Enterobacterales and Antimicrobial Resistance in Feed, Water, and Slurry in Pig Production Farms in the Greater Accra Region of Ghana, 2024
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. General Setting
2.3. Site Specific Setting
2.4. Study Population
2.5. Farm Visits and Sample Collection
2.6. Sample Processing and Microbiological Procedures
2.7. Data Variables and Sources of Data
2.8. Data Management, Analysis, and Statistics
3. Results
3.1. Characteristics and Practices of Selected Pig Farms Including Their Antimicrobial Use, Farm Feed, Farm Water, and Waste Management
3.2. Prevalence of Enterobacterales with Patterns of AMR, MDR, and Colistin Resistance in Farm Feed, Pig Slurry, and Farm Water Samples
3.3. Antimicrobial Residues in Farm Feed, Pig Slurry, and Farm Water Samples
3.4. Associations Between Farm Characteristics and MDR in Enterobacterales in Farm Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kappes, A.; Tozooneyi, T.; Shakil, G.; Railey, A.F.; McIntyre, K.M.; Mayberry, D.E.; Rushton, J.; Pendell, D.L.; Marsh, T.L. Livestock Health and Disease Economics: A Scoping Review of Selected Literature. Front. Vet. Sci. 2023, 10, 1168649. [Google Scholar] [CrossRef]
- Gadde, U.; Kim, W.H.; Oh, S.T.; Lillehoj, H.S. Alternatives to Antibiotics for Maximizing Growth Performance and Feed Efficiency in Poultry: A Review. Anim. Health Res. Rev. 2017, 18, 26–45. [Google Scholar] [CrossRef]
- Khan, A.H.; Aziz, H.A.; Khan, N.A.; Hasan, M.A.; Ahmed, S.; Farooqi, I.H.; Dhingra, A.; Vambol, V.; Changani, F.; Yousefi, M.; et al. Impact, Disease Outbreak and the Eco-Hazards Associated with Pharmaceutical Residues: A Critical Review. Int. J. Environ. Sci. Technol. 2022, 19, 677–688. [Google Scholar] [CrossRef]
- Founou, L.L.; Founou, R.C.; Ntshobeni, N.; Govinden, U.; Bester, L.A.; Chenia, H.Y.; Djoko, C.F.; Essack, S.Y. Emergence and Spread of Extended Spectrum β-Lactamase Producing Enterobacteriaceae (ESBL-PE) in Pigs and Exposed Workers: A Multicentre Comparative Study between Cameroon and South Africa. Pathogens 2019, 8, 10. [Google Scholar] [CrossRef] [PubMed]
- Ikwap, K.; Gertzell, E.; Hansson, I.; Dahlin, L.; Selling, K.; Magnusson, U.; Dione, M.; Jacobson, M. The Presence of Antibiotic-Resistant Staphylococcus spp. and Escherichia coli in Smallholder Pig Farms in Uganda. BMC Vet. Res. 2021, 17, 31. [Google Scholar] [CrossRef]
- Kimera, Z.I.; Mgaya, F.X.; Misinzo, G.; Mshana, S.E.; Moremi, N.; Matee, M.I. Multidrug-Resistant, Including Extended-Spectrum Beta Lactamase-Producing and Quinolone-Resistant, Escherichia coli Isolated from Poultry and Domestic Pigs in Dar Es Salaam, Tanzania. Antibiotics 2021, 10, 406. [Google Scholar] [CrossRef]
- Michael, C.A.; Dominey-Howes, D.; Labbate, M. The Antimicrobial Resistance Crisis: Causes, Consequences, and Management. Front. Public Health 2014, 2, 145. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Madec, J.-Y.; Haenni, M.; Nordmann, P.; Poirel, L. Extended-Spectrum β-Lactamase/AmpC- and Carbapenemase-Producing Enterobacteriaceae in Animals: A Threat for Humans? Clin. Microbiol. Infect. 2017, 23, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Jaja, I.F.; Oguttu, J.; Jaja, C.-J.I.; Green, E. Prevalence and Distribution of Antimicrobial Resistance Determinants of Escherichia coli Isolates Obtained from Meat in South Africa. PLoS ONE 2020, 15, e0216914. [Google Scholar] [CrossRef]
- Ngbede, E.O.; Poudel, A.; Kalalah, A.; Yang, Y.; Adekanmbi, F.; Adikwu, A.A.; Adamu, A.M.; Mamfe, L.M.; Daniel, S.T.; Useh, N.M.; et al. Identification of Mobile Colistin Resistance Genes (Mcr-1.1, Mcr-5 and Mcr-8.1) in Enterobacteriaceae and Alcaligenes Faecalis of Human and Animal Origin, Nigeria. Int. J. Antimicrob. Agents 2020, 56, 106108. [Google Scholar] [CrossRef]
- Ohene Larbi, R.; Adeapena, W.; Ayim-Akonor, M.; Ansa, E.D.O.; Tweya, H.; Terry, R.F.; Labi, A.-K.; Harries, A.D. Antimicrobial, Multi-Drug and Colistin Resistance in Enterobacteriaceae in Healthy Pigs in the Greater Accra Region of Ghana, 2022: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 10449. [Google Scholar] [CrossRef]
- Ghana Statistical Services. Available online: https://www.statsghana.gov.gh/ (accessed on 18 June 2024).
