Mosquito Feeding Preference, Infectivity Rates, and Knockdown Resistance Within the Wild Population of Anopheles arabiensis in Jabi Tehnan District, Northwest Ethiopia
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of Study Area and Study Design
2.2. Survey of Vertebrate Hosts
2.3. Adult Mosquito Sampling Methods and Processing Procedures
2.4. Human Landing Catches (HLCs)
2.5. Pyrethrum Spray Catches
2.6. CDC Light Traps (CDC-LTs)
2.7. Pit Shelter Collections
2.8. Molecular Identification of Anopheles gambiae s.l.
2.9. Detection of Knockdown Resistance Gene Mutation
2.10. Analysis of Mosquito Blood Meal Source
2.11. Determination of Plasmodium Sporozoite Rates
2.12. Data Analysis
3. Results
3.1. Survey of Vertebrate Hosts in Study Site
3.2. Anopheles Mosquito Species Compositions and Abdominal Status Using Different Sampling Techniques
3.3. Molecular Identification of Anopheles gambiae s.l. Mosquitoes
3.4. Detection of Knockdown Resistance Gene Mutation
3.5. Blood Meal Sources of An. arabiensis Mosquitoes
3.6. Plasmodium Circumsporozoite Protein Detection in Anopheles Mosquitoes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coetzee, M. Key to the females of Afrotropical Anopheles mosquitoes (Diptera: Culicidae). Malar. J. 2020, 19, 70. [Google Scholar] [CrossRef] [PubMed]
- Coetzee, M.; Craig, M.; Le Sueur, D. Distribution of African malaria mosquitoes belonging to the Anopheles gambiae complex. Parasitol. Today 2000, 16, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Kweka, E.J.; Mazigo, H.D.; Lyaruu, L.J.; Mausa, E.A.; Venter, N.; Mahande, A.M.; Coetzee, M. Anopheline mosquito species composition, kdr mutation frequency, and parasite infectivity status in northern Tanzania. J. Med. Entomol. 2020, 57, 933–938. [Google Scholar] [CrossRef]
- Mustapha, A.M.; Musembi, S.; Nyamache, A.K.; Machani, M.G.; Kosgei, J.; Wamuyu, L.; Ochomo, E.; Lobo, N.F. Secondary malaria vectors in western Kenya include novel species with unexpectedly high densities and parasite infection rates. Parasit. Vectors 2021, 14, 252. [Google Scholar] [CrossRef]
- Sinka, M.E.; Bangs, M.J.; Manguin, S.; Rubio-Palis, Y.; Chareonviriyaphap, T.; Coetzee, M.; Mbogo, C.M.; Hemingway, J.; Patil, A.P.; Temperley, W.H. A global map of dominant malaria vectors. Parasit. Vectors 2012, 5, 69. [Google Scholar] [CrossRef]
- Hinne, I.A.; Attah, S.K.; Mensah, B.A.; Forson, A.O.; Afrane, Y.A. Larval habitat diversity and Anopheles mosquito species distribution in different ecological zones in Ghana. Parasit. Vectors 2021, 14, 193. [Google Scholar] [CrossRef]
- Mireji, P.O.; Keating, J.; Hassanali, A.; Impoinvil, D.E.; Mbogo, C.M.; Muturi, M.N.; Nyambaka, H.; Kenya, E.U.; Githure, J.I.; Beier, J.C. Expression of metallothionein and alpha-tubulin in heavy metal-tolerant Anopheles gambiae sensu stricto (Diptera: Culicidae). Ecotoxicol. Environ. Saf. 2010, 73, 46–50. [Google Scholar] [CrossRef]
- Mireji, P.O.; Keating, J.; Hassanali, A.; Mbogo, C.M.; Nyambaka, H.; Kahindi, S.; Beier, J.C. Heavy metals in mosquito larval habitats in urban Kisumu and Malindi, Kenya, and their impact. Ecotoxicol. Environ. Saf. 2008, 70, 147–153. [Google Scholar] [CrossRef]
