GIS-Based Model Parameter Enhancement for Urban Water Utility Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Desciption
2.2. Geocoding Methodology
2.3. Topology Simplification Methods for Looped Pipelines
3. Results and Discussion
3.1. Arithmetic Mean Method
3.2. Zone Delineation Based on Streets
3.3. Consumption Based on the Nodes’ Range of Influence—Manual Method
4. Conclusions
- The geocoded consumption locations associated with each node can be easily assigned to the model nodes using a geospatial method.
- Effective water consumption allocation may be achieved through delineating the influence range around each node. When contrasting the zoning based on the street approach and the arithmetic average with the benchmark manual range of influence approach, errors of approximately 190% and 230%, respectively, are identified.
- Implementing the manual method becomes excessively time-consuming, especially for larger networks. Consequently, in our study, we have opted for the approach of delineating the influence area using Thiessen polygons. The average disparity between the manual and Thiessen polygon methods is small, a deviation considered quite minimal and within acceptable limits. In municipalities with high-density regions where the water distribution network is dense and consumption points are closely clustered, the manual method may remain preferable due to its ability to account for intricate spatial relationships not captured by automated approaches. Additionally, considering that the construction of new buildings may not always align with the existing water distribution network pipelines, manual intervention may be necessary to ensure accurate representation in such dynamic environments.
- For the future research path, the integration of automation into GIS processes could be outlined such as data collection, analysis, and visualization can be streamlined, leading to more precise and efficient modeling outcomes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marlow, D.R.; Moglia, M.; Cook, S.; Beale, D.J. Towards Sustainable Urban Water Management: A Critical Reassessment. Water Res. 2013, 47, 7150–7161. [Google Scholar] [CrossRef] [PubMed]
- Pokhrel, S.R.; Chhipi-Shrestha, G.; Hewage, K.; Sadiq, R. Sustainable, Resilient, and Reliable Urban Water Systems: Making the Case for a “One Water” Approach. Environ. Rev. 2022, 30, 10–29. [Google Scholar] [CrossRef]
- Barton, N.A.; Hallett, S.H.; Jude, S.R. The Challenges of Predicting Pipe Failures in Clean Water Networks: A View from Current Practice. Water Supply 2022, 22, 527–541. [Google Scholar] [CrossRef]
- Wallace, D.W.; Foster, L.; Schartau, K.; Lewin, D.; Keyes Jr, C.G. Empirical Risk Analysis Methodology for Adversarial Threats against Critical Infrastructure. J. Infrastruct. Syst. 2024, 30, 04023036. [Google Scholar] [CrossRef]
- Quitana, G.; Molinos-Senante, M.; Chamorro, A. Resilience of Critical Infrastructure to Natural Hazards: A Review Focused on Drinking Water Systems. Int. J. Disaster Risk Reduct. 2020, 48, 101575. [Google Scholar] [CrossRef]
- Liu, W.; Song, Z. Review of Studies on the Resilience of Urban Critical Infrastructure Networks. Reliab. Eng. Syst. Saf. 2020, 193, 106617. [Google Scholar] [CrossRef]
