Embracing Urban Micromobility: A Comparative Study of E-Scooter Adoption in Washington, D.C., Miami, and Los Angeles
Abstract
:1. Introduction
- Research Question 1.
- Are there any differences in the profiles of e-scooter users and non-users among different cities?
- Research Question 2.
- Are there any differences concerning mode choice factors and attitudes toward e-scooter and private vehicle use among different cities?
- Research Question 3.
- Can latent variables influence the prediction of mode choice of e-scooter users and non-users?
- Research Question 4.
- Do the influential factors on e-scooter mode selection vary across different cities?
2. Literature Review
3. Methodology
Data
4. Results
4.1. Descriptive Analysis
4.1.1. Comparison of E-Scooter Users’ and Non-Users’ Profiles
4.1.2. Variation in Mode Choices by City
4.2. Likert Scale Questions (Observed Variables)
- Riding e-scooters is a safe way to get around.
- My city has enough bike lanes to accommodate e-scooter use.
- My city has enough space for proper e-scooter parking.
- The arrival of shared e-scooters is a good thing for the city.
- Shared e-scooters can strengthen the operations of public transit (e.g., facilitating last-mile transit connection).
- Shared e-scooters will make people use public transit less.
- I hope to live without a car.
- I definitely want to own a car.
- I try to use public transit whenever I can.
- I try to travel with non-motorized modes (biking and walking) as much as I can.
- I am confident in my ability to use new technologies (e.g., a smartphone app).
- Learning how to use new technologies is often frustrating for me.
- As a general principle, I would rather own things than rent them.
4.3. Kruskal–Wallis Test Results
4.4. Travel Behavior Characteristics of E-Scooter Users
4.5. Factor Analysis Results (Dimensionality and Reliability of Latent Variables)
4.6. Model Results
4.6.1. Comparison and Evaluation of Different Models
4.6.2. Evaluating Feature Impacts on e-Scooter Usage
4.6.3. Uncovering Key Predictors through SHAP Analysis across Study Cities
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zarif, R.; Pankratz, D.; Kelman, B. Small Is Beautiful. Making Micromobility Work for Citizens, Cities, and Service Providers. Available online: https://www2.deloitte.com/us/en/insights/focus/future-of-mobility/micro-mobility-is-the-future-of-urban-transportation.html?id=us:2ps:3gl:confidence:eng:cons:42319:nonem:na:nhRV7UOl:1149484916:344865936403:b:Future_of_Mobility:Micromobility_BMM:nb (accessed on 3 March 2024).
- Shaheen, S.A.; Bansal, A.; Chan, N.; Cohen, A. Mobility and the Sharing Economy: Industry Developments and Early Understanding of Impacts. In Low Carbon Mobility for Future Cities: Principles and Applications; Institution of Engineering and Technology: London, UK, 2017; pp. 213–240. Available online: https://digital-library.theiet.org/content/books/10.1049/pbtr006e_ch10 (accessed on 3 March 2024).
- Murphy, C.; Curtis, T.; Costagliola, E.; Clewlow, R.; Seki, S.; Xu, R. Transit and Micromobility; Transportation Research Board: Washington, DC, USA, 2021; ISBN 9780309674379. [Google Scholar]
- Lee, M.; Chow, J.Y.J.; Yoon, G.; He, B.Y. Forecasting E-Scooter Substitution of Direct and Access Trips by Mode and Distance. Transp. Res. Part D Transp. Environ. 2021, 96, 102892. [Google Scholar] [CrossRef]
- Shaheen, S.; Cohen, A.; Chan, N.; Bansal, A. Sharing Strategies: Carsharing, Shared Micromobility (Bikesharing and Scooter Sharing), Transportation Network Companies, Microtransit, and Other Innovative Mobility Modes. In Transportation, Land Use, and Environmental Planning; Elsevier: Amsterdam, The Netherlands, 2020; pp. 237–262. ISBN 9780128151679. [Google Scholar]
- Tuncer, S.; Laurier, E.; Brown, B.; Licoppe, C. Notes on the Practices and Appearances of E-Scooter Users in Public Space. J. Transp. Geogr. 2020, 85, 102702. [Google Scholar] [CrossRef]
- NACTO. National Association of City Transportation Officials. 2022. Available online: https://nacto.org/shared-micromobility-2018 (accessed on 3 November 2023).