- Dahan-Moss, Y.; Hendershot, A.; Dhoogra, M.; Julius, H.; Zawada, J.; Kaiser, M.; Lobo, N.F.; Brooke, B.D.; Koekemoer, L.L. Member species of the Anopheles gambiae complex can be misidentified as Anopheles leesoni. Malar. J. 2020, 19, 89. [Google Scholar] [CrossRef]
- Gillies, M.T.; Coetzee, M. A supplement to the Anophelinae of Africa South of the Sahara. Publ. S. Afr. Inst. Med. Res. 1987, 55, 1–143. [Google Scholar]
- Koekemoer, L.; Kamau, L.; Hunt, R.; Coetzee, M. A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group. Am. J. Trop. Med. Hyg. 2002, 66, 804–811. [Google Scholar] [CrossRef]
- Scott, J.A.; Brogdon, W.G.; Collins, F.H. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am. J. Trop. Med. Hyg. 1993, 49, 520–529. [Google Scholar] [CrossRef]
- Wilkins, E.E.; Howell, P.I.; Benedict, M.Q. IMP PCR primers detect single nucleotide polymorphisms for Anopheles gambiae species identification, Mopti and Savanna rDNA types, and resistance to dieldrin in Anopheles arabiensis. Malar. J. 2006, 5, 125. [Google Scholar] [CrossRef]
- Muriu, S.M.; Muturi, E.J.; Shililu, J.I.; Mbogo, C.M.; Mwangangi, J.M.; Jacob, B.G.; Irungu, L.W.; Mukabana, R.W.; Githure, J.I.; Novak, R.J. Host choice and multiple blood feeding behaviour of malaria vectors and other anophelines in Mwea rice scheme, Kenya. Malar. J. 2008, 7, 43. [Google Scholar] [CrossRef] [PubMed]
- Bouafou, L.; Makanga, B.K.; Rahola, N.; Boddé, M.; Ngangué, M.F.; Daron, J.; Berger, A.; Mouillaud, T.; Makunin, A.; Korlević, P. Host preference patterns in domestic and wild settings: Insights into Anopheles feeding behavior. Evol. Appl. 2024, 17, e13693. [Google Scholar] [CrossRef] [PubMed]
- Lefèvre, T.; Gouagna, L.-C.; Dabiré, K.R.; Elguero, E.; Fontenille, D.; Renaud, F.; Costantini, C.; Thomas, F. Beyond nature and nurture: Phenotypic plasticity in blood-feeding behavior of Anopheles gambiae ss when humans are not readily accessible. Am. J. Trop. Med. Hyg. 2009, 81, 1023–1029. [Google Scholar] [CrossRef]
- Mahande, A.; Mosha, F.; Mahande, J.; Kweka, E. Feeding and resting behaviour of malaria vector, Anopheles arabiensis with reference to zooprophylaxis. Malar. J. 2007, 6, 100. [Google Scholar] [CrossRef]
- Mahande, A.M.; Mosha, F.W.; Mahande, J.M.; Kweka, E.J. Role of cattle treated with deltamethrine in areas with a high population of Anopheles arabiensis in Moshi, Northern Tanzania. Malar. J. 2007, 6, 109. [Google Scholar] [CrossRef] [PubMed]
- Takken, W.; Lindsay, S.W. Factors affecting the vectorial competence of Anopheles gambiae: A question of scale. In Ecological Aspects for Application of Genetically Modified Mosquitoes; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; pp. 75–90. [Google Scholar]
- Mbewe, R.B.; Keven, J.B.; Mzilahowa, T.; Mathanga, D.; Wilson, M.; Cohee, L.; Laufer, M.K.; Walker, E.D. Blood-feeding patterns of Anopheles vectors of human malaria in Malawi: Implications for malaria transmission and effectiveness of LLIN interventions. Malar. J. 2022, 21, 67. [Google Scholar] [CrossRef]
- Orsborne, J.; Furuya-Kanamori, L.; Jeffries, C.L.; Kristan, M.; Mohammed, A.R.; Afrane, Y.A.; O’Reilly, K.; Massad, E.; Drakeley, C.; Walker, T. Using the human blood index to investigate host biting plasticity: A systematic review and meta-regression of the three major African malaria vectors. Malar. J. 2018, 17, 479. [Google Scholar] [CrossRef]
