoni, L.; Oliva, G.; et al. New Insights Into the Transmissibility of Leishmania infantum from Dogs to Sand Flies: Experimental Vector-Transmission Reveals Persistent Parasite Depots at Bite Sites. J. Infect. Dis. 2016, 213, 1752–1761. [Google Scholar] [CrossRef]
- Navea-Pérez, H.M.; Díaz-Sáez, V.; Corpas-López, V.; Merino-Espinosa, G.; Morillas-Márquez, F.; Martín-Sánchez, J. Leishmania infantum in wild rodents: Reservoirs or just irrelevant incidental hosts? Parasitol. Res. 2015, 114, 2363–2370. [Google Scholar] [CrossRef]
- Azami-Conesa, I.; Gómez-Muñoz, M.T.; Martínez-Díaz, R.A. A Systematic Review (1990–2021) of Wild Animals Infected with Zoonotic Leishmania. Microorganisms 2021, 9, 1101. [Google Scholar] [CrossRef]
- Cardoso, L.; Schallig, H.; Persichetti, M.F.; Pennisi, M.G. New epidemiological aspects of animal leishmaniosis in Europe: The role of vertebrate hosts other than dogs. Pathogens 2021, 10, 307. [Google Scholar] [CrossRef]
- Galán-Puchades, M.T.; Solano, J.; González, G.; Osuna, A.; Pascual, J.; Bueno-Marí, R.; Franco, S.; Peracho, V.; Montalvo, T.; Fuentes, M.V. Molecular detection of Leishmania infantum in rats and sand flies in the urban sewers of Barcelona, Spain. Parasit. Vectors 2022, 15, 211. [Google Scholar] [CrossRef]
- Boletín Epidemiológico de la Comunidad de Madrid. N° 9. Volumen 28. Septiembre 2023. Consejería de Sanidad. Dirección General de Salud Pública. Available online: http://www.comunidad.madrid/servicios/salud/boletin-epidemiologico (accessed on 20 June 2025).
- Morillas Márquez, F.; Guevara Benítez, D.C.; Ubeda Ontiveros, J.M.; González Castro, J. Fluctuations annuelles des populations de phlébotomes (Diptera, Phlebotomidae) dans la province de Grenade (Espagne) [Annual fluctuations of Phlebotomus populations (Diptera, Phlebotomidae) in the province of Grenada (Spain)]. Ann. Parasitol. Hum. Comp. 1983, 58, 625–632. [Google Scholar]
- Morillas Márquez, F.; Sanchís Marín, M.C.; Martín Sánchez, J.; Acedo Sánchez, C. On Phlebotomus perniciosus Newstead, 1911 (Diptera, Phlebotomidae) in the Province of Almeria in southeastern Spain. Parassitologia 1991, 33, 437–444. [Google Scholar] [PubMed]
- Rioux, J.A.; Guilvard, E.; Gállego, J.; Moreno, G.; Pratlong, F.; Portús, M.; Rispad, P.; Gállego, M.; Bastien, P. Phlebotomus ariasi Tonnoir, 1921 et Phlebotomus perniciosus Newstead, 1911 vecteurs du complexe Leishmania infantum dans un méme foyer. Infestation par deux zymodemes syntopiques. A propos d’une enquéte en Catalogne (Espagne). In Leishmania: Taxonomie et Phylogenése, Applications Éco-Épidemiologiques; IMEEE: Montpellier, France, 1986; pp. 439–444. [Google Scholar]
- Lucientes-Curdi, J.; Sánchez-Acedo, C.; Castillo-Hernandez, J.A.; Estrada-Peña, A. Sobre la infección natural por Leishmania en Phlebotomus perniciosus Newstead, 1911, y Phlebotomus ariasi Tonnoir, 1921, en el foco de leishmaniasis de Zaragoza. Rev. Iber. Parasitol. 1988, 48, 7–8. [Google Scholar]
- Guilvard, E.; Gállego, M.; Moreno, G.; Fisa, R.; Rispad, P.; Pratlong, F.; Martínez-Ortega, E.; Gállego, J.; Rioux, J.A. Infestation naturelle de Phlebotomus ariasi et Phlebotomus perniciosus (Díptera, Psychodidae) par Leishmania infantum (Kinetoplastida-Trypanosomatidae) en Catalogne (Espagne). Parasite 1996, 3, 191–192. [Google Scholar] [CrossRef]
- Martín-Sánchez, J.; Guilvard, E.; Acedo-Sánchez, C.; Wolf-Echeverri, M.; Sanchiz-Marín, M.C.; Morillas-Márquez, F. Phlebotomus perniciosus Newstead, 1911, infection by various zymodemes of the Leishmania infantum complex in the Granada province (southern Spain). Int. J. Parasitol. 1994, 24, 405–408. [Google Scholar] [CrossRef]