- Koenen-Dierick, K.; Okerman, L.; de Zutter, L.; Degroodt, J.M.; van Hoof, J.; Srebrnik, S. A One-Plate Microbiological Screening Test for Antibiotic Residue Testing in Kidney Tissue and Meat: An Alternative to the EEC Four-Plate Method? Food Addit. Contam. 1995, 12, 77–82. [Google Scholar] [CrossRef]
- Mahami, T.; Togby-Tetteh, W.; Kottoh, D.I.; Amoakoah-Twum, L.; Gasu, E.; Annan, S.N.Y.; Larbi, D.; Adjei, I.; Adu-Gyamfi, A. Microbial Food Safety Risk to Humans Associated with Poultry Feed: The Role of Irradiation. Int. J. Food Sci. 2019, 2019, 1–7. [Google Scholar] [CrossRef]
- Rasschaert, G.; Van Elst, D.; Colson, L.; Herman, L.; de Carvalho Ferreira, H.C.; Dewulf, J.; Decrop, J.; Meirlaen, J.; Heyndrickx, M.; Daeseleire, E. Antibiotic Residues and Antibiotic-Resistant Bacteria in Pig Slurry Used to Fertilize Agricultural Fields. Antibiotics 2020, 9, 34. [Google Scholar] [CrossRef] [PubMed]
- Kichana, E.; Addy, F.; Dufailu, O.A. Genetic Characterization and Antimicrobial Susceptibility of Escherichia coli Isolated from Household Water Sources in Northern Ghana. J. Water Health 2022, 20, 770–780. [Google Scholar] [CrossRef] [PubMed]
- CLSI M100; Performance Standards for Antimicrobial Susceptibility Testing, 35th Edition. CLSI: Wayne, PA, USA, 2025. Available online: https://clsi.org/standards/products/microbiology/documents/m100/ (accessed on 10 July 2024).
- Aanensen, D.M.; Huntley, D.M.; Menegazzo, M.; Powell, C.I.; Spratt, B.G. EpiCollect+: Linking Smartphones to Web Applications for Complex Data Collection Projects. F1000Research 2014, 3, 199. [Google Scholar] [CrossRef]
- Boateng, M.; Amoah, K.; Okai, D.; Acheampong, M.; Atuahene, P. Assessment of the status of pig production in the Greater Accra region of Ghana. Ghana J. Anim. Sci. 2021, 12, 49–58. [Google Scholar]
- Osei, F.B.; Boamah, V.E.; Agyare, C.; Abaidoo, R.C. Physicochemical Properties and Microbial Quality of Water Used in Selected Poultry Farms in the Ashanti Region of Ghana. Open Microbiol. J. 2019, 13, 121–127. [Google Scholar] [CrossRef]
- Quarcoo, G.; Boamah Adomako, L.A.; Abrahamyan, A.; Armoo, S.; Sylverken, A.A.; Addo, M.G.; Alaverdyan, S.; Jessani, N.S.; Harries, A.D.; Ahmed, H.; et al. What Is in the Salad? Escherichia coli and Antibiotic Resistance in Lettuce Irrigated with Various Water Sources in Ghana. Int. J. Environ. Res. Public Health 2022, 19, 12722. [Google Scholar] [CrossRef]
- Anokyewaa Appau, A.A.; Ofori, L.A. Antibiotic Resistance Profile of E. coli Isolates from Lettuce, Poultry Manure, Irrigation Water, and Soil in Kumasi, Ghana. Int. J. Microbiol. 2024, 2024, 6681311. [Google Scholar] [CrossRef] [PubMed]
- Adenaya, A.; Adeniran, A.A.; Ugwuoke, C.L.; Saliu, K.; Raji, M.A.; Rakshit, A.; Ribas-Ribas, M.; Könneke, M. Environmental Risk Factors Contributing to the Spread of Antibiotic Resistance in West Africa. Microorganisms 2025, 13, 951. [Google Scholar] [CrossRef]
- Makovska, I.; Chantziaras, I.; Caekebeke, N.; Dhaka, P.; Dewulf, J. Assessment of Cleaning and Disinfection Practices on Pig Farms across Ten European Countries. Animals 2024, 14, 593. [Google Scholar] [CrossRef]