- De Vos, J.; Mokhtarian, P.L.; Schwanen, T.; Van Acker, V.; Witlox, F. Travel Mode Choice and Travel Satisfaction: Bridging the Gap between Decision Utility and Experienced Utility. Transportation 2016, 43, 771–796. [Google Scholar] [CrossRef]
- Cheng, L.; Chen, X.; Yang, S. An Exploration of the Relationships between Socioeconomics, Land Use and Daily Trip Chain Pattern among Low-Income Residents. Transp. Plan. Technol. 2016, 39, 358–369. [Google Scholar] [CrossRef]
- Bhat, C.R.; Srinivasan, S. A Multidimensional Mixed Ordered-Response Model for Analyzing Weekend Activity Participation. Transp. Res. Part B Methodol. 2005, 39, 255–278. [Google Scholar] [CrossRef]
- Ryley, T. Use of Non-Motorised Modes and Life Stage in Edinburgh. J. Transp. Geogr. 2006, 14, 367–375. [Google Scholar] [CrossRef]
- Scheiner, J.; Holz-Rau, C. Travel Mode Choice: Affected by Objective or Subjective Determinants? Transportation 2007, 34, 487–511. [Google Scholar] [CrossRef]
- Tyrinopoulos, Y.; Antoniou, C. Review of Factors Affecting Transportation Systems Adoption and Satisfaction; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128150184. [Google Scholar]
- Paulssen, M.; Temme, D.; Vij, A.; Walker, J.L. Values, Attitudes and Travel Behavior: A Hierarchical Latent Variable Mixed Logit Model of Travel Mode Choice. Transportation 2014, 41, 873–888. [Google Scholar] [CrossRef]
- Zhou, X.; Jia, X.; Du, H. Travel Mode Choice Based on Perceived Quality of Bus Service. In Proceedings of the CICTP 2015, Beijing, China, 24–27 July 2015; American Society of Civil Engineers: Reston, VA, USA, 2015; pp. 1534–1545. [Google Scholar]
- Schneider, R.J. Theory of Routine Mode Choice Decisions: An Operational Framework to Increase Sustainable Transportation. Transp. Policy 2013, 25, 128–137. [Google Scholar] [CrossRef]
- Eriksson, L.; Friman, M.; Gärling, T. Perceived Attributes of Bus and Car Mediating Satisfaction with the Work Commute. Transp. Res. Part A Policy Pract. 2013, 47, 87–96. [Google Scholar] [CrossRef]
- Gubman, J.; Jung, A.; Kiel, T.; Strehmann, J. Shared E-Scooters: Paving the Road Ahead Policy Recommendations for Local Government; Berlin, Germany, 2019. Available online: https://www.agora-verkehrswende.de/en/publications/shared-e-scooters-paving-the-road-ahead/ (accessed on 3 March 2024).
- DuPuis, N.; Griess, J.; Klein, C. Micromobility in Cities. A History and Policy Overview. 2019. Available online: https://www.nlc.org/wp-content/uploads/2019/04/CSAR_MicromobilityReport_FINAL.pdf (accessed on 3 November 2023).
- Flores, P.J.; Jansson, J. The Role of Consumer Innovativeness and Green Perceptions on Green Innovation Use: The Case of Shared E-bikes and E-scooters. J. Consum. Behav. 2021, 20, 1466–1479. [Google Scholar] [CrossRef]
- Hong, D.; Jang, S.; Lee, C. Investigation of Shared Micromobility Preference for Last-Mile Travel on Shared Parking Lots in City Center. Travel Behav. Soc. 2023, 30, 163–177. [Google Scholar] [CrossRef]
- Torabi, K.F.; Araghi, Y.; van Oort, N.; Hoogendoorn, S. Passengers Preferences for Using Emerging Modes as First/Last Mile Transport to and from a Multimodal Hub Case Study Delft Campus Railway Station. Case Stud. Transp. Policy 2022, 10, 300–314. [Google Scholar] [CrossRef]
- Abbasi, M.H.; Jafarzadehfadaki, S.M.; Afandizadeh, S. Determine Criteria of Assessment to Prioritize Problems of Urban Freight Transport Using a Decision-Making and Average Weighted Method (Case Study: Tehran City). Road 2020, 28, 133–150. [Google Scholar]
- Jafarzadehfadaki, M.; Sisiopiku, V.P.; Yang, W.; Michalaka, D.; Tekyi, K.; Davis, W.J.; Khalil, J.; Yan, D. Spatiotemporal Patterns and Influences of Demographic Characteristics and Land Use Patterns on Micromobility Ridership in Birmingham, Alabama. Multimodal Transp. 2024, 3, 100140. [Google Scholar] [CrossRef]
- Chen, F.; Yin, Z.; Ye, Y.; Sun, D. Taxi Hailing Choice Behavior and Economic Benefit Analysis of Emission Reduction Based on Multi-Mode Travel Big Data. Transp. Policy 2020, 97, 73–84. [Google Scholar] [CrossRef]
- Mouratidis, K. Bike-Sharing, Car-Sharing, e-Scooters, and Uber: Who Are the Shared Mobility Users and Where Do They Live? Sustain. Cities Soc. 2022, 86, 104161. [Google Scholar] [CrossRef]
- Degele, J.; Gorr, A.; Haas, K.; Kormann, D.; Krauss, S.; Lipinski, P.; Tenbih, M.; Koppenhoefer, C.; Fauser, J.; Hertweck, D. Identifying E-Scooter Sharing Customer Segments Using Clustering. In Proceedings of the 2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), Stuttgart, Germany, 17–20 June 2018; pp. 1–8. [Google Scholar]
- NACTO. Shared Micromobility Ridership in the U.S. from 2010–2021. 2021. Available online: https://nacto.org/wp-content/uploads/2022/12/2020-2021_shared_micro_snapshot_Dec7_2022.pdf (accessed on 3 November 2023).