- Jiménez, M.; González, E.; Iriso, A.; Marco, E.; Alegret, A.; Fúster, F.; Molina, R. Detection of Leishmania infantum and identification of blood meals in Phlebotomus perniciosus from a focus of human leishmaniasis in Madrid, Spain. Parasitol. Res. 2013, 112, 2453–2459. [Google Scholar] [CrossRef]
- Bravo-Barriga, D.; Parreira, R.; Maia, C.; Afonso, M.O.; Blanco-Ciudad, J.; Serrano, F.J.; Pérez-Martín, J.E.; Frontera, E. Detection of Leishmania DNA and blood meal sources in phlebotomine sand flies (Diptera: Psychodidae) in western of Spain: Update on distribution and risk factors associated. Acta Trop. 2016, 164, 414–424. [Google Scholar] [CrossRef]
- González, E.; Jiménez, M.; Hernández, S.; Martín-Martín, I.; Molina, R. Phlebotomine sand fly survey in the focus of leishmaniasis in Madrid, Spain (2012–2014): Seasonal dynamics, Leishmania infantum infection rates and blood meal preferences. Parasit. Vectors 2017, 10, 368. [Google Scholar] [CrossRef]
- González, E.; Molina, R.; Iriso, A.; Ruiz, S.; Aldea, I.; Tello, A.; Fernández, D.; Jiménez, M. Opportunistic feeding behaviour and Leishmania infantum detection in Phlebotomus perniciosus females collected in the human leishmaniasis focus of Madrid, Spain (2012–2018). PLoS Negl. Trop. Dis. 2021, 15, e0009240. [Google Scholar]
- Sáez, V.D.; Morillas-Márquez, F.; Merino-Espinosa, G.; Corpas-López, V.; Morales-Yuste, M.; Pesson, B.; Barón-López, S.; Lucientes-Curdi, J.; Martín-Sánchez, J. Phlebotomus langeroni Nitzulescu (Diptera, Psychodidae) a new vector for Leishmania infantum in Europe. Parasitol. Res. 2018, 117, 1105–1113. [Google Scholar] [CrossRef]
- Muñoz, C.; Risueño, J.; Pérez-Cutillas, P.; Bernal, L.J.; Ortiz, J.M.; Ruiz de Ybáñez, R.; Sánchez-López, P.F.; Martínez-Carrasco, C.; Del Río, L.; De la Rúa, P.; et al. Density assessment and reporting for Phlebotomus perniciosus and other sand fly species in periurban residential estates in Spain. Parasitol. Res. 2021, 120, 3091–3103. [Google Scholar] [CrossRef]
- Martín-Sánchez, J.; Gállego, M.; Barón, S.; Castillejo, S.; Morillas-Marquez, F. Pool screen PCR for estimating the prevalence of Leishmania infantum infection in sandflies (Diptera: Nematocera, Phlebotomidae). Trans. R. Soc. Trop. Med. Hyg. 2006, 100, 527–532. [Google Scholar] [CrossRef]
- Alcover, M.M.; Gramiccia, M.; Di Muccio, T.; Ballart, C.; Castillejo, S.; Picado, A.; Portús, M.; Gállego, M. Application of molecular techniques in the study of natural infection of Leishmania infantum vectors and utility of sandfly blood meal digestion for epidemiological surveys of leishmaniasis. Parasitol. Res. 2012, 111, 515–523. [Google Scholar] [CrossRef]
- Díaz-Sáez, V.; Corpas-López, V.; Merino-Espinosa, G.; Morillas-Mancilla, M.J.; Abattouy, N.; Martín-Sánchez, J. Seasonal dynamics of phlebotomine sand flies and autochthonous transmission of Leishmania infantum in high-altitude ecosystems in southern Spain. Acta Trop. 2021, 213, 105749. [Google Scholar] [CrossRef]
- Red Nacional de Vigilancia Epidemiológica. Informe Epidemiológico Sobre la Situación de la Leishmaniasis en España. Año 2022; Centro Nacional de Epidemiología, Instituto de Salud Carlos III, CIBERESP: Madrid, Spain, 2022; 8p, Available online: https://cne.isciii.es/documents/d/cne/informe_renave_leishmania-202022-pdf (accessed on 23 June 2025).