- Dogbatse, R.; Folitse, R.; Nyarku, R.E.; Burimuah, V.; Amemor, E.; Emikpe, B.O. Antibiotic Use and Knowledge of Antibiotic Resistance among Pig Farmers in Ejisu and Juaben Municipalities of Ashanti Region, Ghana. PAMJ-One Health 2023, 12. [Google Scholar] [CrossRef]
- Burns, A.M.; Lawlor, P.G.; Gardiner, G.E.; McCabe, E.M.; Walsh, D.; Mohammed, M.; Grant, J.; Duffy, G. Salmonella Occurrence and Enterobacteriaceae Counts in Pig Feed Ingredients and Compound Feed from Feed Mills in Ireland. Prev. Vet. Med. 2015, 121, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Atere, V.A.; Bamikole, A.M.; Ajurojo, O.A. Antibiotic Susceptibility of Bacteria Isolated from Poultry Feeds Sold in Ado Ekiti, Nigeria. J. Adv. Med. Life Sci. 2015, 3. [Google Scholar]
- Schwan, C.L.; Bastos, L.M.; Young, S.; Domesle, K.; Ge, B.; Hsu, C.-H.; Li, C.; Strain, E.; Vipham, J.; Jones, C. Genotypic and Phenotypic Characterization of Antimicrobial and Heavy Metal Tolerance in Salmonella enterica and Escherichia coli Isolates from Swine Feed Mills. J. Food Prot. 2023, 86, 100113. [Google Scholar] [CrossRef]
- Ngai, D.G.; Nyamache, A.K.; Ombori, O. Prevalence and Antimicrobial Resistance Profiles of Salmonella Species and Escherichia coli Isolates from Poultry Feeds in Ruiru Sub-County, Kenya. BMC Res. Notes 2021, 14, 41. [Google Scholar] [CrossRef]
- Paredes, R.; Damme, M.; Mantilla, J.; Castellanos, L.R.; Clavijo, V.; Celis, Y.; Mehta, K.; Kumar, A.; Patiño, A.; Jeyashree, K. Prevalence and Antimicrobial Resistance of Escherichia coli and Salmonella spp. in Animal Feed in Colombia. Rev. Panam. Salud Pública 2023, 47, e57. [Google Scholar] [CrossRef]
- Ahmed, H.; Zolfo, M.; Williams, A.; Ashubwe-Jalemba, J.; Tweya, H.; Adeapena, W.; Labi, A.-K.; Adomako, L.A.B.; Addico, G.N.D.; Banu, R.A.; et al. Antibiotic-Resistant Bacteria in Drinking Water from the Greater Accra Region, Ghana: A Cross-Sectional Study, December 2021–March 2022. Int. J. Environ. Res. Public. Health 2022, 19, 12300. [Google Scholar] [CrossRef] [PubMed]
- Adzitey, F.; Sumaila, N.; Saba, C.K.S. Isolation of E. coli from Drinking Water Sources for Humans and Farm Animals in Nyankpala Community of Ghana. Res. J. Microbiol. 2015, 10, 126. [Google Scholar] [CrossRef]
- García-Vello, P.; González-Zorn, B.; Saba, C.K.S. Antibiotic Resistance Patterns in Human, Animal, Food and Environmental Isolates in Ghana: A Review. Pan Afr. Med. J. 2020, 35. [Google Scholar] [CrossRef]
- Gwimbi, P.; George, M.; Ramphalile, M. Bacterial Contamination of Drinking Water Sources in Rural Villages of Mohale Basin, Lesotho: Exposures through Neighbourhood Sanitation and Hygiene Practices. Environ. Health Prev. Med. 2019, 24, 33. [Google Scholar] [CrossRef]
- Olu-Taiwo, M.A.; Egyir, B.; Owusu-Nyantakyi, C.; Forson, A.O.; Opintan, J.A. Molecular Characterization of Multidrug-Resistant Escherichia coli in the Greater Accra Region, Ghana: A ‘One Health’ Approach. One Health Outlook 2025, 7, 31. [Google Scholar] [CrossRef]