- Koffi, A.A.; Camara, S.; Ahoua Alou, L.P.; Oumbouke, W.A.; Wolie, R.Z.; Tia, I.Z.; Sternberg, E.D.; Yapo, F.H.; Koffi, F.M.; Assi, S.B. Anopheles vector distribution and malaria transmission dynamics in Gbêkê region, central Côte d’Ivoire. Malar. J. 2023, 22, 192. [Google Scholar] [CrossRef] [PubMed]
- Bashar, K.; Tuno, N.; Ahmed, T.U.; Howlader, A.J. False positivity of circumsporozoite protein (CSP)–ELISA in zoophilic anophelines in Bangladesh. Acta Trop. 2013, 125, 220–225. [Google Scholar] [CrossRef]
- Balkew, M.; Ibrahim, M.; Koekemoer, L.L.; Brooke, B.D.; Engers, H.; Aseffa, A.; Gebre-Michael, T.; Elhassen, I. Insecticide resistance in Anopheles arabiensis (Diptera: Culicidae) from villages in central, northern and south west Ethiopia and detection of kdr mutation. Parasit. Vectors 2010, 3, 40. [Google Scholar] [CrossRef]
- Yewhalaw, D.; Wassie, F.; Steurbaut, W.; Spanoghe, P.; Van Bortel, W.; Denis, L.; Tessema, D.A.; Getachew, Y.; Coosemans, M.; Duchateau, L. Multiple insecticide resistance: An impediment to insecticide-based malaria vector control program. PLoS ONE 2011, 6, e16066. [Google Scholar] [CrossRef]
- Messenger, L.A.; Shililu, J.; Irish, S.R.; Anshebo, G.Y.; Tesfaye, A.G.; Ye-Ebiyo, Y.; Chibsa, S.; Dengela, D.; Dissanayake, G.; Kebede, E. Insecticide resistance in Anopheles arabiensis from Ethiopia (2012–2016): A nationwide study for insecticide resistance monitoring. Malar. J. 2017, 16, 469. [Google Scholar] [CrossRef] [PubMed]
- Liu, N. Insecticide resistance in mosquitoes: Impact, mechanisms, and research directions. Annu. Rev. Entomol. 2015, 60, 537–559. [Google Scholar] [CrossRef]
- Matowo, J.; Kulkarni, M.A.; Mosha, F.W.; Oxborough, R.M.; Kitau, J.A.; Tenu, F.; Rowland, M. Biochemical basis of permethrin resistance in Anopheles arabiensis from Lower Moshi, north-eastern Tanzania. Malar. J. 2010, 9, 193. [Google Scholar] [CrossRef]
- Wanjala, C.L.; Kweka, E.J. Malaria vectors insecticides resistance in different agroecosystems in Western Kenya. Front. Public Health 2018, 6, 55. [Google Scholar] [CrossRef]
- Yewhalaw, D.; Kweka, E.J. Insecticide resistance in East Africa—History, distribution and drawbacks on malaria vectors and disease control. Insectic. Resist. 2016, 39, 189–215. [Google Scholar]
- Dang, K.; Doggett, S.L.; Veera Singham, G.; Lee, C.-Y. Insecticide resistance and resistance mechanisms in bed bugs, Cimex spp.(Hemiptera: Cimicidae). Parasit. Vectors 2017, 10, 318. [Google Scholar] [CrossRef]
- Messenger, L.A.; Impoinvil, L.M.; Derilus, D.; Yewhalaw, D.; Irish, S.; Lenhart, A. A whole transcriptomic approach provides novel insights into the molecular basis of organophosphate and pyrethroid resistance in Anopheles arabiensis from Ethiopia. Insect Biochem. Mol. Biol. 2021, 139, 103655. [Google Scholar] [CrossRef]
- WHO. World Malaria Report 2023; 924008617X; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Kabula, B.; Tungu, P.; Rippon, E.J.; Steen, K.; Kisinza, W.; Magesa, S.; Mosha, F.; Donnelly, M.J. A significant association between deltamethrin resistance, Plasmodium falciparum infection and the Vgsc-1014S resistance mutation in Anopheles gambiae highlights the epidemiological importance of resistance markers. Malar. J. 2016, 15, 289. [Google Scholar] [CrossRef]
