Human Pathogenic Bacteria Within the Nasal and Rectal Microbiome of Macropus giganteus
Abstract
1. Introduction
2. Methodology
2.1. Investigated Area
2.2. Population Characteristics
2.3. Macropus Giganteus Baseline Health Assessment
2.4. Collection of Samples
2.5. Sample Analysis
2.6. Ethics
3. Results
3.1. Sample Size
3.2. Bacteria Characterisation
3.3. Comparative Analysis
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rasheed, N.A.; Hussein, N.R. Staphylococcus aureus: An overview of discovery, characteristics, epidemiology, virulence factors and antimicrobial sensitivity. Eur. J. Mol. Clin. Med. 2021, 8, 1160–1183. [Google Scholar]
- Heaton, C.J.; Gerbig, G.R.; Sensius, L.D.; Patel, V.; Smith, T.C. Staphylococcus aureus epidemiology in wildlife: A systematic review. Antibiotics 2020, 9, 89. [Google Scholar] [CrossRef]
- Ikuta, K.S.; Swetschinski, L.R.; Aguilar, G.R.; Sharara, F.; Mestrovic, T.; Gray, A.P.; Weaver, N.D.; Wool, E.E.; Han, C.; Hayoon, A.G.; et al. Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 2221–2248. [Google Scholar] [CrossRef]
- Olaniyi, R.; Pozzi, C.; Grimaldi, L.; Bagnoli, F. Staphylococcus aureus-associated skin and soft tissue infections: Anatomical localization, epidemiology, therapy and potential prophylaxis. In Staphylococcus aureus: Microbiology, Pathology, Immunology, Therapy and Prophylaxis; Springer International Publishing: Cham, Switzerland, 2017; pp. 199–227. [Google Scholar]
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef]
- Kramer, A.; Schwebke, I.; Kampf, G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis. 2006, 6, 130. [Google Scholar] [CrossRef]
- Algammal, A.M.; Hetta, H.F.; Elkelish, A.; Alkhalifah, D.H.H.; Hozzein, W.N.; Batiha, G.E.-S.; Nahhas, N.E.; Mabrok, M.A. Methicillin-Resistant Staphylococcus aureus (MRSA): One health perspective approach to the bacterium epidemiology, virulence factors, antibiotic-resistance, and zoonotic impact. Infect. Drug Resist. 2020, 13, 3255–3265. [Google Scholar] [CrossRef] [PubMed]
- Kourtis, A.P. Vital signs: Epidemiology and recent trends in methicillin-resistant and in methicillin-susceptible Staphylococcus aureus bloodstream infections—United States. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 214–219. [Google Scholar] [CrossRef]
- Linz, M.S.; Mattappallil, A.; Finkel, D.; Parker, D. Clinical impact of Staphylococcus aureus skin and soft tissue infections. Antibiotics 2023, 12, 557. [Google Scholar] [CrossRef] [PubMed]
- Millar, E.V.; Schlett, C.D.; Law, N.N.; Whitman, T.J.; Ellis, M.W.; Tribble, D.R.; Bennett, J.W. Opportunities and obstacles in the prevention of skin and soft-tissue infections among military personnel. Mil. Med. 2019, 184 (Suppl. S2), 35–43. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cheng, F.; Wei, X.; Bai, Y.; Wang, Q.; Li, B.; Zhou, Y.; Zhai, B.; Zhou, X.; Wang, W.; et al. Methicillin-resistant staphylococcus aureus (MRSA): Resistance, prevalence, and coping strategies. Antibiotics 2025, 14, 771. [Google Scholar] [CrossRef]
- Singal, A.; Lipner, S.R. A review of skin disease in military soldiers: Challenges and potential solutions. Ann. Med. 2023, 55, 2267425. [Google Scholar] [CrossRef] [PubMed]
- Chellappah, J. ADF Malaria and Infectious Disease Institute (ADFMIDI) Investigation of Skin and Soft Tissue Infections Among Trainees in ADF Training Sites—Case Study Of 2 Training Sites. J. Mil. Veterans’ Health 2023, 31, 37–38. Available online: https://jmvh.org/issues/ (accessed on 9 November 2025).