- John, O.S. Surveillance of Antimicrobial Resistance in Pigs Using Escherichia coli Faecal Isolates. CIB Technol. 2014, 3, 78–83. [Google Scholar]
- Peng, Z.; Hu, Z.; Li, Z.; Zhang, X.; Jia, C.; Li, T.; Dai, M.; Tan, C.; Xu, Z.; Wu, B.; et al. Antimicrobial Resistance and Population Genomics of Multidrug-Resistant Escherichia coli in Pig Farms in Mainland China. Nat. Commun. 2022, 13, 1116. [Google Scholar] [CrossRef]
- Mencía-Ares, O.; Argüello, H.; Puente, H.; Gómez-García, M.; Manzanilla, E.G.; Álvarez-Ordóñez, A.; Carvajal, A.; Rubio, P. Antimicrobial Resistance in Commensal Escherichia coli and Enterococcus spp. Is Influenced by Production System, Antimicrobial Use, and Biosecurity Measures on Spanish Pig Farms. Porc. Health Manag. 2021, 7, 27. [Google Scholar] [CrossRef]
- Poirel, L.; Jayol, A.; Nordmann, P. Polymyxins: Antibacterial Activity, Susceptibility Testing, and Resistance Mechanisms Encoded by Plasmids or Chromosomes. Clin. Microbiol. Rev. 2017, 30, 557–596. [Google Scholar] [CrossRef]
- Valiakos, G.; Kapna, I. Colistin Resistant Mcr Genes Prevalence in Livestock Animals (Swine, Bovine, Poultry) from a Multinational Perspective. A Systematic Review. Vet. Sci. 2021, 8, 265. [Google Scholar] [CrossRef] [PubMed]
- Adjei, R.L.; Adomako, L.A.B.; Korang-Labi, A.; Avornyo, F.K.; Timire, C.; Larbi, R.O.; Kubasari, C.; Ackon, S.E.D.; Reid, A. Assessing Changes in Bacterial Load and Antibiotic Resistance in the Legon Sewage Treatment Plant between 2018 and 2023 in Accra, Ghana. Trop. Med. Infect. Dis. 2023, 8, 427. [Google Scholar] [CrossRef] [PubMed]
- Al-Bahry, S.N.; Mahmoud, I.Y.; Al-Musharafi, S.K. The Effect of Physical Factors on Fecal Coliform Viability Rate in Sewage Sludge. J. Geosci. Environ. Prot. 2014, 2, 9–13. [Google Scholar] [CrossRef]
- Azuma, T.; Hayashi, T. Effects of Natural Sunlight on Antimicrobial-Resistant Bacteria (AMRB) and Antimicrobial-Susceptible Bacteria (AMSB) in Wastewater and River Water. Sci. Total Environ. 2021, 766, 142568. [Google Scholar] [CrossRef]
- Lacroix, M.Z.; Ramon-Portugal, F.; Huesca, A.; Angastiniotis, K.; Simitopoulou, M.; Kefalas, G.; Ferrari, P.; Levallois, P.; Fourichon, C.; Wolthuis-Fillerup, M.; et al. Residues of Veterinary Antibiotics in Manures from Pig and Chicken Farms in a Context of Antimicrobial Use Reduction by Implementation of Health and Welfare Plans. Environ. Res. 2023, 238, 117242. [Google Scholar] [CrossRef]
- Alban, L.; Antunović, B.; Belous, M.; Bonardi, S.; García-Gimeno, R.M.; Jenson, I.; Kautto, A.H.; Majewski, M.; Oorburg, D.; Sakaridis, I. Mapping Ways of Detecting and Handling Antimicrobial Residues in Pigs and Pig Meat In-and Outside Europe. Food Control 2023, 153, 109899. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Darko, G.; Borquaye, L.S.; Acheampong, A.; Oppong, K. Veterinary Antibiotics in Dairy Products from Kumasi, Ghana. Cogent Chem. 2017, 3, 1343636. [Google Scholar] [CrossRef]