- Pazzini, M.; Cameli, L.; Lantieri, C.; Vignali, V.; Dondi, G.; Jonsson, T. New Micromobility Means of Transport: An Analysis of E-Scooter Users’ Behaviour in Trondheim. Int. J. Environ. Res. Public Health 2022, 19, 7374. [Google Scholar] [CrossRef] [PubMed]
- Krauss, K.; Gnann, T.; Burgert, T.; Axhausen, K.W. Faster, Greener, Scooter? An Assessment of Shared e-Scooter Usage Based on Real-World Driving Data. Transp. Res. Part A Policy Pract. 2024, 181, 103997. [Google Scholar] [CrossRef]
- NABSA. Shared Micromobility State of the Industry Report. 2019. Available online: https://nabsa.net/2023/08/10/2022industryreport/ (accessed on 3 November 2023).
- PBOT. E-Scooter Findings Report. 2018. Available online: https://www.portland.gov/transportation/escooterpdx/documents/2018-e-scooter-findings-report/download (accessed on 3 November 2023).
- SFMTA. San Francisco Municipal Transportation Agency. Powered Scooter Share Mid-Pilot Evaluation. 2019. Available online: https://www.sfmta.com/sites/default/files/reports-and-documents/2019/08/powered_scooter_share_mid-pilot_evaluation_final.pdf (accessed on 3 November 2023).
- Reck, D.J.; Haitao, H.; Guidon, S.; Axhausen, K.W. Explaining Shared Micromobility Usage, Competition and Mode Choice by Modelling Empirical Data from Zurich, Switzerland. Transp. Res. Part C Emerg. Technol. 2021, 124, 102947. [Google Scholar] [CrossRef]
- Wang, K.; Qian, X.; Fitch, D.T.; Lee, Y.; Malik, J.; Circella, G. What Travel Modes Do Shared E-Scooters Displace? A Review of Recent Research Findings. Transp. Rev. 2023, 43, 5–31. [Google Scholar] [CrossRef]
- Christoforou, Z.; Psarrou Kalakoni, A.M.; Farhi, N. Neighborhood Characteristics Encouraging Micromobility: An Observational Study for Tourists and Local Users. Travel Behav. Soc. 2023, 32, 100564. [Google Scholar] [CrossRef]
- Hasan, M.; Sisiopiku, V.P. Shared E-Scooter Practices in Birmingham, Alabama: Analyzing Usage, Patterns, and Determinants. Futur. Transp. 2024, 4, 130–151. [Google Scholar] [CrossRef]
- Zuniga-Garcia, N.; Tec, M.; Scott, J.G.; Machemehl, R.B. Evaluation of E-Scooters as Transit Last-Mile Solution. Transp. Res. Part C Emerg. Technol. 2022, 139, 103660. [Google Scholar] [CrossRef]
- Nikiforiadis, A.; Paschalidis, E.; Stamatiadis, N.; Raptopoulou, A.; Kostareli, A.; Basbas, S. Analysis of Attitudes and Engagement of Shared E-Scooter Users. Transp. Res. Part D Transp. Environ. 2021, 94, 102790. [Google Scholar] [CrossRef]
- Dill, J.; McNeil, N. Are Shared Vehicles Shared by All? A Review of Equity and Vehicle Sharing. J. Plan. Lit. 2021, 36, 5–30. [Google Scholar] [CrossRef]
- Zhao, X.; Sisiopiku, V.; Steiner, R.; Xu, Y.; Liu, Y.; Yan, D.; Khalil, J.; Yang, W.; Jafarzadehfadaki, M.; Suarez, J. Micromobility as a Solution to Reduce Urban Traffic Congestions. 2022. Available online: https://stride.ce.ufl.edu/wp-content/uploads/sites/153/2022/04/STRIDE-Project-B3-Final-Report-.pdf (accessed on 3 November 2023).
- Blazanin, G.; Mondal, A.; Asmussen, K.E.; Bhat, C.R. E-Scooter Sharing and Bikesharing Systems: An Individual-Level Analysis of Factors Affecting First-Use and Use Frequency. Transp. Res. Part C Emerg. Technol. 2022, 135, 103515. [Google Scholar] [CrossRef]
- Javadinasr, M.; Asgharpour, S.; Rahimi, E.; Choobchian, P.; Mohammadian, A.K.; Auld, J. Eliciting Attitudinal Factors Affecting the Continuance Use of E-Scooters: An Empirical Study in Chicago. Transp. Res. Part F Traffic Psychol. Behav. 2022, 87, 87–101. [Google Scholar] [CrossRef]
- ATLDOT. Atlanta E-Scooter Survey Results. Georgia. 2019. Available online: https://www.atlantaga.gov/home/showdocument?id=45981 (accessed on 3 November 2023).
