The Inter-Relationships of Territorial Quality of Life with Residential Expansion and Densification: A Case Study of Regions in EU Member Countries
Abstract
:1. Introduction
2. Literature Review
3. Methods
3.1. Data
Capitals and Stocks | Indicators |
---|---|
Economic capital | (ECON_C) |
Labour | Total employment, unemployment, share of full-time employment, involuntary part-time/temporary employment, non-employed persons (Eurostat) |
Economic structure | GDP per capita, disposable income of households, job opportunities (Eurostat) |
Circular economy | Total employment in material providers, total turnover generated by material providers’ activities, total employment in technology providers’ sectors, total turnover generated by technology providers’ sectors, total employment in Circular Business Model (CBM) sectors, total turnover generated by CBM sectors (ESPON CIRCTER Project (2017–2019): Circular Economy and Territorial Consequences (https://database.espon.eu/project-archives/#/archives) Accessed: 15 September 2023) |
Infrastructure and mobility | Internet at home; broadband at home; online interaction with public authorities; internet access (Eurostat); potential accessibility to rail, air, and multimodal transport (ESPON TIA- (https://database.espon.eu/project-archives/#/archives) Accessed: 15 September 2023); green infrastructure initiatives; share of areas in a region that have poor access to the following: (a) primary schools, (b) secondary schools, (c) hospitals, (d) closest doctors, I pharmacies, (f) bank office, (g) train station, (h) urban morphological zone, (i) cinemas, (j) shops, (k) regional centres (ESPON PROFECY Project (https://database.espon.eu/project-archives/#/archives) Accessed: 15 September 2023) |
Knowledge | Higher education attainment rate, lifelong learning, employment in high-tech sectors, employment in science and technology (Eurostat regional education statistics) |
Research and Development | EU patent applications, EU trade mark applications, EU community design applications (Eurostat) |
Social-cultural capital (SC_C) | |
Education | Lower secondary education completion rate, early school leavers, employment and training, young people not in education and training (Eurostat regional education statistics) |
Health | Life expectancy, unmet medical needs, insufficient food, cancer diseases death rate, hearth diseases death rate, suicide death rate, infant mortality rate, premature mortality rate, road accident fatalities (Eurostat regional health statistics) |
Safety | Crime, safety at night, money stolen in the household, assaulted/mugged (Gallup World Poll Statistics) |
Living environment | Burdensome cost of housing, housing quality, overcrowded housing, lack of adequate heating in the dwelling, lack of toilet in the dwelling (EU statistics on income and living conditions) |
Governance | Control of corruption, government effectiveness, political stability and absence of violence/terrorism, regularity quality, rule of law, voice and accountability, public service quality, impartiality (all treated equally, with some receiving special advantages in education, health care, law), corruption in public service provision, trust in the national government, trust in the legal system, trust in the police (http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1682130 Accessed: 24 November 2023) |
Ecological capital (ECOL_C) | |
Air quality | Average NO2 concentration, average Ozone3 concentration, average PM2.5 concentration, average PM10 concentration, emissions of CO2 per capita, electricity produced by renewable energy resources (European Environment Agency (EEA), ESPON TIA, Baranzelli et al. [68] |
Climate | Change in annual mean number of days with heavy rainfall, change in annual mean number of days with snow cover, change in annual mean number of summer days, potential vulnerability to climate change, combined adaptive capacity to climate change, relative change in annual mean evaporation, relative change in annual mean precipitation in summer months, relative change in annual mean precipitation in winter months (ESPON CLIMATE Project (https://database.espon.eu/project-archives/#/archives) Accessed: 15 September 2023) |
Waste | Total waste production, municipal solid waste recycling rate, uncollected sewage, sewage treatment (EEA; ESPON CIRCTER Project (https://database.espon.eu/project-archives/#/archives) Accessed: 15 September 2023) |
Hazards | Number of hazards, number of vulnerability causes (EEA) |
Water | Water Retention Index, satisfaction with water quality, freshwater consumption per capita (ESPON GRETA Project (https://database.espon.eu/project-archives/#/archives) Accessed: 15 September 2023) |