- Rahman, M.S.; Hassan, M.M.; Chowdhury, S. Determination of Antibiotic Residues in Milk and Assessment of Human Health Risk in Bangladesh. Heliyon 2021, 7, e07739. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, S.S.; Narayanan, S.; Shandil, R.K.; Puram, P.K.; Konidala, S.K. Review of analytical and sample processing technologies for detecting antibiotic residues in environmental samples. Indian J. Pharm. Sci. 2023, 85, 1551–1561. [Google Scholar] [CrossRef]
Variables | n | (%) | |
---|---|---|---|
Selected farms | 14 | ||
Annual pig production turnover | 1–100 | 6 | (42.9) |
101–300 | 5 | (35.7) | |
>300 | 3 | (21.4) | |
Farm feed source | Commercial | 1 | (7.1) |
Self-made | 10 | (71.5) | |
Self-made and Commercial | 3 | (21.4) | |
Antimicrobials added to farm feed | Yes | 0 | (0) |
No | 14 | (100) | |
Animal drinking water source | Boreholes | 8 | (57.1) |
Tap water | 4 | (28.6) | |
Well water | 2 | (14.3) | |
Pig fecal waste management | Waste dumped on farm and collected for manure | 7 | (50.0) |
Waste just dumped on farm | 5 | (35.7) | |
Waste burnt | 2 | (14.3) | |
Pig slurry management | Channelled freely into farm soil | 9 | (64.3) |
Channelled into covered pit | 4 | (28.6) | |
Channelled into uncovered pit | 1 | (7.1) | |
Presence of functional foot baths | Yes | 3 | (21.4) |
No | 11 | (78.6) | |
Use of personal protective equipment | Yes | 14 | (100) |
No | 0 | (0) | |
Antimicrobial treatment of pigs in the last 12 months | Yes | 8 | (57.1) |
No | 6 | (42.9) | |
If yes, veterinarian was consulted before treatment? | Yes | 4 | (50.0) |
No | 4 | (50.0) | |
If no, who decided on type of treatment? | The farmer decided on antimicrobial and dosage | 4 | (100) |
Prophylactic antimicrobials given to pigs in the last 12 months | Yes | 6 | (42.9) |
No | 8 | (57.1) | |
Disposal of used antimicrobial containers | Dumped into a bin | 2 | (14.3) |
Burnt | 4 | (28.6) | |
Buried | 2 | (14.3) | |
Dumped on the farm | 5 | (35.7) |
Sample Type | Number of Samples | Samples with Enterobacterales | Samples with E. coli Only | Samples with Enterobacter spp. Only | Samples with Both E. coli and Enterobacter spp. | ||||
---|---|---|---|---|---|---|---|---|---|
N | n | (%) | n | (%) | n | (%) | n | (%) | |
Farm Feed | 14 | 12 | (85.7) | 3 | (25.0) | 8 | (66.7) | 1 | (8.3) |
Pig Slurry | 14 | 11 | (78.6) | 9 | (81.8) | 0 | (0.0) | 2 | (18.2) |
Farm Water | 14 | 7 | (50.0) | 3 | (42.9) | 4 | (57.1) | 0 | (0) |
All samples | 42 | 30 | (71.4) | 15 | (50.0) | 12 | (40.0) | 3 | (10.0) |
Samples | Total | MDR | R3 | R4 | R5 | |
---|---|---|---|---|---|---|
n | n | (%) | n | n | n | |
Farm feed | 13 | 5 | (38.5) | 3 | 0 | 2 |
Pig slurry | 13 | 3 | (23.1) | 2 | 0 | 1 |
Farm water | 7 | 1 | (14.3) | 0 | 1 | 0 |
Variable | Resistance | |
---|---|---|
Total samples (N = 42) | n | (%) |
Phenotypic resistance | ||
E. coli | 3 | (7.1) |
Enterobacter spp. | 7 | (16.7) |
Molecular resistance * | ||
E. coli | 2 | (66.7) |
Enterobacter spp. | 1 | (14.3) |
Variable | Total | MDR | PR | 95% CI | p Value | |
---|---|---|---|---|---|---|
n | (%) | |||||
Total Enterobacterales | 33 | 9 | (27.3) | |||
Annual Pig turnover | ||||||
1–100 | 14 | 0 | (0.0) | 1 | ||