- Humanes-Navarro, A.M.; Herrador, Z.; Redondo, L.; Cruz, I.; Fernández-Martínez, B. Estimating human leishmaniasis burden in Spain using the capture-recapture method, 2016–2017. PLoS ONE 2021, 16, e0259225. [Google Scholar] [CrossRef] [PubMed]
- Giavedoni, P.; Iranzo, P.; Fuertes, I.; Estrach, T.; Alsina Gibert, M. Cutaneous leishmaniasis: 20 years’ experience in a Spanish tertiary care hospital. Actas Dermosifiliogr. 2015, 106, 310–316. [Google Scholar] [CrossRef]
- Gironé, G.; Mateo, C.; Gaya, V.; Usó, J.; Mínguez, C.; Roca, B.; Ramos, J.M. Admissions for imported and non-imported parasitic diseases at a General Hospital in Spain: A retrospective analysis. Travel Med. Infect. Dis. 2015, 13, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Norman, F.F.; Monge-Maillo, B.; Martínez-Pérez, Á.; Perez-Molina, J.A.; López-Vélez, R. Parasitic infections in travelers and immigrants: Part I protozoa. Future Microbiol. 2015, 10, 69–86. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Arévalo, A.; Ballart, C.; Muñoz-Basagoiti, J.; Basarte, L.; Lobato, G.; Arnau, A.; Abras, A.; Tebar, S.; Llovet, T.; Lami, P.; et al. Autochthonous and imported tegumentary leishmaniasis in Catalonia (Spain): Aetiological evolution in the last four decades and usefulness of different typing approaches based on biochemical, molecular and proteomic markers. Transbound. Emerg. Dis. 2022, 69, 1404–1418. [Google Scholar] [CrossRef]
- Van der Auwera, G.; Davidsson, L.; Buffet, P.; Ruf, M.T.; Gramiccia, M.; Varani, S.; Chicharro, C.; Bart, A.; Harms, G.; Chiodini, P.L.; et al. LeishMan Surveillance Network members who contributed to this article (in addition to authors above). Surveillance of leishmaniasis cases from 15 European centres, 2014 to 2019: A retrospective analysis. Euro Surveill. 2022, 27, 2002028. [Google Scholar] [CrossRef]
- Akhoundi, M.; Downing, T.; Votýpka, J.; Kuhls, K.; Lukeš, J.; Cannet, A.; Ravel, C.; Marty, P.; Delaunay, P.; Kasbari, M.; et al. Leishmania infections: Molecular targets and diagnosis. Mol. Asp. Med. 2017, 57, 1–29. [Google Scholar] [CrossRef]
- Lachaud, L.; Fernández-Arévalo, A.; Normand, A.C.; Lami, P.; Nabet, C.; Donnadieu, J.L.; Piarroux, M.; Djenad, F.; Cassagne, C.; Ravel, C.; et al. Identification of Leishmania by Matrix-Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) Mass Spectrometry Using a Free Web-Based Application and a Dedicated Mass-Spectral Library. J. Clin. Microbiol. 2017, 55, 2924–2933. [Google Scholar] [CrossRef]
- Rioux, J.A.; Lanotte, G.; Serres, E.; Pratlong, F.; Bastien, P.; Perieres, J. Taxonomy of Leishmania. Use of isoenzymes. Suggestions for a new classification. Ann. Parasitol. Hum. Comp. 1990, 65, 111–125. [Google Scholar] [CrossRef]
- Jiménez, M.; Ferrer-Dufol, M.; Cañavate, C.; Gutiérrez-Solar, B.; Molina, R.; Laguna, F.; López-Vélez, R.; Cercenado, E.; Daudén, E.; Blázquez, J.; et al. Variability of Leishmania (Leishmania) infantum among stocks from immunocompromised, immunocompetent patients and dogs in Spain. FEMS Microbiol. Lett. 1995, 131, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Gállego, M.; Pratlong, F.; Fisa, R.; Riera, C.; Rioux, J.A.; Dedet, J.P.; Portús, M. The life-cycle of Leishmania infantum MON-77 in the Priorat (Catalonia, Spain) involves humans, dogs and sandflies; also literature review of distribution and hosts of L. infantum zymodemes in the Old World. Trans. R. Soc. Trop. Med. Hyg. 2001, 95, 269–271. [Google Scholar] [CrossRef]