- Guo, Y.; Zhang, Y. Understanding Factors Influencing Shared E-Scooter Usage and Its Impact on Auto Mode Substitution. Transp. Res. Part D Transp. Environ. 2021, 99, 102991. [Google Scholar] [CrossRef]
- Dirsehan, T.; Can, C. Examination of Trust and Sustainability Concerns in Autonomous Vehicle Adoption. Technol. Soc. 2020, 63, 101361. [Google Scholar] [CrossRef]
- Haboucha, C.J.; Ishaq, R.; Shiftan, Y. User Preferences Regarding Autonomous Vehicles. Transp. Res. Part C Emerg. Technol. 2017, 78, 37–49. [Google Scholar] [CrossRef]
- Lavieri, P.S.; Garikapati, V.M.; Bhat, C.R.; Pendyala, R.M.; Astroza, S.; Dias, F.F. Modeling Individual Preferences for Ownership and Sharing of Autonomous Vehicle Technologies. Transp. Res. Rec. J. Transp. Res. Board 2017, 2665, 1–10. [Google Scholar] [CrossRef]
- Oeschger, G.; Carroll, P.; Caulfield, B. Micromobility and Public Transport Integration: The Current State of Knowledge. Transp. Res. Part D Transp. Environ. 2020, 89, 102628. [Google Scholar] [CrossRef]
- Sanders, R.L.; Branion-Calles, M.; Nelson, T.A. To Scoot or Not to Scoot: Findings from a Recent Survey about the Benefits and Barriers of Using E-Scooters for Riders and Non-Riders. Transp. Res. Part A Policy Pract. 2020, 139, 217–227. [Google Scholar] [CrossRef]
- Aguilera-García, Á.; Gomez, J.; Sobrino, N. Exploring the Adoption of Moped Scooter-Sharing Systems in Spanish Urban Areas. Cities 2020, 96, 102424. [Google Scholar] [CrossRef]
- Eccarius, T.; Lu, C.C. Powered Two-Wheelers for Sustainable Mobility: A Review of Consumer Adoption of Electric Motorcycles. Int. J. Sustain. Transp. 2020, 14, 215–231. [Google Scholar] [CrossRef]
- Bourne, J.E.; Cooper, A.R.; Kelly, P.; Kinnear, F.J.; England, C.; Leary, S.; Page, A. The Impact of E-Cycling on Travel Behaviour: A Scoping Review. J. Transp. Heal. 2020, 19, 100910. [Google Scholar] [CrossRef] [PubMed]
- Leger, S.J.; Dean, J.L.; Edge, S.; Casello, J.M. “If I Had a Regular Bicycle, I Wouldn’t Be out Riding Anymore”: Perspectives on the Potential of e-Bikes to Support Active Living and Independent Mobility among Older Adults in Waterloo, Canada. Transp. Res. Part A Policy Pract. 2019, 123, 240–254. [Google Scholar] [CrossRef]
- Yang, W.; Jafarzadehfadaki, M.; Yan, X.; Zhao, X.; Jin, X.; Frolich, D.; Sisiopiku, V.P. Shared E-Scooter User Characteristics and Usage Patterns across Four U.S. Cities. Transp. Res. Rec. J. Transp. Res. Board 2023. [Google Scholar] [CrossRef]
- Yan, X.; Zhao, X.; Broaddus, A.; Johnson, J.; Srinivasan, S. Evaluating Shared E-Scooters’ Potential to Enhance Public Transit and Reduce Driving. Transp. Res. Part D Transp. Environ. 2023, 117, 103640. [Google Scholar] [CrossRef]
- Huang, E.; Yin, Z.; Broaddus, A.; Yan, X. Shared E-Scooters as a Last-Mile Transit Solution? Travel Behavior Insights from Los Angeles and Washington D.C. Travel Behav. Soc. 2024, 34, 100663. [Google Scholar] [CrossRef]
- Zhu, Y.; Diao, W.; Zhao, H. Understanding Users’ Perceptions of Bicycle-Sharing Systems in Chinese Cities: Evidence from Beijing and Guangzhou. Urban Sci. 2023, 7, 95. [Google Scholar] [CrossRef]
- Šucha, M.; Drimlová, E.; Rečka, K.; Haworth, N.; Karlsen, K.; Fyhri, A.; Wallgren, P.; Silverans, P.; Slootmans, F. E-Scooter Riders and Pedestrians: Attitudes and Interactions in Five Countries. Heliyon 2023, 9, e15449. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; He, S.Y.; Thøgersen, J. The Role of Car Ownership in Attitudes towards Public Transport: A Comparative Study of Guangzhou and Brisbane. Transp. Res. Part F Traffic Psychol. Behav. 2019, 60, 685–699. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583. [Google Scholar] [CrossRef]
- IBM SPSS. IBM SPSS STATISTICS. Available online: https://daisource.com/spss-statistics/ (accessed on 3 November 2023).