- Osei-Kyei, R.; Tam, V.; Ma, M.; Mashiri, F. Critical Review of the Threats Affecting the Building of Critical Infrastructure Resilience. Int. J. Disaster Reduct. 2021, 60, 102316. [Google Scholar] [CrossRef]
- Fathollahi-Fard, A.M.; Ahmadi, A.; Al-e-Hashem, S.M. Sustainable Closed-Loop Supply Chain Network for an Integrated Water Supply and Wastewater Collection System Under Uncertainty. J. Environ. Manag. 2020, 275, 111277. [Google Scholar] [CrossRef] [PubMed]
- Larsen, T.A.; Gujer, W. The Concept of Sustainable Urban Water Management. Water Sci. Technol. 1997, 35, 3–10. [Google Scholar] [CrossRef]
- Bichai, F.; Ryan, H.; Fitzgerald, C.; Williams, K.; Abdelmoteleb, A.; Brotchie, R.; Komatsu, R. Understanding the Role of Alternative Water Supply in an Urban Water Security Strategy: An Analytical Framework for Decision-Making. Urban Water J. 2015, 12, 175–189. [Google Scholar] [CrossRef]
- Rathnayaka, K.; Malano, H.; Arora, M. Assessment of Sustainability of Urban Water Supply and Demand Management Options: A Comprehensive Approach. Water 2016, 8, 595. [Google Scholar] [CrossRef]
- Hashemi, S. Sanitation Sustainability Index: A Pilot Approach to Develop a Community-Based Indicator for Evaluating Sustainability of Sanitation Systems. Sustainability 2020, 12, 6937. [Google Scholar] [CrossRef]
- Mounce, S.R. Data Science Trends and Opportunities for Smart Water Utilities. In ICT for Smart Water Systems: Measurements and Data Science. The Handbook of Environmental Chemistry; Scozzari, A., Mounce, S., Han, D., Soldovieri, F., Solomatine, D., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Okwori, E.; Pericault, Y.; Ugarelli, R.; Viklander, M.; Hedström, A. Data-Driven Asset Management in Urban Water Pipe Networks: A Proposed Conceptual Framework. J. Hydroinform. 2021, 23, 1014–1029. [Google Scholar] [CrossRef]
- Okwori, E.; Viklander, M.; Hedström, A. Data Integration in Asset Management of Municipal Pipe Networks in Sweden: Challenges, Gaps, and Potential Drivers. Util. Policy 2024, 86, 101689. [Google Scholar] [CrossRef]
- Gilbert, T.; James, P.; Smith, L.; Barr, S.; Morley, J. Topological Integration of BIM and Geospatial Water Utility Networks Across the Building Envelope. Comput. Environ. Urban Syst. 2021, 86, 101570. [Google Scholar] [CrossRef]
- Marzouk, M.; Othman, A. Planning Utility Infrastructure Requirements for Smart Cities Using the Integration Between BIM and GIS. Sustain. Cities and Soc. 2020, 57, 102120. [Google Scholar] [CrossRef]
- Sharafat, A.; Khan, M.S.; Latif, K.; Tanoli, W.A.; Park, W.; Seo, J. BIM-GIS-Based Integrated Framework for Underground Utility Management System for Earthwork Operations. Appl. Sci. 2021, 11, 5721. [Google Scholar] [CrossRef]
- Puchol-Salort, P.; O’Keeffe, J.; van Reeuwijk, M.; Mijic, A. An Urban Planning Sustainability Framework: Systems Approach to Blue-Green Urban Design. Sustain. Cities Soc. 2021, 66, 102677. [Google Scholar] [CrossRef]
- Carriço, N.; Ferreira, B.; Barreira, R.; Antunes, A.; Grueau, C.; Mendes, A.; Covas, D.; Monteiro, L.; Santos, J.; Brito, I.S. Data Integration for Infrastructure Asset Management in Small to Medium-Sized Water Utilities. Water Sci. Technol. 2020, 82, 2737–2744. [Google Scholar] [CrossRef]
- Gude, V.G.; Muire, P.J. Preparing for Outbreaks–Implications for Resilient Water Utility Operations and Services. Sustain. Cities Soc. 2021, 64, 102558. [Google Scholar] [CrossRef] [PubMed]