- Gállego, M.; Pratlong, F.; Riera, C.; Fisa, R.; Muñoz, C.; Dedet, J.P.; Portús, M. Cutaneous leishmaniasis due to Leishmania infantum in the northeast of Spain: The isoenzymatic analysis of parasites. Arch. Dermatol. 2001, 137, 667–668. Available online: https://jamanetwork.com/journals/jamadermatology/fullarticle/478314 (accessed on 23 June 2025). [PubMed]
- Martín-Sánchez, J.; Gramiccia, M.; Di Muccio, T.; Ludovisi, A.; Morillas-Márquez, F. Isoenzymatic polymorphism of Leishmania infantum in southern Spain. Trans. R. Soc. Trop. Med. Hyg. 2004, 98, 228–232. [Google Scholar] [CrossRef]
- Fernández-Arévalo, A.; El Baidouri, F.; Ravel, C.; Ballart, C.; Abras, A.; Lachaud, L.; Tebar, S.; Lami, P.; Pratlong, F.; Gállego, M.; et al. The Leishmania donovani species complex: A new insight into taxonomy. Int. J. Parasitol. 2020, 50, 1079–1088. [Google Scholar] [CrossRef] [PubMed]
- Aliaga, L.; Cobo, F.; Mediavilla, J.D.; Bravo, J.; Osuna, A.; Amador, J.M.; Martín-Sánchez, J.; Cordero, E.; Navarro, J.M. Localized mucosal leishmaniasis due to Leishmania (Leishmania) infantum: Clinical and microbiologic findings in 31 patients. Medicine 2003, 82, 147–158. [Google Scholar] [CrossRef]
- Alvar, J.; Cañavate, C.; Gutiérrez-Solar, B.; Jiménez, M.; Lagun, A.F.; López-Vélez, R.; Molina, N.; Moreno, J. Leishmania and human immunodeficiency virus coinfection: The first 10 years. Clin. Microbiol. Rev. 1997, 10, 298–319. [Google Scholar] [CrossRef]
- Portus, M.; Gállego, J.; Rioux, J.A.; Pratlong, F.; Moreno, G.; Fisa, R.; Gállego, M.; Muñoz, C.; Riera, C.; Sanchez, F.; et al. Enzymatic heterogeneity among strains of Leishmania infantum from human visceral and cutaneous leishmaniasis in Catalonia (Spain). Rev. Iber. Parasitol. 1989, 49, 287–289. [Google Scholar]
- Pratlong, F.; Portus, M.; Rispail, P.; Moreno, G.; Bastien, P.; Rioux, J.A. Présence simultanée chez le chien de deux zymodèmes du complexe Leishmania infantum. Ann. Parasitol. Hum. Comp. 1989, 64, 312–314. [Google Scholar] [CrossRef] [PubMed]
- Gállego, M.; Pratlong, F.; Riera, C.; Muñoz, C.; Ribera, E.; Fisa, R.; Rioux, J.A.; Dedet, J.P.; Portús, M. Isoenzymatic identification of Leishmania isolates from repeated clinical human leishmaniasis episodes in Catalonia (Spain). Trans. R. Soc. Trop. Med. Hyg. 2002, 96, 45–77. [Google Scholar] [CrossRef]
- Calvo-Álvarez, E.; Álvarez-Velilla, R.; Jiménez, M.; Molina, R.; Pérez-Pertejo, Y.; Balaña-Fouce, R.; Reguera, R.M. First evidence of intraclonal genetic exchange in trypanosomatids using two Leishmania infantum fluorescent transgenic clones. PLoS Negl. Trop. Dis. 2014, 8, e3075. [Google Scholar] [CrossRef]
- Fernández-Arévalo, A.; González, E.; Ballart, C.; Martín-Martín, I.; Tebar, S.; Muñoz, C.; Jiménez, M.; Molina, R.; Gállego, M. Typing of Leishmania isolates from vectors and leporids of the Madrid (Spain) outbreak. Parasitology 2024, 151, 213–219. [Google Scholar] [CrossRef]
- Chicharro, C.; Llanes-Acevedo, I.P.; García, E.; Nieto, J.; Moreno, J.; Cruz, I. Molecular typing of Leishmania infantum isolates from a leishmaniasis outbreak in Madrid, Spain, 2009 to 2012. Euro Surveill. 2013, 18, 20545. [Google Scholar] [CrossRef]