- Chanyalew, T.; Natea, G.; Amenu, D.; Yewhalaw, D.; Simma, E.A. Composition of mosquito fauna and insecticide resistance status of Anopheles gambiae sensu lato in Itang special district, Gambella, Southwestern Ethiopia. Malar. J. 2022, 21, 125. [Google Scholar] [CrossRef]
- Animut, A.; Negash, Y.; Kebede, N. Distribution and utilization of vector control strategies in a malarious village of Jabi Tehnan District, north-western Ethiopia. Malar. J. 2014, 13, 356. [Google Scholar] [CrossRef] [PubMed]
- Ayalew, H.; Dessalegn, T.; Liu, H.; Yan, G. Performance of Ethiopian bread wheat (Tritium aestivum L.) genotypes under contrasting water regimes: Potential sources of variability for drought resistance breeding. Aust. J. Crop Sci. 2016, 10, 370–376. [Google Scholar] [CrossRef]
- CSA. Inter-Censal Population Survey Report; Central Statistics Agency: Addis Ababa, Ethiopia, 2013. [Google Scholar]
- Tibebu, T. Evaluation The Impact of World Vision Ethiopia, Water, Sanitation and Hygiene Project on The Community: The Case of Amhara Region, West Gojam Zone, Jabi Tehnane Woreda. Master’s Thesis, St. Mary’s University, Mumbai, Maharashtra, 2016. [Google Scholar]
- Wondie, M.; Alemneh, T. The Prevalence of Bovine Trypanosomiasis in JabiTehnan District of Amhara Regional State, Ethiopia. Int. J. Cell Sci. Mol. Biol. 2018, 4, 105–110. [Google Scholar] [CrossRef]
- WHO. Manual on Practical Entomology in Malaria; World Health Organization: Geneva, Switzerland, 1975. [Google Scholar]
- Reddy, M.R.; Overgaard, H.J.; Abaga, S.; Reddy, V.P.; Caccone, A.; Kiszewski, A.E.; Slotman, M.A. Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea. Malar. J. 2011, 10, 184. [Google Scholar] [CrossRef]
- Geissbühler, Y.; Chaki, P.; Emidi, B.; Govella, N.J.; Shirima, R.; Mayagaya, V.; Mtasiwa, D.; Mshinda, H.; Fillinger, U.; Lindsay, S.W. Interdependence of domestic malaria prevention measures and mosquito-human interactions in urban Dar es Salaam, Tanzania. Malar. J. 2007, 6, 126. [Google Scholar] [CrossRef]
- Martinez-Torres, D.; Chandre, F.; Williamson, M.S.; Darriet, F.; Berge, J.B.; Devonshire, A.L.; Guillet, P.; Pasteur, N.; Pauron, D. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol. Biol. 1998, 7, 179–184. [Google Scholar] [CrossRef]
- Fanello, C.; Santolamazza, F.; Della Torre, A. Simultaneous identification of species and molecular forms of the Anopheles gambiae complex by PCR-RFLP. Med. Vet. Entomol. 2002, 16, 461–464. [Google Scholar] [CrossRef]
- Beier, J.C.; Asiago, C.M.; Onyango, F.K.; Koros, J.K. ELISA absorbance cut-off method affects malaria sporozoite rate determination in wild Afrotropical Anopheles. Med. Vet. Entomol. 1988, 2, 259–264. [Google Scholar] [CrossRef]
- Wirtz, R.A.; Sattabongkot, J.; Hall, T.; Burkot, T.R.; Rosenberg, R. Development and evaluation of an enzyme-linked immunosorbent assay for Plasmodium vivax-VK247 sporozoites. J. Med. Entomol. 1992, 29, 854–857. [Google Scholar] [CrossRef]