- Webb, G.I.; Sammut, C.; Perlich, C.; Horváth, T.; Wrobel, S.; Korb, K.B.; Noble, W.S.; Leslie, C.; Lagoudakis, M.G.; Quadrianto, N.; et al. Logistic Regression. In Encyclopedia of Machine Learning; Springer: Boston, MA, USA, 2011; p. 631. [Google Scholar]
- Webb, G.I.; Fürnkranz, J.; Fürnkranz, J.; Fürnkranz, J.; Hinton, G.; Sammut, C.; Sander, J.; Vlachos, M.; Teh, Y.W.; Yang, Y.; et al. Decision Tree. In Encyclopedia of Machine Learning; Sammut, C., Webb, G.I., Eds.; Springer: Boston, MA, USA, 2011; pp. 263–267. ISBN 978-0-387-30164-8. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Lundberg, S.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4766–4775. [Google Scholar]
- Zhao, X.; Yan, X.J.; Kaza, N.; Kitner, N.; McDonald, N.; Jin, X.; LaMondia, J.; Broaddus, A. Mobility-on-Demand Transit for Smart and Sustainable Cities; Southeastern Transportation Research, Innovation, Development and Education: Gainesville, FL, USA, 2023. [Google Scholar]
- Hair, J.F. Multivariate Data Analysis. 2009. Available online: https://digitalcommons.kennesaw.edu/facpubs/2925/ (accessed on 3 March 2024).
- Nunnally, J. Fundamentals of Factor Analysis. Psychom. Theory 1978, 327–404. [Google Scholar]
- Pourfalatoun, S.; Ahmed, J.; Miller, E.E. Shared Electric Scooter Users and Non-Users: Perceptions on Safety, Adoption and Risk. Sustainability 2023, 15, 9045. [Google Scholar] [CrossRef]
- Tamim Kashifi, M.; Jamal, A.; Samim Kashefi, M.; Almoshaogeh, M.; Masiur Rahman, S. Predicting the Travel Mode Choice with Interpretable Machine Learning Techniques: A Comparative Study. Travel Behav. Soc. 2022, 29, 279–296. [Google Scholar] [CrossRef]
- Sakib, N.; Paul, T.; Ahmed, M.T.; Al Momin, K.; Barua, S. Investigating Factors Influencing Pedestrian Crosswalk Usage Behavior in Dhaka City Using Supervised Machine Learning Techniques. Multimodal Transp. 2024, 3, 100108. [Google Scholar] [CrossRef]
- Molnar, C. Interpretable Machine Learning; Lulu.com: Morrisville, NC, USA, 2020; ISBN 0244768528. [Google Scholar]
- Du, M.; Liu, N.; Hu, X. Techniques for Interpretable Machine Learning. Commun. ACM 2019, 63, 68–77. [Google Scholar] [CrossRef]
Washington, D.C. | Miami | Los Angeles | Total | |||||
---|---|---|---|---|---|---|---|---|
n | % of Total | n | % of Total | n | % of Total | n | % of Total | |
E-scooter users | 193 | 16% | 101 | 8% | 171 | 14% | 465 | 39% |
Non-users | 221 | 18% | 307 | 26% | 204 | 17% | 732 | 61% |
Variable | Category | Washington, D.C. | Miami | Los Angeles | |||
---|---|---|---|---|---|---|---|
n | % | n | % | n | % | ||
Gender: | Male | 111 | 58 | 62 | 61 | 112 | 65 |
Female | 79 | 41 | 39 | 39 | 56 | 33 | |
Age: | 18–24 | 33 | 17 | 12 | 12 | 31 | 18 |
25–29 | 51 | 26 | 19 | 19 | 44 | 26 | |
30–39 | 64 | 33 | 44 | 44 | 56 | 33 | |
40–49 | 28 | 15 | 17 | 17 | 28 | 16 | |
50–59 | 11 | 6 | 8 | 8 | 11 | 6 | |
60 or over | 6 | 3 | 1 | 1 | 1 | 1 | |
Income: | Less than USD 25,000 | 10 | 5 | 5 | 5 | 27 | 16 |
USD 25,000–USD 49,999 | 29 | 15 | 26 | 26 | 28 | 16 | |
USD 50,000–USD 74,999 | 30 | 16 | 14 | 14 | 22 | 13 | |
USD 75,000–USD 99,999 | 30 | 16 | 21 | 21 | 23 | 13 | |
USD 100,000–USD 124,999 | 22 | 11 | 9 | 9 | 15 | 9 | |
USD 125,000–USD 149,999 | 16 | 8 | 13 | 13 | 6 | 4 | |
USD 150,000 or more | 35 | 18 | 13 | 13 | 32 | 19 | |