- Ortuño, M.; Latrofa, M.S.; Iborra, M.A.; Pérez-Cutillas, P.; Bernal, L.J.; Risueño, J.; Muñoz, C.; Bernal, A.; Sánchez-Lopez, P.F.; Segovia, M.; et al. Genetic diversity and phylogenetic relationships between Leishmania infantum from dogs, humans and wildlife in south-east Spain. Zoonoses Public Health 2019, 66, 961–973. [Google Scholar] [CrossRef]
- Toledo, A.; Martín-Sánchez, J.; Pesson, B.; Sanchiz-Marín, C.; Morillas-Márquez, F. Genetic variability within the species Leishmania infantum by RAPD. A lack of correlation with zymodeme structure. Mol. Biochem. Parasitol. 2002, 119, 257–264. [Google Scholar] [CrossRef]
- Montoya, L.; Gállego, M.; Gavignet, B.; Piarroux, R.; Rioux, J.A.; Portús, M.; Fisa, R. Application of microsatellite genotyping to the study of a restricted Leishmania infantum focus: Different genotype compositions in isolates from dogs and sand flies. Am. J. Trop. Med. Hyg. 2007, 76, 888–895. [Google Scholar] [CrossRef] [PubMed]
- González-de la Fuente, S.; Peiró-Pastor, R.; Rastrojo, A.; Moreno, J.; Carrasco-Ramiro, F.; Requena, J.M.; Aguado, B. Resequencing of the Leishmania infantum (strain JPCM5) genome and de novo assembly into 36 contigs. Sci. Rep. 2017, 7, 18050. [Google Scholar] [CrossRef] [PubMed]
- Solana, J.C.; Chicharro, C.; García, E.; Aguado, B.; Moreno, J.; Requena, J.M. Assembly of a Large Collection of Maxicircle Sequences and Their Usefulness for Leishmania Taxonomy and Strain Typing. Genes 2022, 13, 1070. [Google Scholar] [CrossRef]
- Teixeira, D.G.; Monteiro, G.R.G.; Martins, D.R.A.; Fernandes, M.Z.; Macedo-Silva, V.; Ansaldi, M.; Nascimento, P.R.P.; Kurtz, M.A.; Streit, J.A.; Ximenes, M.F.F.M.; et al. Comparative analyses of whole genome sequences of Leishmania infantum isolates from humans and dogs in northeastern Brazil. Int. J. Parasitol. 2017, 47, 655–665. [Google Scholar] [CrossRef]
- Franssen, S.U.; Takele, Y.; Adem, E.; Sanders, M.J.; Müller, I.; Kropf, P.; Cotton, J.A. Diversity and Within-Host Evolution of Leishmania donovani from Visceral Leishmaniasis Patients with and without HIV Coinfection in Northern Ethiopia. MBio 2021, 12, e0097121. [Google Scholar] [CrossRef] [PubMed]
- Domagalska, M.A.; Dujardin, J.C. Next-Generation Molecular Surveillance of TriTryp Diseases. Trends Parasitol. 2020, 36, 356–367. [Google Scholar] [CrossRef] [PubMed]
- Sterkers, Y.; Crobu, L.; Lachaud, L.; Pagès, M.; Bastien, P. Parasexuality and mosaic aneuploidy in Leishmania: Alternative genetics. Trends Parasitol. 2014, 30, 429–435. [Google Scholar] [CrossRef]
- Leprohon, P.; Fernandez-Prada, C.; Gazanion, É.; Monte-Neto, R.; Ouellette, M. Drug resistance analysis by next generation sequencing in Leishmania. Int. J. Parasitol. Drugs. Drug. Resist. 2014, 5, 26–35. [Google Scholar] [CrossRef]
- Rastrojo, A.; García-Hernández, R.; Vargas, P.; Camacho, E.; Corvo, L.; Imamura, H.; Dujardin, J.C.; Castanys, S.; Aguado, B.; Gamarro, F.; et al. Genomic and transcriptomic alterations in Leishmania donovani lines experimentally resistant to antileishmanial drugs. Int. J. Parasitol. Drugs. Drug. Resist. 2018, 8, 246–264. [Google Scholar] [CrossRef]