- Berglund, E.Z.; Buchberger, S.; Cunha, M.; Faust, K.M.; Giacomoni, M.; Goharian, E.; Kleiner, Y.; Lee, J.; Ostfeld, A.; Pasha, F.; et al. Effects of the COVID-19 Pandemic on Water Utility Operations and Vulnerability. J. Water Resour. Plan. Manag. 2022, 148, 04022027. [Google Scholar] [CrossRef]
- Pietrucha-Urbanik, K.; Rak, J. Water, Resources, and Resilience: Insights from Diverse Environmental Studies. Water 2023, 15, 3965. [Google Scholar] [CrossRef]
- Ezzeldin, R.; Zelenakova, M.; Abd-Elhamid, H.F.; Pietrucha-Urbanik, K.; Elabd, S. Hybrid Optimization Algorithms of Firefly with GA and PSO for the Optimal Design of Water Distribution Networks. Water 2023, 15, 1906. [Google Scholar] [CrossRef]
- Kruszyński, W.; Dawidowicz, J. Computer Modeling of Water Supply and Sewerage Networks as a Tool in an Integrated Water and Wastewater Management System in Municipal Enterprises. J. Ecol. Eng. 2020, 21, 261–266. [Google Scholar] [CrossRef]
- Ferraro, A.; Marino, E.; Trancone, G.; Race, M.; Mali, M.; Pontoni, L.; Fabbricino, M.; Spasiano, D.; Fratino, U. Assessment of environmental parameters effect on potentially toxic elements mobility in foreshore sediments to support marine-coastal contamination prediction. Mar. Pollut. Bull. 2023, 194, 115338. [Google Scholar] [CrossRef] [PubMed]
- Muscetta, M.; Bianco, F.; Trancone, G.; Race, M.; Siciliano, A.; D’Agostino, F.; Sprovieri, M.; Clarizia, L. Washing Bottom Sediment for The Removal of Arsenic from Contaminated Italian Coast. Processes 2023, 11, 902. [Google Scholar] [CrossRef]
- Fernández Moniz, P.; Almeida, J.S.; Pino, A.T.; Suárez Rivero, J.P. A GIS-Based Solution for Urban Water Management. Water Int. 2020, 45, 660–677. [Google Scholar] [CrossRef]
- Meijer, D.; Korving, H.; Clemens-Meyer, F. A Topological Characterisation of Looped Drainage Networks. Struct. Infrastruct. Eng. 2022, 1–14. [Google Scholar] [CrossRef]
- Giudicianni, C.; Di Nardo, A.; Di Natale, M.; Greco, R.; Santonastaso, G.F.; Scala, A. Topological Taxonomy of Water Distribution Networks. Water 2018, 10, 444. [Google Scholar] [CrossRef]
- Kaltenbacher, S.; Steinberger, M.; Horn, M. Applied Pipe Roughness Identification of Water Networks: Consideration of All Flow Regimes. IEEE Trans. Control Syst. Technol. 2022, 31, 676–691. [Google Scholar] [CrossRef]
- Yao, L.; Zhang, H.; Zhang, C.; Zhang, W. Driving Effects of Spatial Differences of Water Consumption Based on LMDI Model Construction and Data Description. Cluster Comput. 2019, 22, 6315–6334. [Google Scholar] [CrossRef]
- Cichoń, T.; Królikowska, J. Remote Reading of Water Meters as an Element of a Smart City Concept. Rocz. Ochr. Srodowiska 2021, 23, 883–890. [Google Scholar] [CrossRef]
- Trancone, G.; Spasiano, D.; Race, M.; Luongo, V.; Petrella, A.; Pirozzi, F.; Fratino, U.; Piccinni, A.F. A combined system for asbestos-cement waste degradation by dark fermentation and resulting supernatant valorization in anaerobic digestion. Chemosphere 2022, 300, 134500. [Google Scholar] [CrossRef] [PubMed]
- Cetl, V.; Kliment, T.; Jogun, T. A Comparison of Address Geocoding Techniques—Case Study of the City of Zagreb, Croatia. Surv. Rev. 2018, 50, 97–106. [Google Scholar] [CrossRef]