Vehicles: | 0 | 72 | 37 | 8 | 8 | 37 | 22 |
1 | 75 | 39 | 31 | 31 | 63 | 37 | |
2 | 35 | 18 | 29 | 29 | 50 | 29 | |
3 | 3 | 2 | 25 | 25 | 10 | 6 | |
4 | 7 | 4 | 4 | 4 | 9 | 5 | |
5 | 0 | 0 | 3 | 3 | 1 | 1 | |
6 or more | 1 | 1 | 1 | 1 | 1 | 1 | |
HousePop: | 1 | 71 | 37 | 14 | 14 | 44 | 26 |
2 | 76 | 39 | 20 | 20 | 67 | 39 | |
3 | 17 | 9 | 24 | 24 | 27 | 16 | |
4 | 16 | 8 | 25 | 25 | 18 | 11 | |
5 | 9 | 5 | 14 | 14 | 11 | 6 | |
6 or more | 4 | 2 | 4 | 4 | 4 | 2 | |
License: | Yes | 178 | 92 | 100 | 99 | 153 | 89 |
Student: | Yes | 26 | 13 | 28 | 28 | 35 | 20 |
Employment: | Employed | 8 | 4 | 81 | 80 | 18 | 11 |
Other or no answer | 185 | 96 | 20 | 20 | 153 | 89 | |
Education: | High school or less | 11 | 6 | 17 | 17 | 29 | 17 |
Associate’s degree | 15 | 8 | 30 | 30 | 33 | 19 | |
Bachelor’s degree | 95 | 49 | 42 | 42 | 78 | 46 | |
Post-graduate degree | 72 | 37 | 13 | 13 | 31 | 18 | |
Race: | White | 127 | 66 | 68 | 67 | 87 | 51 |
Black | 17 | 9 | 27 | 27 | 11 | 6 | |
Asian | 17 | 9 | 1 | 1 | 19 | 11 | |
Other (multicultural) | 32 | 17 | 5 | 5 | 54 | 32 |
Variable | Category | Washington, D.C. | Miami | Los Angeles | |||
---|---|---|---|---|---|---|---|
n | % | n | % | n | % | ||
Gender: | Male | 111 | 50 | 172 | 56 | 112 | 55 |
Female | 104 | 47 | 135 | 44 | 88 | 43 | |
Age: | 18–24 | 31 | 14 | 28 | 9 | 22 | 11 |
25–29 | 35 | 16 | 20 | 7 | 22 | 11 | |
30–39 | 55 | 25 | 102 | 33 | 44 | 22 | |
40–49 | 30 | 14 | 72 | 23 | 31 | 15 | |
50–59 | 30 | 14 | 54 | 18 | 34 | 17 | |
60 or over | 40 | 18 | 31 | 10 | 51 | 25 | |
Income: | Less than USD 25,000 | 18 | 8 | 53 | 17 | 49 | 24 |
USD 25,000–USD 49,999 | 37 | 17 | 95 | 31 | 36 | 18 | |
USD 50,000–USD 74,999 | 29 | 13 | 57 | 19 | 42 | 21 | |
USD 75,000–USD 99,999 | 33 | 15 | 34 | 11 | 29 | 14 | |
USD 100,000–USD 124,999 | 21 | 10 | 29 | 9 | 13 | 6 | |
USD 125,000–USD 149,999 | 19 | 9 | 26 | 8 | 10 | 5 | |
USD 150,000 or more | 59 | 27 | 13 | 4 | 25 | 12 | |
Vehicles: | 0 | 45 | 20 | 30 | 10 | 20 | 10 |
1 | 91 | 41 | 126 | 41 | 95 | 47 | |
2 | 64 | 29 | 112 | 36 | 57 | 28 | |
3 | 19 | 9 | 30 | 10 | 22 | 11 | |
4 | 2 | 1 | 6 | 2 | 8 | 4 | |
5 | 0 | 0 | 3 | 1 | 2 | 1 | |
6 or more | 0 | 0 | 0 | 0 | 0 | 0 | |
HousePop: | 1 | 59 | 27 | 44 | 14 | 44 | 22 |
2 | 86 | 39 | 93 | 30 | 69 | 34 | |
3 | 35 | 16 | 85 | 28 | 45 | 22 | |
4 | 28 | 13 | 61 | 20 | 28 | 14 | |
5 | 6 | 3 | 18 | 6 | 10 | 5 | |
6 or more | 7 | 3 | 6 | 2 | 8 | 4 | |
License: | Yes | 207 | 94 | 283 | 92 | 178 | 87 |
Student: | Yes | 30 | 14 | 47 | 15 | 32 | 16 |
Employment: | Employed | 154 | 70 | 186 | 61 | 106 | 52 |
Other | 67 | 30 | 121 | 39 | 98 | 48 | |
Education: | High school or less | 18 | 8 | 62 | 20 | 49 | 24 |
Associate’s degree | 39 | 18 | 112 | 36 | 63 | 31 | |
Bachelor’s degree | 69 | 31 | 101 | 33 | 60 | 29 | |
Post-graduate degree | 95 | 43 | 32 | 10 | 32 | 16 | |
Race: | White | 143 | 65 | 214 | 70 | 101 | 50 |
Black | 33 | 15 | 67 | 22 | 17 | 8 | |
Asian | 24 | 11 | 4 | 1 | 33 | 16 | |
Other (multicultural) | 21 | 10 | 22 | 7 | 53 | 26 |
E-Scooter Users N = 465 | Non-Users N = 732 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Factors | Sig | Decision | Pairwise Comparisons of City | Sig | Decision | Pairwise Comparisons of City | |||||