- Merino-Espinosa, G.; Rodríguez-Granger, J.; Morillas-Márquez, F.; Tercedor, J.; Corpas-López, V.; Chiheb, S.; Alcalde-Alonso, M.; Azaña-Defez, J.M.; Riyad, M.; Díaz-Sáez, V.; et al. Comparison of PCR-based methods for the diagnosis of cutaneous leishmaniasis in two different epidemiological scenarios: Spain and Morocco. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 1999–2003. [Google Scholar] [CrossRef]
- Morales-Yuste, M.; Morillas-Márquez, F.; Díaz-Sáez, V.; Barón-López, S.; Acedo-Sánchez, C.; Martín-Sánchez, J. Epidemiological implications of the use of various methods for the diagnosis of canine leishmaniasis in dogs with different characteristics and in differing prevalence scenarios. Parasitol. Res. 2012, 111, 155–164. [Google Scholar] [CrossRef]
- Gómez Pérez, V.; García-Hernandez, R.; Corpas-López, V.; Tomás, A.M.; Martín-Sanchez, J.; Castanys, S.; Gamarro, F. Decreased antimony uptake and overexpression of genes of thiol metabolism are associated with drug resistance in a canine isolate of Leishmania infantum. Int. J. Parasitol. Drugs. Drug. Resist. 2016, 6, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.; Schwartz, R.A.; Patil, A.; Grabbe, S.; Goldust, M. Treatment options for leishmaniasis. Clin. Exp. Dermatol. 2022, 47, 516–521. [Google Scholar] [CrossRef]
- Sundar, S.; Singh, B. Emerging therapeutic targets for treatment of leishmaniasis. Expert Opin. Ther. Targets 2018, 22, 467–486. [Google Scholar] [CrossRef]
- Longoni, S.S.; Marín, C.; Sauri-Arceo, C.H.; López-Cespedes, A.; Rodríguez-Vivas, R.I.; Villegas, N.; Escobedo-Ortegón, J.; Barrera-Pérez, M.A.; Bolio-Gonzalez, M.E.; Sánchez-Moreno, M. An iron-superoxide dismutase antigen-based serological screening of dogs indicates their potential role in the transmission of cutaneous leishmaniasis and trypanosomiasis in Yucatan, Mexico. Vector Borne Zoonotic Dis. 2011, 11, 815–821. [Google Scholar]
- Urbanová, K.; Ramírez-Macías, I.; Martín-Escolano, R.; Rosales, M.J.; Cussó, O.; Serrano, J.; Company, A.; Sánchez-Moreno, M.; Costas, M.; Ribas, X.; et al. Effective Tetradentate Compound Complexes against Leishmania spp. that Act on Critical Enzymatic Pathways of These Parasites. Molecules 2018, 24, 134. [Google Scholar] [CrossRef]
- Martín-Montes, Á.; Aguilera-Venegas, B.; Morales-Martín, R.; Martín-Escolano, R.; Zamora-Ledesma, S.; Marín, C.; Arán, V.J.; Sánchez-Moreno, M. In vitro assessment of 3-alkoxy-5-nitroindazole-derived ethylamines and related compounds as potential antileishmanial drugs. Bioorg. Chem. 2019, 92, 103274. [Google Scholar] [CrossRef] [PubMed]
- Martín-Montes, Á.; Martínez-Camarena, Á.; Lopera, A.; Bonastre-Sabater, I.; Clares, M.P.; Verdejo, B.; García-España, E.; Marín, C. The Bioactivity of Xylene, Pyridine, and Pyrazole Aza Macrocycles against Three Representative Leishmania Species. Pharmaceutics 2023, 15, 992. [Google Scholar] [CrossRef]
- Longoni, S.S.; Villagrán-Herrera, M.E.; de Diego Cabrera, J.A.; Marin, C.; Sanchez-Moreno, M. Purification of a Fe-SOD excreted by Leishmania braziliensis for specific antibodies detection in Mexican human sera: Cutting-edge the knowledge. Parasit. Epidemiol. Control 2016, 1, 90–97. [Google Scholar] [CrossRef]
- Reyes-Novelo, E.; Sauri-Arceo, C.; Panti-May, A.; Marín, D.; Canché-Pool, E.B.; Chan-Espinoza, D.E.; Marín, C.; Bolio-González, M.; Rodríguez-Vivas, R.I.; Torres-Castro, M.; et al. Exposure to Trypanosoma cruzi and Leishmania parasites in dogs from a rural locality of Yucatan, Mexico. A serological survey. Vet. Parasitol. Reg. Stud. Rep. 2023, 44, 100911. [Google Scholar] [CrossRef]