- Orgoványi, P. Increasing the Efficiency of Loss Analysis of Public Water Supply Networks Using Geospatial Method. Műszaki Katonai Közlöny 2023, 33, 95–105. (In Hungarian) [Google Scholar] [CrossRef]
- Bao, Y.; Mays, L.W. Model for Water Distribution System Reliability. J. Hydraul. Eng. 1990, 116, 1119–1137. [Google Scholar] [CrossRef]
- Gaafar, M.; Mahmoud, S.H.; Gan, T.Y.; Davies, E.G.R. A practical GIS-based hazard assessment framework for water quality in stormwater systems. J. Cleaner Prod. 2020, 245, 118855. [Google Scholar] [CrossRef]
- Khoa Bui, X.; Marlim, M.S.; Kang, D. Water Network Partitioning into District Metered Areas: A State-Of-The-Art Review. Water 2020, 12, 1002. [Google Scholar] [CrossRef]
- Kanakoudis, V.; Muhammetoglu, H. Urban Water Pipe Networks Management towards Non-Revenue Water Reduction: Two Case Studies from Greece and Turkey. Clean–Soil Air Water 2014, 42, 880–892. [Google Scholar] [CrossRef]
- Kawathe, L.N.; Thorvat, A.R. Analysis and Design of Continuous Water Distribution System against Existing Intermittent Distribution System for Selected Area in Pandharpur, MS, India. Aquademia 2020, 4, ep20028. [Google Scholar] [CrossRef] [PubMed]
- Pudasaini, B.; Shahandashti, M. Seismic Rehabilitation Optimization of Water Pipe Networks Considering Spatial Variabilities of Demand Criticalities and Seismic Ground Motion Intensities. J. Infrastruct. Syst. 2021, 27, 04021028. [Google Scholar] [CrossRef]
- Mosbach, J.; Sonnenburg, A.; Fiedler, J.E.; Urban, W. Development of a New Method to Support a Participatory Planning for Piped Water Supply Infrastructure in Informal Settlements. Water 2022, 14, 1316. [Google Scholar] [CrossRef]
- Wright, R.; Stoianov, I.; Parpas, P.; Henderson, K.; King, J. Adaptive Water Distribution Networks with Dynamically Reconfigurable Topology. J. Hydroinform. 2014, 16, 1280–1301. [Google Scholar] [CrossRef]
- Perelman, L.; Ostfeld, A. Topological Clustering for Water Distribution Systems Analysis. Environ. Model. Softw. 2011, 26, 969–972. [Google Scholar] [CrossRef]
- Singh, S.K. Evaluating two freely available geocoding tools for geographical inconsistencies and geocoding errors. Open Geospat. Data Softw. Stand. 2017, 2, 11. [Google Scholar] [CrossRef]
- Chow, T.E.; Dede-Bamfo, N.; Dahal, K.R. Geographic disparity of positional errors and matching rate of residential addresses among geocoding solutions. Ann. GIS 2016, 22, 29–42. [Google Scholar] [CrossRef]
- Cureau, R.J.; Ghisi, E. Reduction of Potable Water Consumption and Sewage Generation on a City Scale: A Case Study in Brazil. Water 2019, 11, 2351. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orgoványi, P.; Karches, T. GIS-Based Model Parameter Enhancement for Urban Water Utility Networks. Urban Sci. 2024, 8, 35. https://doi.org/10.3390/urbansci8020035
Orgoványi P, Karches T. GIS-Based Model Parameter Enhancement for Urban Water Utility Networks. Urban Science. 2024; 8(2):35. https://doi.org/10.3390/urbansci8020035
Chicago/Turabian StyleOrgoványi, Péter, and Tamás Karches. 2024. "GIS-Based Model Parameter Enhancement for Urban Water Utility Networks" Urban Science 8, no. 2: 35. https://doi.org/10.3390/urbansci8020035
APA StyleOrgoványi, P., & Karches, T. (2024). GIS-Based Model Parameter Enhancement for Urban Water Utility Networks. Urban Science, 8(2), 35. https://doi.org/10.3390/urbansci8020035