- Suhr, R.; Peart, A.; Vesely, B.; Waller, M.; Trudgian, A.; Peatey, C.; Chellappah, J. Risk identification and mitigation of Skin and Soft Tissue Infections in military training environments. Trop. Med. Infect. Dis. 2024, 9, 306. [Google Scholar] [CrossRef]
- Ladds, P. Pathology of Australian Native Wildlife; Csiro Publishing: Clayton, Australia, 2009. [Google Scholar]
- Chen, M.M.; Boardman, W.S.; Smith, I.; Goodman, A.; Brown, M. Nasal colonization of Staphylococcus spp among captive and free-ranging wallabies in South Australia. J. Vet. Sci. Med. Diagn. 2014, 3, e1–e9. [Google Scholar]
- Chen, M.M.; Boardman, W.S.; Brown, M.H. Methicillin resistance gene diversity in staphylococci isolated from captive and free-ranging wallabies. Infect. Ecol. Epidemiol. 2016, 6, 31507. [Google Scholar] [CrossRef]
- Aamot, H.; Eskonsipo, P.; Jørgensen, S.; Blomfeldt, A. Staphylococcus aureus colonization during military service: A prospective cohort study. Clin. Microbiol. Infect. 2018, 24, 744–748. [Google Scholar] [CrossRef]
- Blomfeldt, A.; Jørgensen, S.B.; Helmersen, K.; Eskonsipo, P.K.J.; Aamot, H.V. Is increased Staphylococcus aureus colonization during military service caused by specific genotypes? Molecular examination of long-term carriage in a prospective cohort study. Apmis 2021, 129, 170–177. [Google Scholar] [CrossRef]
- Chedrese, P.N.; Mutti, S.L.; Pelozo, P.; Ayala, N.B.; Micucci, N.; Blanco, G.; Lorenzini, A.; Soubelet, M.; Lamponi Tappatá, L.; Maurizi, D. Colonización por Staphylococcus Aureus Meticilino Resistente de la Comunidad y Factores Predisponentes en Soldados Ingresantes a una Institución Militar. Actualizaciones en Sida e Infectología. 2019. Available online: https://d1wqtxts1xzle7.cloudfront.net/107280232/5-libre.pdf?1699656921=&response-content-disposition=inline%3B+filename%3DColonizacion_por_Staphylococcus_aureus_m.pdf&Expires=1763174221&Signature=Adk7MYxeOQavdAPfD0ILOMAxg50AFY1I-z-pnE6Rn6kxmF6npyuSjgoT6g617sSYsaAuZsMeheJhruRo65qAEVrRZh4tjMzEZsYRfVIuYqjUYQuk4n2PAymoBAMfmbghQSK87Bc~FFzjY~datbt~Y6eVfTLywsunE~uflPFIexnwsZgs1gFKFQt9QecaoS3Df9Gbn~uK9GoD3bu7QSjFYWspDV2ywMK0J-bm4yjHxoC9pgGNMCR4RjEdvX2eHXqafAnoksm7ymwutxCB9PqhJ73AlwLDlO-JrQKsXvNz27P-9sI6AU08LPNN6o5XvXAKhTsd0vJcqItZ56Hlqk43Gw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA (accessed on 1 January 2020).
- Levine, H.; Kayouf, R.; Rozhavski, V.; Sela, T.; Rajuan-Galor, I.; Ferber, A.T.; Yona, S.; Gorochovski, O.; Halperin, T.; Hartal, M. Neglect of skin wounds and the risk of becoming a Staphylococcus aureus nasal carrier: A cohort study. BMC Public Health 2015, 15, 749. [Google Scholar] [CrossRef] [PubMed]
- Millar, E.V.; Rice, G.K.; Elassal, E.M.; Schlett, C.D.; Bennett, J.W.; Redden, C.L.; Mor, D.; Law, N.N.; Tribble, D.R.; Hamilton, T.; et al. Genomic characterization of USA300 methicillin-resistant Staphylococcus aureus (MRSA) to evaluate intraclass transmission and recurrence of skin and soft tissue infection (SSTI) among high-risk military trainees. Clin. Infect. Dis. 2017, 65, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Qu, F.; Cui, E.; Guo, T.; Li, H.; Chen, S.; Liu, L.; Han, W.; Bao, C.; Mao, Y.; Tang, Y.W. Nasal colonization of and clonal transmission of methicillin-susceptible Staphylococcus aureus among Chinese military volunteers. J. Clin. Microbiol. 2010, 48, 64–69. [Google Scholar] [CrossRef]
- Chong, R.; Cheng, Y.; Hogg, C.J.; Belov, K. Marsupial gut microbiome. Front. Microbiol. 2020, 11, 1058. [Google Scholar] [CrossRef]
- Michels, R.; Last, K.; Becker, S.L.; Papan, C. Update on coagulase-negative staphylococci—What the clinician should know. Microorganisms 2021, 9, 830. [Google Scholar] [CrossRef]
- Becker, K.; Both, A.; Weißelberg, S.; Heilmann, C.; Rohde, H. Emergence of coagulase-negative staphylococci. Expert Rev. Anti-Infect. Ther. 2020, 18, 349–366. [Google Scholar] [CrossRef]