S1–S2 | Adj. Sig. a | S1–S2 | Adj. Sig. a | ||||||||
Cost | 0.005 | Reject | D.C.-LA | 1.000 | 0.000 | Reject | D.C.-LA | 0.027 | * | ||
D.C.-Mi | 0.005 | ** | D.C.-Mi | 0.000 | *** | ||||||
LA-Mi | 0.024 | * | LA-Mi | 0.000 | *** | ||||||
Time | 0.003 | Reject | LA-D.C. | 0.445 | 0.000 | Reject | D.C.-LA | 1.000 | |||
LA-Mi | 0.002 | ** | D.C.-Mi | 0.000 | *** | ||||||
D.C.-Mi | 0.074 | LA-Mi | 0.000 | *** | |||||||
Reliability | 0.000 | Reject | LA-D.C. | 1.000 | 0.000 | Reject | D.C.-LA | 1.000 | |||
LA-Mi | 0.000 | *** | D.C.-Mi | 0.000 | *** | ||||||
D.C.-Mi | 0.000 | *** | LA-Mi | 0.000 | *** | ||||||
Comfort | 0.000 | Reject | D.C.-LA | 0.440 | 0.000 | Reject | D.C.-LA | 0.002 | ** | ||
D.C.-Mi | 0.000 | *** | D.C.-Mi | 0.000 | *** | ||||||
LA-Mi | 0.000 | *** | LA-Mi | 0.000 | *** | ||||||
Safety | 0.000 | Reject | LA-D.C. | 1.000 | 0.000 | Reject | D.C.-LA | 0.001 | ** | ||
LA-Mi | 0.000 | *** | D.C.-Mi | 0.000 | *** | ||||||
D.C.-Mi | 0.000 | *** | LA-Mi | 0.001 | ** | ||||||
Environmental impacts | 0.000 | Reject | D.C.-LA | 1.000 | 0.000 | Reject | LA-D.C. | 1.000 | |||
D.C.-Mi | 0.000 | *** | LA-Mi | 0.000 | *** | ||||||
LA-Mi | 0.000 | *** | D.C.-Mi | 0.005 | ** |
E-Scooter Users N = 465 | Non-Users N = 732 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
E-Scooter Attitudes | Sig | Decision | Pairwise Comparisons of City | Sig | Decision | Pairwise Comparisons of City | |||||
S1–S2 | Adj. Sig. a | S1–S2 | Adj. Sig. a | ||||||||
Attitude 1. | 0.125 | Retain | 0.006 | Reject | LA-D.C. | 0.337 | |||||
LA-Mi | 0.004 | ** | |||||||||
D.C.-Mi | 0.372 | ||||||||||
Attitude 2. | 0.000 | Reject | LA-D.C. | 1.000 | 0.000 | Reject | LA-D.C. | 1.000 | |||
LA-Mi | 0.000 | *** | LA-Mi | 0.000 | *** | ||||||
D.C.-Mi | 0.000 | *** | D.C.-Mi | 0.000 | *** | ||||||
Attitude 3. | 0.284 | Retain | 0.030 | Reject | LA-D.C. | 0.954 | |||||
LA-Mi | 0.029 | * | |||||||||
D.C.-Mi | 0.362 | ||||||||||
Attitude 4. | 0.001 | Reject | Mi-LA | 0.011 | * | 0.000 | Reject | LA-Mi | 0.000 | *** | |
Mi-D.C. | 0.001 | ** | LA-D.C. | 0.000 | *** | ||||||
LA-D.C. | 1.000 | Mi-D.C. | 0.178 | ||||||||
Attitude 5. | 0.000 | Reject | Mi-LA | 0.004 | ** | 0.000 | Reject | LA-Mi | 0.020 | ** | |
Mi-D.C. | 0.000 | *** | LA-D.C. | 0.000 | *** | ||||||
LA-D.C. | 1.000 | Mi-D.C. | 0.020 | ** | |||||||
Attitude 6. | 0.007 | Reject | D.C.-LA | 1.000 | 0.000 | Reject | D.C.-LA | 1.000 | |||
D.C.-Mi | 0.006 | ** | D.C.-Mi | 0.000 | *** | ||||||
LA-Mi | 0.072 | LA-Mi | 0.001 | ** |
E-Scooter Users N = 465 | Non-Users N = 732 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Car Attitudes | Sig | Decision | Pairwise Comparisons of City | Sig | Decision | Pairwise Comparisons of City | |||||
S1–S2 | Adj. Sig. a | S1–S2 | Adj. Sig. a | ||||||||
Car attitude 1 | 0.000 | Reject | D.C.-LA | 1.000 | 0.008 | Reject | D.C.-Mi | 0.383 | |||
D.C.-Mi | 0.000 | *** | D.C.-LA | 0.006 | ** | ||||||
LA-Mi | 0.000 | *** | Mi-LA | 0.194 | |||||||
Car attitude 2 | 0.000 | Reject | LA-D.C. | 0.004 | ** | 0.000 | Reject | LA-D.C. | 0.001 | ** | |
LA-Mi | 0.000 | *** | LA-Mi | 0.000 | *** | ||||||
D.C.-Mi | 0.042 | * | D.C.-Mi | 0.000 | *** | ||||||
Car attitude 3 | 0.047 | Reject | LA-Mi | 0.270 | 0.000 | Reject | LA-Mi | 0.284 | |||
LA-D.C. | 0.054 | LA-D.C. | 0.000 | *** | |||||||