101–300 | 17 | 8 | (47.1) | 14 | (0.9–222) | <0.01 |
>300 | 2 | 1 | (50.0) | 15 | (0.8–286) | <0.05 |
Animal drinking water source | ||||||
Borehole | 22 | 5 | (22.7) | 1 | ||
Well water | 3 | 1 | (33.3) | 1.5 | (0.2–8.7) | 0.7 |
Tap water | 8 | 3 | (37.5) | 1.7 | (0.5–5.4) | 0.4 |
Pig fecal waste management | ||||||
Waste dumped on farm and collected for manure | 16 | 3 | (18.8) | 1 | ||
Waste just dumped on farm | 14 | 3 | (21.4) | 1.1 | (0.3–4.8) | 0.8 |
Waste burnt | 3 | 3 | (100) | 4.7 | (1.6–13.8) | <0.05 |
Pig slurry management | ||||||
Channelled freely into farm soil | 21 | 3 | (14.3) | 1 | ||
Channelled into covered/uncovered pit | 12 | 6 | (50.0) | 3.5 | (1.1–11.5) | <0.05 |
Presence of functional foot baths | ||||||
No | 26 | 7 | (26.9) | 1 | ||
Yes | 7 | 2 | (28.6) | 1.1 | (0.3–4.8) | 0.9 |
Antimicrobial treatment of pigs in last 12 months | ||||||
No | 17 | 2 | (11.8) | 1 | ||
Yes | 16 | 7 | (43.8) | 3.7 | (0.9–15.3) | 0.09 |
Prophylactic antimicrobials to pigs in last 12 months | ||||||
No | 23 | 0 | (0.0) | 1 | ||
Yes | 10 | 1 | (10.0) | 6.5 | (0.3–148) | 0.2 |
Antimicrobials used for both treatment and prophylaxis in the last 12 months | ||||||
No | 29 | 0 | (0.0) | 1 | ||
Yes | 4 | 1 | (25.0) | 18 | (0.8–382) | <0.05 |
Disposal of used antimicrobial containers | ||||||
Dumped into a bin | 8 | 2 | (25.0) | 1 | ||
Burnt or buried | 12 | 4 | (33.3) | 1.3 | (0.3–5.6) | 0.7 |
Dumped on the farm | 10 | 3 | (30.0) | 1.2 | (0.3–5.5) | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amegayibor, E.F.; Ohene Larbi, R.; Ayim-Akonor, M.; Mills, R.O.; Owusu, H.; Sasu, B.K.; Terry, R.F.; Harries, A.D.; Kuukyi, F.S. Enterobacterales and Antimicrobial Resistance in Feed, Water, and Slurry in Pig Production Farms in the Greater Accra Region of Ghana, 2024. Trop. Med. Infect. Dis. 2025, 10, 239. https://doi.org/10.3390/tropicalmed10090239
Amegayibor EF, Ohene Larbi R, Ayim-Akonor M, Mills RO, Owusu H, Sasu BK, Terry RF, Harries AD, Kuukyi FS. Enterobacterales and Antimicrobial Resistance in Feed, Water, and Slurry in Pig Production Farms in the Greater Accra Region of Ghana, 2024. Tropical Medicine and Infectious Disease. 2025; 10(9):239. https://doi.org/10.3390/tropicalmed10090239
Chicago/Turabian StyleAmegayibor, Elvis Fiam, Rita Ohene Larbi, Matilda Ayim-Akonor, Richael Odarkor Mills, Helena Owusu, Benjamin Kissi Sasu, Robert Fraser Terry, Anthony D. Harries, and Florence S. Kuukyi. 2025. "Enterobacterales and Antimicrobial Resistance in Feed, Water, and Slurry in Pig Production Farms in the Greater Accra Region of Ghana, 2024" Tropical Medicine and Infectious Disease 10, no. 9: 239. https://doi.org/10.3390/tropicalmed10090239
APA StyleAmegayibor, E. F., Ohene Larbi, R., Ayim-Akonor, M., Mills, R. O., Owusu, H., Sasu, B. K., Terry, R. F., Harries, A. D., & Kuukyi, F. S. (2025). Enterobacterales and Antimicrobial Resistance in Feed, Water, and Slurry in Pig Production Farms in the Greater Accra Region of Ghana, 2024. Tropical Medicine and Infectious Disease, 10(9), 239. https://doi.org/10.3390/tropicalmed10090239