- Zhang, K.; Potter, R.F.; Marino, J.; Muenks, C.E.; Lammers, M.G.; Dien Bard, J.; Dingle, T.C.; Humphries, R.; Westblade, L.F.; Burnham, C.A.; et al. Comparative genomics reveals the correlations of stress response genes and bacteriophages in developing antibiotic resistance of Staphylococcus saprophyticus. Msystems 2023, 8, e00697-23. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Sanz, E.; Haro-Moreno, J.M.; Jensen, S.O.; Roda-García, J.J.; López-Pérez, M. The resistome and mobilome of multidrug-resistant Staphylococcus sciuri C2865 unveil a transferable trimethoprim resistance gene, designated dfrE, spread unnoticed. Msystems 2021, 6, e0051121. [Google Scholar] [CrossRef] [PubMed]
- Zeman, M.; Mašlaňová, I.; Indráková, A.; Šiborová, M.; Mikulášek, K.; Bendíčková, K.; Plevka, P.; Vrbovská, V.; Zdráhal, Z.; Doškař, J.; et al. Staphylococcus sciuri bacteriophages double-convert for staphylokinase and phospholipase, mediate interspecies plasmid transduction, and package mecA gene. Sci. Rep. 2017, 7, 46319. [Google Scholar] [CrossRef]
- de Carvalho, A.; Giambiagi-deMarval, M.; Rossi, C.C. Mammaliicoccus sciuri’s Pan-Immune system and the dynamics of horizontal gene transfer among staphylococcaceae: A one-health CRISPR tale. J. Microbiol. 2024, 62, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Nemeghaire, S.; Argudín, M.A.; Fessler, A.T.; Hauschild, T.; Schwarz, S.; Butaye, P. The ecological importance of the Staphylococcus sciuri species group as a reservoir for resistance and virulence genes. Vet. Microbiol. 2014, 171, 342–356. [Google Scholar] [CrossRef]
- Saraiva, M.d.M.S.; de Leon, C.M.C.G.; Silva, N.M.V.D.; Raso, T.F.; Serafini, P.P.; Givisiez, P.E.N.; Gebreyes, W.A.; Oliveira, C.J.B.D. Staphylococcus sciuri as a Reservoir of mec A to Staphylococcus aureus in Non-Migratory Seabirds from a Remote Oceanic Island. Microb. Drug Resist. 2021, 27, 553–561. [Google Scholar] [CrossRef]
| Bacteria | Number of Kangaroos with Isolates from Rectal Swabs (n = 100) | Number of Kangaroos with Isolates from Nasal Swabs (n = 100) | Main Clinical Significance |
|---|---|---|---|
| MSSA | 6 | 13 | Common cause of a wide array of both community-acquired and hospital-acquired infections. Ubiquitous colonisation of human flora. |
| MRSA | 2 | 4 | Causes a wide array of infections including SSTIs, bone infections, joint infections, endocarditis pneumonia, and bacteraemia. Associated with significant morbidity and mortality. One of the most common causes of hospital-acquired infections. Resistant to beta-lactam antibiotics. |
| Staphylococcus saprophyticus | 0 | 10 | Most common cause of uncomplicated urinary tract infections (UTI) in young, sexually active females. |
| Staphylococcus haemolyticus | 0 | 10 | Common cause of infections of the central nervous system, diabetic foot ulcer infections, and is a common pathogen in patients with neurosurgical procedures. Often an opportunistic infection. Increasingly becoming multidrug-resistant. Carries resistance genes and is a known reservoir for distribution of antimicrobial resistance staphylococci |
| Staphylococcus warneri | 0 | 10 | Rare cause of UTI, rare cause of sepsis in immunocompromised patients. High degree of antimicrobial resistance. |
| Pseudomonas aeruginosa | 0 | 1 | Can result in a wide array of infections. Commonly found in immunocompromised patients and typically multidrug-resistant. |
| Pseudomonas putida | 27 | 3 | Rarely results in infection. Found to cause infection in patients undergoing invasive procedures or in immunocompromised patients. |
| Pseudomonas fluorescens | 2 | 0 | Wide range of infections in immunocompromised patients. Many resistant phenotypes have been characterised. May play a role as a reservoir for beta-lactamase resistance genes or other antimicrobial resistance genes. |