Mi-D.C. | 1.000 | Mi-D.C. | 0.000 | *** | |||||||
Car attitude 4 | 0.000 | Reject | Mi-LA | 0.000 | *** | 0.000 | Reject | Mi-LA | 0.000 | *** | |
Mi-D.C. | 0.000 | *** | Mi-D.C. | 0.000 | *** | ||||||
LA-D.C. | 1.000 | LA-D.C. | 0.000 | *** | |||||||
Car attitude 5 | 0.000 | Reject | LA-D.C. | 0.318 | 0.000 | Reject | LA-D.C. | 0.000 | *** | ||
LA-Mi | 0.000 | *** | LA-Mi | 0.000 | *** | ||||||
D.C.-Mi | 0.000 | *** | D.C.-Mi | 0.000 | *** | ||||||
Car attitude 6 | 0.000 | Reject | Mi-D.C. | 1.000 | 0.000 | Reject | Mi-D.C. | 0.000 | *** | ||
Mi-LA | 0.000 | *** | Mi-LA | 0.000 | *** | ||||||
D.C.-LA | 0.000 | *** | D.C.-LA | 0.000 | *** | ||||||
Car attitude 7 | 0.020 | Reject | D.C.-LA | 0.069 | 0.000 | Reject | D.C.-Mi | 0.000 | *** | ||
D.C.-Mi | 0.049 | * | D.C.-LA | 0.000 | *** | ||||||
LA-Mi | 1.000 | Mi-LA | 0.048 | * |
Observed Variables | Mean | Factor (Latent Constructs) | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
E-scooter Attitudes_1 | 3.350 | 0.727 | |||
E-scooter Attitudes_2 | 2.944 | 0.712 | |||
E-scooter Attitudes_3 | 3.150 | 0.774 | |||
E-scooter Attitudes_4 | 3.835 | 0.705 | |||
E-scooter Attitudes_5 | 3.848 | 0.664 | |||
E-scooter Attitudes_6 | 3.185 | 0.625 | |||
Mode Choice Factors_1 | 3.921 | 0.534 | |||
Mode Choice Factors_2 | 4.085 | 0.699 | |||
Mode Choice Factors_3 | 4.269 | 0.789 | |||
Mode Choice Factors_4 | 3.654 | 0.720 | |||
Mode Choice Factors_5 | 4.127 | 0.732 | |||
Car use Attitudes_2 | 3.259 | 0.826 | |||
Car use Attitudes_3 | 3.086 | 0.553 | |||
Car use Attitudes_5 | 3.607 | 0.710 | |||
Car use Attitudes_6 | 3.223 | −0.767 | |||
Car use Attitudes_1 | 2.305 | −0.721 | |||
Car use Attitudes_4 | 3.973 | 0.642 | |||
Eigenvalues | 3.6 | 2.7 | 2.0 | 1.4 | |
of variance explained | 21 | 16 | 12 | 8 | |
Kaiser–Meyer–Olkin Measure of Sampling Adequacy. | 0.755 | ||||
Bartlett’s Test of Sphericity | Approx. Chi-Square | 6120.813 | |||
df | 136 | ||||
Sig. | 0.000 |
Model | Class | Precision | Recall | F1-Score | Overall Accuracy |
---|---|---|---|---|---|
Binary Logistic Regression | 0 | 0.81 | 0.87 | 0.84 | 0.74 |
1 | 0.74 | 0.65 | 0.69 | ||
Decision Tree | 0 | 0.82 | 0.76 | 0.79 | 0.79 |
1 | 0.63 | 0.71 | 0.67 | ||
Random Forest | 0 | 0.83 | 0.90 | 0.86 | 0.82 |
1 | 0.79 | 0.70 | 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jafarzadehfadaki, M.; Sisiopiku, V.P. Embracing Urban Micromobility: A Comparative Study of E-Scooter Adoption in Washington, D.C., Miami, and Los Angeles. Urban Sci. 2024, 8, 71. https://doi.org/10.3390/urbansci8020071
Jafarzadehfadaki M, Sisiopiku VP. Embracing Urban Micromobility: A Comparative Study of E-Scooter Adoption in Washington, D.C., Miami, and Los Angeles. Urban Science. 2024; 8(2):71. https://doi.org/10.3390/urbansci8020071
Chicago/Turabian StyleJafarzadehfadaki, Mostafa, and Virginia P. Sisiopiku. 2024. "Embracing Urban Micromobility: A Comparative Study of E-Scooter Adoption in Washington, D.C., Miami, and Los Angeles" Urban Science 8, no. 2: 71. https://doi.org/10.3390/urbansci8020071
APA StyleJafarzadehfadaki, M., & Sisiopiku, V. P. (2024). Embracing Urban Micromobility: A Comparative Study of E-Scooter Adoption in Washington, D.C., Miami, and Los Angeles. Urban Science, 8(2), 71. https://doi.org/10.3390/urbansci8020071