- Shililu; Maier; Seitz; Orago. Seasonal density, sporozoite rates and entomological inoculation rates of Anopheles gambiae and Anopheles funestus in a high-altitude sugarcane growing zone in western kenya. Trop. Med. Int. Health 1998, 3, 706–710. [Google Scholar] [CrossRef]
- Rosenberg, R.; Wirtz, R.A.; Schneider, I.; Burge, R. An estimation of the number of malaria sporozoites ejected by a feeding mosquito. Trans. R. Soc. Trop. Med. Hyg. 1990, 84, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Blanken, S.L.; O’Meara, W.P.; Hol, F.J.; Bousema, T.; Markwalter, C.F. À la carte: How mosquitoes choose their blood meals. Trends Parasitol. 2024, 40, 591–603. [Google Scholar] [CrossRef] [PubMed]
- Fikrig, K.; Harrington, L.C. Understanding and interpreting mosquito blood feeding studies: The case of Aedes albopictus. Trends Parasitol. 2021, 37, 959–975. [Google Scholar] [CrossRef]
- Shaw, W.R.; Holmdahl, I.E.; Itoe, M.A.; Werling, K.; Marquette, M.; Paton, D.G.; Singh, N.; Buckee, C.O.; Childs, L.M.; Catteruccia, F. Multiple blood feeding in mosquitoes shortens the Plasmodium falciparum incubation period and increases malaria transmission potential. PLoS Pathog. 2020, 16, e1009131. [Google Scholar] [CrossRef]
- Ashine, T.; Eyasu, A.; Asmamaw, Y.; Simma, E.; Zemene, E.; Epstein, A.; Brown, R.; Negash, N.; Kochora, A.; Reynolds, A.M. Spatiotemporal distribution of Anopheles stephensi in different eco-epidemiological settings in Ethiopia. Parasit Vectors 2024, 17, 166. [Google Scholar] [CrossRef]
- Charlwood, J.; Kessy, E.; Yohannes, K.; Protopopoff, N.; Rowland, M.; LeClair, C. Studies on the resting behaviour and host choice of Anopheles gambiae and An. arabiensis from Muleba, Tanzania. Med. Vet. Entomol. 2018, 32, 263–270. [Google Scholar] [CrossRef]
- Assogba, B.S.; Pasteur, N.; Makoundou, P.; Unal, S.; Baba-Moussa, L.; Labbé, P.; Weill, M. Dynamic of resistance alleles of two major insecticide targets in Anopheles gambiae (s.l.) populations from Benin, West Africa. Parasit Vectors 2020, 13, 134. [Google Scholar] [CrossRef] [PubMed]
- Adugna, T.; Getu, E.; Yewhalaw, D. Species diversity and distribution of Anopheles mosquitoes in Bure district, Northwestern Ethiopia. Heliyon 2020, 6, e05063. [Google Scholar] [CrossRef] [PubMed]
- Hailemariam, A.; Dugassa, S.; Kweka, E.; Tekie, H. Population dynamics, biting activities and resting behavior of Anopheles mosquitoes in Jabi Tehnan district, Northwest Ethiopia: Implications for indoor malaria vector control. Ethiop. J. Public Health Nutr. (EJPHN) 2022, 5, 86–97. [Google Scholar]
- Kenea, O.; Balkew, M.; Tekie, H.; Deressa, W.; Loha, E.; Lindtjørn, B.; Overgaard, H.J. Impact of combining indoor residual spraying and long-lasting insecticidal nets on Anopheles arabiensis in Ethiopia: Results from a cluster randomized controlled trial. Malar. J. 2019, 18, 182. [Google Scholar] [CrossRef]
- WHO. Global Report on Insecticide Resistance in Malaria Vectors: 2010–2016; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Karunaratne, S.; De Silva, W.; Weeraratne, T.C.; Surendran, S.N. Insecticide resistance in mosquitoes: Development, mechanisms and monitoring. Ceylon J. Sci. 2018, 47, 299–309. [Google Scholar] [CrossRef]