- Corpas-López, V.; Tabraue-Chávez, M.; Sixto-López, Y.; Panadero-Fajardo, S.; Alves de Lima Franco, F.; Domínguez-Seglar, J.F.; Morillas-Márquez, F.; Franco-Montalbán, F.; Díaz-Gavilán, M.; Correa-Basurto, J.; et al. O-Alkyl Hydroxamates Display Potent and Selective Antileishmanial Activity. J. Med. Chem. 2020, 63, 5734–5751. [Google Scholar] [CrossRef] [PubMed]
- Corpas-López, V.; Díaz-Sáez, V.; Morillas-Márquez, F.; Franco-Montalbán, F.; Díaz-Gavilán, M.; López-Viota, J.; López-Viota, M.; Gómez-Vidal, J.A.; Martín-Sánchez, J. Effectiveness of an O-Alkyl Hydroxamate in Dogs with Naturally Acquired Canine Leishmaniasis: An Exploratory Clinical Trial. Animals 2022, 12, 2700. [Google Scholar] [CrossRef] [PubMed]
- Laranjeira-Silva, M.F.; Hamza, I.; Pérez-Victoria, J.M. Iron and Heme Metabolism at the Leishmania-Host Interface. Trends Parasitol. 2020, 36, 279–289. [Google Scholar] [CrossRef]
- Huynh, C.; Yuan, X.; Miguel, D.C.; Renberg, R.L.; Protchenko, O.; Philpott, C.C.; Hamza, I.; Andrews, N.W. Heme uptake by Leishmania amazonensis is mediated by the transmembrane protein LHR1. PLoS Pathog. 2012, 8, e1002795. [Google Scholar] [CrossRef]
- Cabello-Donayre, M.; Orrego, L.M.; Herráez, E.; Vargas, P.; Martínez-García, M.; Campos-Salinas, J.; Pérez-Victoria, I.; Vicente, B.; Marín, J.J.G.; Pérez-Victoria, J.M. Leishmania heme uptake involves LmFLVCRb, a novel porphyrin transporter essential for the parasite. Cell. Mol. Life Sci. 2020, 77, 1827–1845. [Google Scholar] [CrossRef]
- Miguel, D.C.; Flannery, A.R.; Mittra, B.; Andrews, N.W. Heme uptake mediated by LHR1 is essential for Leishmania amazonensis virulence. Infect. Immun. 2013, 81, 3620–3626. [Google Scholar] [CrossRef] [PubMed]
- Ansari, I.; Basak, R.; Mukhopadhyay, A. Hemoglobin Endocytosis and Intracellular Trafficking: A Novel Way of Heme Acquisition by Leishmania. Pathogens 2022, 11, 585. [Google Scholar] [CrossRef] [PubMed]
- Cabello-Donayre, M.; Malagarie-Cazenave, S.; Campos-Salinas, J.; Gálvez, F.J.; Rodríguez-Martínez, A.; Pineda-Molina, E.; Orrego, L.M.; Martínez-García, M.; Sánchez-Cañete, M.P.; Estévez, A.M.; et al. Trypanosomatid parasites rescue heme from endocytosed hemoglobin through lysosomal HRG transporters. Mol. Microbiol. 2016, 101, 895–908. [Google Scholar] [CrossRef]
- Cabello-Donayre, M.; Cabello-Donayre, I.; Guerra, D.; Orrego, L.M.; Morales, J.C.; Cautain, B.; Vicente, F.; Pérez-Victoria, J.M. A yeast-based high-throughput screen identifies inhibitors of trypanosomatid HRG heme transporters with potent leishmanicidal and trypanocidal activity. Int. J. Antimicrob. Agents 2024, 63, 107092. [Google Scholar] [PubMed]
- Campos-Salinas, J.; Cabello-Donayre, M.; García-Hernández, R.; Pérez-Victoria, I.; Castanys, S.; Gamarro, F.; Pérez-Victoria, J.M. A new ATP-binding cassette protein is involved in intracellular haem trafficking in Leishmania. Mol. Microbiol. 2011, 79, 1430–1444. [Google Scholar]
- Martínez-García, M.; Campos-Salinas, J.; Cabello-Donayre, M.; Pineda-Molina, E.; Gálvez, F.J.; Orrego, L.M.; Sánchez-Cañete, M.P.; Malagarie-Cazenave, S.; Koeller, D.M.; Pérez-Victoria, J.M. LmABCB3, an atypical mitochondrial ABC transporter essential for Leishmania major virulence, acts in heme and cytosolic iron/sulfur clusters biogenesis. Parasit. Vectors 2016, 9, 7. [Google Scholar] [CrossRef]