Soil | Capacity of ecosystems to avoid soil erosion, soil retention (ESPON TIA Project) |
Green infrastructure | Coverage percentage of green infrastructure (GI), forest area within a region, area of NATURA2000 sites relative to regional area (EEA) |
Land | Soil sealing within a region, share of agricultural area in protected areas, share of urban area in protected areas, percentage share of urban use areas within a region, percentage share of agricultural use areas within a region, development of urban use per capita, amount of raw material extracted from natural environment (ESPON SUPER Project (https://database.espon.eu/project-archives/#/archives) Accessed: 15 September 2023) |
3.2. Territorial Quality of Life Index
3.2.1. Normalisation of Indicators
3.2.2. Principal Component Analysis Used for the Selection of Indicators
3.2.3. Weighting the Indicators
3.2.4. Development of TQL Indicators
3.3. Residential Expansion and Densification Indicators
3.4. The Relationship between TQL Indicators and Residential Land Expansion and Densification
3.4.1. Regression Analysis
3.4.2. Global and Local Spatial Correlation Analysis
4. Results
4.1. Selection of Indicators from PCA and Their Weighting
4.2. Spatial Variation in TQL Index in Europe
4.3. Spatial Distribution of RINs
4.4. Results from Regression Analysis
4.5. Results from Spatial Correlation Analysis
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Top Five Scored Regions | ||||||||
---|---|---|---|---|---|---|---|---|
Category | Value Ranges | SC_C | Value Ranges | ECON_C | Value Ranges | ECOL_C | Value Ranges | TOTAL_SC |
Very high | >0.71 | Helsinki-Uusimaa (FI1B); West Finland (FI19); Border, Midland, and Western Ireland (IE01); Aland (FI20); Upper Norrland (SE33) | >0.61 | Ile de France (FR10), Helsinki-Uusimaa(FI1B), Utrecht(NL31), Madrid(ES30), South Finland (FI1C) | >0.44 | Brandenburg (DE40), Berlin (DE30), Arnsberg (DEA5), Estonia (EE00), North and East Finland (FI1D) | >0.55 | North and East Finland (FI1D), Helsinki-Uusimaa (FI1B), West Finland (FI19), Upper Norrland (SE33), Utrecht (NL31) |
High | 0.67–0.71 | Trentino-Alto (ITH2), Detmold (DEA4), Oberfranken (DE24), FR61, Karlsruhe (DE12) | 0.54–0.61 | Southern Denmark (DK03), Catalonia (ES51), Brandenburg (DE40), Berlin (DE30), Aquitaine (FR61) | 0.41–0.44 | East Middle Sweden (SE12), Groningen (NL11), Oberpfalz (DE23), Gelderland (NL22), Oberfranken (DE24) | 0.52–0.55 | Oberpfalz (DE23), Malopolskie (PL21), Bretagne (FR52), Tübingen (DE14), Pays de la Loire (FR51) |
Average | 0.63–0.67 | Rheinhessen-Pfalz(DEB3), Münster (DEA3), Opolskie (PL52), Aragon(ES24), Limburg(BE22) | 0.49–0.54 | Saarland (DEC0), Auvergne (FR72), Latvia (LV00), Namur (BE35), Bourgogne (FR26) | 0.37–0.41 | Niederbayern (DE22), BG32, Kujawsko-Pomorskie (PL61), Veneto (ITH3), Nordjylland (DK05) | 0.49–0.52 | Trentino-Alto (ITH1), Southern Denmark (DK03), Freiburg (DE13), East Flanders (BE23), Limburg (BE22) |
Low | 0.58–0.63 | Castile-Leon (ES41), Lombardia (ITC4), Nord Pas-de-Calais (FR30), Eastern Slovakia (SK04), Norte (PT11) | 0.44–0.49 | Münster (DEA3), Kriti (GR43), Veneto (ITH3), Friuli-Venezia Giulia (ITH4), Hainaut (BE32) | 0.32–0.37 | Crotia (HR04), AT31, Marche (ITI3), Bremen (DE50), West Sweden (SE23) | 0.44–0.49 | Cantabria (ES13), Podkarpackie (PL32), Auvergne (FR72), Lorraine (FR41), Lisbon (PT17) |
Very Low | <0.58 | Kentriki Makedonia (GR12), Puglia (ITF4), Namur (BE35), Estonia (EE00), Leipzig (DED5) | <0.44 | Sterea Ellada (GR24), Moravian Silesian (CZ08), Molise (ITF2), Kujawsko-Pomorskie (PL61), Puglia (ITF4) | <0.32 | Navarre (ES22), FR42, Bucuresti-lifov (RO32), Yuzhen tsentralen (BG42), Western Transdanubia (HU22) | <0.44 | Aragon (ES24), Latvia (LV00), Region of Murcia (ES62), Budapest (HU10), Severozapad (CZ04) |
References
- UN. World Urbanization Prospects: The 2014 Revision; United Nations Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2012. [Google Scholar]
- UN. World Urbanization Prospects 2018; United Nations Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2018. [Google Scholar]
- Haase, D.; Kabisch, N.; Haase, A. Endless urban growth? On the mismatch of population, household and urban land area growth and its effects on the urban debate. PLoS ONE 2013, 8, e66531. [Google Scholar] [CrossRef]
- Salvati, L.; Zambon, I. The (Metropolitan) city revisited: Long-term population trends and urbanisation patterns in Europe, 1950–2000. Popul. Rev. 2019, 58, 145–171. [Google Scholar] [CrossRef]
- EEA. Land Use. Online Report; European Environment Agency: Copenhagen, Denmark, 2023. Available online: https://www.eea.europa.eu/en/topics/in-depth/land-use (accessed on 25 May 2023).