- Abdu, H.U. Investigating the Role of Glutathione and Glutathione Biosynthetic Genes in the Adaptation of Anopheles gambiae to Insecticides. Ph.D. Thesis, Abertay University, Dundee, UK, 2015. [Google Scholar]
- Asale, A.; Duchateau, L.; Devleesschauwer, B.; Huisman, G.; Yewhalaw, D. Zooprophylaxis as a control strategy for malaria caused by the vector Anopheles arabiensis (Diptera: Culicidae): A systematic review. Infect. Dis. Poverty 2017, 6, 160. [Google Scholar] [CrossRef]
- Taye, B.; Lelisa, K.; Emana, D.; Asale, A.; Yewhalaw, D. Seasonal Dynamics, Longevity, and Biting Activity of Anopheline Mosquitoes in Southwestern Ethiopia. J. Insect Sci. 2016, 16, 6. [Google Scholar] [CrossRef]
- Matowo, J.; Kitau, J.; Kaaya, R.; Kavishe, R.; Wright, A.; Kisinza, W.; Kleinschmidt, I.; Mosha, F.; Rowland, M.; Protopopoff, N. Trends in the selection of insecticide resistance in Anopheles gambiae sl mosquitoes in northwest T anzania during a community randomized trial of longlasting insecticidal nets and indoor residual spraying. Med. Vet. Entomol. 2015, 29, 51–59. [Google Scholar] [CrossRef]
- Ochomo, E.O.; Bayoh, N.M.; Walker, E.D.; Abongo, B.O.; Ombok, M.O.; Ouma, C.; Githeko, A.K.; Vulule, J.; Yan, G.; Gimnig, J.E. The efficacy of long-lasting nets with declining physical integrity may be compromised in areas with high levels of pyrethroid resistance. Malar. J. 2013, 12, 368. [Google Scholar] [CrossRef]
- Abebe, W.; Sisay, A.; Mihret, Y.; Setegn, A.; Asmare, Z.; Woldesenbet, D.; Kassanew, B.; Mekuanint, A.; Feleke, S.F. Prevalence of Anopheles stephensi in Horn of Africa: A systematic review and meta-analysis. BMC Infect. Dis. 2025, 25, 614. [Google Scholar] [CrossRef] [PubMed]
- Carter, T.E.; Yared, S.; Gebresilassie, A.; Bonnell, V.; Damodaran, L.; Lopez, K.; Ibrahim, M.; Mohammed, S.; Janies, D. First detection of Anopheles stephensi Liston, 1901 (Diptera: Culicidae) in Ethiopia using molecular and morphological approaches. Acta Trop. 2018, 188, 180–186. [Google Scholar] [CrossRef]
- Degefa, T.; Zhong, D.; Lee, M.C.; Merga, H.; Abiy, E.; Wang, X.; Zhou, G.; Kifle, T.; Yewhalaw, D.; Yan, G. Bionomics of Anopheles stephensi across the urban-rural landscapes of Eastern Ethiopia. Malar. J. 2025, 24, 274. [Google Scholar] [CrossRef] [PubMed]
- Seyfarth, M.; Khaireh, B.A.; Abdi, A.A.; Bouh, S.M.; Faulde, M.K. Five years following first detection of Anopheles stephensi (Diptera: Culicidae) in Djibouti, Horn of Africa: Populations established-malaria emerging. Parasitol. Res. 2019, 118, 725–732. [Google Scholar] [CrossRef] [PubMed]
Hosts | Number | Percentage |
---|---|---|
Cattle | 3933 | 20.1 |
Goat | 163 | 0.9 |
Sheep | 2184 | 11.2 |
Dog | 520 | 2.7 |
Chicken | 7159 | 36.7 |
Equine | 496 | 2.5 |
Human | 5065 | 25.9 |
Total | 19,520 | 100 |
_Human Landing Catches (HLCs) | CDC Light Trap (CDC-LT) | Pyrethrum (PSC) | Pit Shelter (PS) | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Outdoors | Indoors | Indoors | Outdoors | Indoor | Outdoor | Total | |||||||||||||||||||
UF | FF | HG | G | UF | FF | HG | G | UF | FF | HG | G | UF | FF | HG | G | UF | FF | HG | G | UF | FF | HG | G | ||
An. coustani | 187 | - | - | - | 168 | - | - | - | 21 | 38 | - | - | - | 22 | - | - | 110 | 119 | - | - | 46 | 63 | - | - | 774 |