- Ramírez-Macías, I.; Marín, C.; Díaz, J.G.; Rosales, M.J.; Gutiérrez-Sánchez, R.; Sánchez-Moreno, M. Leishmanicidal activity of nine novel flavonoids from Delphinium staphisagria. Sci. World J. 2012, 2012, 203646. [Google Scholar] [CrossRef]
- Marín, C.; Díaz, J.G.; Maiques, D.I.; Ramírez-Macías, I.; Rosales, M.J.; Guitierrez-Sánchez, R.; Cañas, R.; Sánchez-Moreno, M. Antitrypanosomatid activity of flavonoid glycosides isolated from Delphinium gracile, D. staphisagria, Consolida oliveriana and from Aconitum napellus subsp. Lusitanicum. Phytochem. Lett. 2017, 19, 196–209. [Google Scholar] [CrossRef]
- Corpas-López, V.; Morillas-Márquez, F.; Navarro-Moll, M.C.; Merino-Espinosa, G.; Díaz-Sáez, V.; Martín-Sánchez, J. (-)-α-Bisabolol, a Promising Oral Compound for the Treatment of Visceral Leishmaniasis. J. Nat. Prod. 2015, 78, 1202–1207. [Google Scholar] [PubMed]
- Corpas-López, V.; Merino-Espinosa, G.; Acedo-Sánchez, C.; Díaz-Sáez, V.; Navarro-Moll, M.C.; Morillas-Márquez, F.; Martín-Sánchez, J. Effectiveness of the sesquiterpene (-)-α-bisabolol in dogs with naturally acquired canine leishmaniasis: An exploratory clinical trial. Vet. Res. Commun. 2018, 42, 121–130. [Google Scholar]
- Vacas, A.; Fernández-Rubio, C.; Larrea, E.; Peña-Guerrero, J.; Nguewa, P.A. LmjF.22.0810 from Leishmania major Modulates the Th2-Type Immune Response and Is Involved in Leishmaniasis Outcome. Biomedicines 2020, 8, 452. [Google Scholar] [CrossRef]
- Algarabel, M.; Fernández-Rubio, C.; Musilova, K.; Peña-Guerrero, J.; Vacas, A.; Larrea, E.; Nguewa, P.A. In Leishmania major, the Homolog of the Oncogene PES1 May Play a Critical Role in Parasite Infectivity. Int. J. Mol. Sci. 2021, 22, 12592. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Sánchez, J.; Requena, J.M.; Gállego, M.; Jiménez, M.; Molina, R.; Nguewa, P.; Morillas-Márquez, F.; Pérez-Victoria, J.M.; Monge-Maillo, B.; Morales-Yuste, M.; et al. Agreement Document for the Study of Leishmaniasis from a One Health Approach in Spain. Trop. Med. Infect. Dis. 2025, 10, 269. https://doi.org/10.3390/tropicalmed10090269
Martín-Sánchez J, Requena JM, Gállego M, Jiménez M, Molina R, Nguewa P, Morillas-Márquez F, Pérez-Victoria JM, Monge-Maillo B, Morales-Yuste M, et al. Agreement Document for the Study of Leishmaniasis from a One Health Approach in Spain. Tropical Medicine and Infectious Disease. 2025; 10(9):269. https://doi.org/10.3390/tropicalmed10090269
Chicago/Turabian StyleMartín-Sánchez, Joaquina, Jose M. Requena, Montserrat Gállego, Maribel Jiménez, Ricardo Molina, Paul Nguewa, Francisco Morillas-Márquez, José M. Pérez-Victoria, Begoña Monge-Maillo, Manuel Morales-Yuste, and et al. 2025. "Agreement Document for the Study of Leishmaniasis from a One Health Approach in Spain" Tropical Medicine and Infectious Disease 10, no. 9: 269. https://doi.org/10.3390/tropicalmed10090269
APA StyleMartín-Sánchez, J., Requena, J. M., Gállego, M., Jiménez, M., Molina, R., Nguewa, P., Morillas-Márquez, F., Pérez-Victoria, J. M., Monge-Maillo, B., Morales-Yuste, M., & Marín, C. (2025). Agreement Document for the Study of Leishmaniasis from a One Health Approach in Spain. Tropical Medicine and Infectious Disease, 10(9), 269. https://doi.org/10.3390/tropicalmed10090269