| Streptococcus agalactiae (Group B Streptococcus; GBS) or Group D Streptococcus | 0 | 10 | GBS is the leading cause of postpartum infection and neonatal sepsis. Can be vertically transmitted to neonates. GBS is known to cause SSTIs in patients with diabetes and is linked to heart failure in the elderly population. Group D Streptococcus is known to cause bacteraemia and subsequent endocarditis. Streptococcus bovis is associated with gastrointestinal malignancies |
| Mammaliicoccus sciuri (formerly Staphylococcus sciuri) | 0 | 7 | Rare cause of toxic shock syndrome. Potential reservoir for virulence and resistance genes. |
| Acinetobacter haemolyticus | 1 | 0 | Rare cause of nosocomial infections, mainly aspiration pneumonia and catheter-associated bacteraemia but known to cause UTIs and SSTIs. |
| Bacillus cereus group | 0 | 1 | Foodborne pathogen resulting in emetic and diarrheal syndromes. Can cause SSTI with penetrating trauma or mucosal injury. |
| Stenotrophomonas maltophilia | 3 | 1 | Newly emerging pathogen of concern. Intrinsically multidrug-resistant. Opportunistic, often respiratory infection, associated with high morbidity and mortality in immunocompromised patients. Also causes bacteraemia and line- associated infections. Less commonly associated with SSTIs. |
| Stenotrophomonas rhizophila | 1 | 0 | Intrinsically multidrug-resistant, mainly opportunistic infections. |
| Enterobacter cloacae complex | 1 | 0 | Commonly associated with nosocomial infections resulting in a wide array of clinical consequences and is becoming increasingly antimicrobial-resistant. |
| Enterococcus casseliflavus | 0 | 1 | Nosocomial infections, most commonly associated with bacteraemia and trauma-induced endophthalmitis, but also known to cause surgical site infections, UTIs, and infective endocarditis. Carries the VanC gene, conferring resistance to vancomycin. |
| Pantoea agglomerans | 5 | 0 | Rare cause of opportunistic wound infection, mostly found in immunocompromised patients. |
| Pseudomonas oryzihabitans | 1 | 0 | Rare cause of nosocomial infections. Hospital outbreaks described in the literature. |
| Microbacterium arborescens | 0 | 2 | Rare cause of infection in immunocompromised patients. |
| Curtobacterium flaccumfaciens | 0 | 1 | Case reports of opportunistic infections. Considered to be lowly pathogenic. |
| Dermacoccus nishinomiyaensis | 1 | 0 | Generally not considered a human pathogen. Case reports of opportunistic infections. |
| Micrococcus | 0 | 10 | Generally not considered a human pathogen. Case reports of opportunistic infections. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arroyo, D.; Peart, A.; Vesely, B.; Trudgian, A.; Chellappah, J. Human Pathogenic Bacteria Within the Nasal and Rectal Microbiome of Macropus giganteus. Trop. Med. Infect. Dis. 2025, 10, 322. https://doi.org/10.3390/tropicalmed10110322
Arroyo D, Peart A, Vesely B, Trudgian A, Chellappah J. Human Pathogenic Bacteria Within the Nasal and Rectal Microbiome of Macropus giganteus. Tropical Medicine and Infectious Disease. 2025; 10(11):322. https://doi.org/10.3390/tropicalmed10110322
Chicago/Turabian StyleArroyo, David, Amy Peart, Brian Vesely, Andrew Trudgian, and Jessica Chellappah. 2025. "Human Pathogenic Bacteria Within the Nasal and Rectal Microbiome of Macropus giganteus" Tropical Medicine and Infectious Disease 10, no. 11: 322. https://doi.org/10.3390/tropicalmed10110322
APA StyleArroyo, D., Peart, A., Vesely, B., Trudgian, A., & Chellappah, J. (2025). Human Pathogenic Bacteria Within the Nasal and Rectal Microbiome of Macropus giganteus. Tropical Medicine and Infectious Disease, 10(11), 322. https://doi.org/10.3390/tropicalmed10110322