An. gambiae s.l. | 432 | 185 | - | - | 426 | - | - | - | 225 | 150 | 2 | 21 | 130 | 116 | 3 | 10 | 232 | 978 | - | - | 26 | 46 | - | - | 2982 |
An. cinereus | 164 | - | - | - | 83 | - | - | - | 37 | 18 | 13 | 5 | 20 | 21 | 1 | 32 | 18 | 74 | - | - | - | 74 | 1 | - | 561 |
An. funestus | 35 | - | - | - | 25 | - | - | - | - | 13 | - | - | 1 | 18 | 1 | 3 | 19 | 16 | 1 | 7 | 16 | 13 | 1 | 7 | 176 |
An. pharoensis | 146 | - | - | - | 115 | - | - | - | 7 | 16 | 7 | 4 | 18 | 17 | 1 | 30 | 71 | 110 | 1 | - | 14 | 19 | 1 | 28 | 605 |
Total | 964 | 185 | - | - | 817 | - | - | - | 290 | 235 | 22 | 30 | 169 | 194 | 6 | 75 | 450 | 1297 | 2 | 7 | 102 | 215 | 3 | 35 | 5098 |
_Genotype | Allele Frequency | |||||||
---|---|---|---|---|---|---|---|---|
Species | RS | RR | SS | NB | Total | % Resistance (RS&RR) | % Susceptible (SS) | % Unidentified (NB) |
An. arabiensis | 3 | 38 | 171 | 39 | 251 | 16.3 | 68.13 | 15.54 |
Collection Method | Collection Location | Bovine Blood Meal | Human Blood Meal | Mixed Blood Meal | Unidentified | Total | ||||
---|---|---|---|---|---|---|---|---|---|---|
no. | BBI (%) | no. | HBI (%) | no. | (%) | no. | (%) | no. | ||
CDC-LT | Indoor | 4 | 5.7 | 6 | 8.5 | 2 | 2.9 | 58 | 82.9 | 70 |
Outdoor | 3 | 6 | 2 | 4 | 2 | 4 | 43 | 86 | 50 | |
HLC | Indoor | 10 | 17.2 | 6 | 10.3 | 2 | 3.4 | 50 | 86.2 | 58 |
Outdoor | 2 | 6.9 | 10 | 34.5 | 5 | 17.2 | 12 | 41.4 | 29 | |
PSC | Indoor | 12 | 9.2 | 23 | 17.7 | 8 | 6.2 | 87 | 66.9 | 130 |
PS | Outdoor | 3 | 13 | 6. | 26.1 | 4 | 17.4 | 10 | 43.5 | 23 |
Total | 32 | 8.9 | 47 | 13.1 | 21 | 5.8 | 260 | 72.2 | 360 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bedasso, A.H.; Dugassa, S.; Deressa, J.D.; Guma, G.T.; Eticha, G.T.; Dangisso, M.H.; Kweka, E.J.; Tekie, H. Mosquito Feeding Preference, Infectivity Rates, and Knockdown Resistance Within the Wild Population of Anopheles arabiensis in Jabi Tehnan District, Northwest Ethiopia. Trop. Med. Infect. Dis. 2025, 10, 299. https://doi.org/10.3390/tropicalmed10100299
Bedasso AH, Dugassa S, Deressa JD, Guma GT, Eticha GT, Dangisso MH, Kweka EJ, Tekie H. Mosquito Feeding Preference, Infectivity Rates, and Knockdown Resistance Within the Wild Population of Anopheles arabiensis in Jabi Tehnan District, Northwest Ethiopia. Tropical Medicine and Infectious Disease. 2025; 10(10):299. https://doi.org/10.3390/tropicalmed10100299
Chicago/Turabian StyleBedasso, Alemnesh Hailemariam, Sisay Dugassa, Jimma Dinsa Deressa, Geremew Tasew Guma, Getachew Tolera Eticha, Mesay Hailu Dangisso, Eliningaya J. Kweka, and Habte Tekie. 2025. "Mosquito Feeding Preference, Infectivity Rates, and Knockdown Resistance Within the Wild Population of Anopheles arabiensis in Jabi Tehnan District, Northwest Ethiopia" Tropical Medicine and Infectious Disease 10, no. 10: 299. https://doi.org/10.3390/tropicalmed10100299
APA StyleBedasso, A. H., Dugassa, S., Deressa, J. D., Guma, G. T., Eticha, G. T., Dangisso, M. H., Kweka, E. J., & Tekie, H. (2025). Mosquito Feeding Preference, Infectivity Rates, and Knockdown Resistance Within the Wild Population of Anopheles arabiensis in Jabi Tehnan District, Northwest Ethiopia. Tropical Medicine and Infectious Disease, 10(10), 299. https://doi.org/10.3390/tropicalmed10100299