- Bibri, S.E.; Krogstie, J.; Karrholm, M. Compact city planning and development: Emerging practices and strategies for achieving the goals of sustainability. Dev. Built Environ. 2020, 4, 100021. [Google Scholar] [CrossRef]
- Hassan, O.M.; Ling, G.H.T.; Rusli, N.; Mokhtar, S.; Wider, W.; Leng, P.C. Urban sprawl patterns, drivers, and impacts: The case of Mogadishu, Somalia using geo-spatial and SEM analysis. Land 2023, 12, 783. [Google Scholar] [CrossRef]
- Ai, X.-N.; Gao, S.-J.; Li, W.-M.; Liao, H. Greening China: Environmentally adjusted multifactor productivity in the last four decades. Res. Conserv. Rec. 2023, 192, 106918. [Google Scholar] [CrossRef]
- Verma, P.; Raghubanshi, A.S. Urban sustainability indicators: Challenges and opportunities. Ecol. Indic. 2018, 93, 282–291. [Google Scholar] [CrossRef]
- Wolff, M.; Haase, D. Mediating sustainability and liveability—Turning points of green space supply in European cities. Front. Environ. Sci. 2019, 7, 61. [Google Scholar] [CrossRef]
- Kirk, H.; Garrard, G.E.; Croeser, T.; Backstrom, A.; Berthon, K.; Furlong, C.; Hurley, J.; Thomas, F.; Webb, A.; Bekessy, S.A. Building biodiversity into the urban fabric: A case study in applying Biodiversity Sensitive Urban Design (BSUD). Urban For. Urban Green. 2021, 62, 127176. [Google Scholar] [CrossRef]
- Howley, P.; Scott, M.; Redmond, D. Sustainability versus liveability: An investigation of neighbourhood satisfaction. J. Environ. Plan. Manag. 2008, 52, 847–864. [Google Scholar] [CrossRef]
- Ameen, R.F.M.; Mourshed, M.; Li, H. A critical review of environmental assessment tools for sustainable urban design. Environ. Impact Assess. Rev. 2015, 55, 110–125. [Google Scholar] [CrossRef]
- Jabareen, Y.R. Sustainable urban forms: Their typologies, models, and concepts. J. Plan. Educ. Res. 2006, 26, 38–52. [Google Scholar] [CrossRef]
- McFarlane, C. De/re-densification: A relational geography of urban density. City 2020, 24, 314–324. [Google Scholar] [CrossRef]
- Kasanko, M.; Barredo, J.I.; Lavalle, C.; McCormick, N.; Demicheli, L.; Sagris, V.; Brezger, A. Are European cities becoming dispersed? A comparative analysis of 15 European urban areas. Landsc. Urban Plan. 2006, 77, 111–130. [Google Scholar] [CrossRef]
- Bardhan, R.; Kurisu, K.; Hanaki, K. Does compact urban forms relate to good quality of life in high density cities of India? Case of Kolkata. Cities 2015, 48, 55–65. [Google Scholar] [CrossRef]
- He, S.; Yu, S.; Li, G.; Zhang, J. Exploring the influence of urban form on land-use efficiency from a spatiotemporal heterogeneity perspective: Evidence from 336 Chinese cities. Land Use Policy 2020, 95, 104576. [Google Scholar] [CrossRef]
- Faria, P.A.M.; Ferreira, F.A.F.; Jalali, M.S.; Bento, P.; Antonio, N.J.S. Combining cognitive mapping and MCDA for improving quality of life in urban areas. Cities 2018, 78, 116–127. [Google Scholar] [CrossRef]
- Sapena, M.; Wurm, M.; Taubenböck, H.; Tuia, D.; Ruiz, L.A. Estimating quality of life dimensions from urban spatial pattern metrics. Comput. Environ. Urban Syst. 2021, 85, 101549. [Google Scholar] [CrossRef]
- Ustaoglu, E.; Lopez, G.O.; Gutierrez-Alcoba, A. Building composite indicators for the territorial quality of life assessment in European regions: Combining data reduction and alternative weighting techniques. Environ. Dev. Sustain. 2023. [Google Scholar] [CrossRef]
- Thomas, L.; Cousins, W. The compact city: Successful, desirable and achievable? In The Compact City: A Sustainable Urban Form? Jenks, M., Burton, E., Williams, K., Eds.; E. & F.N. Spot: London, UK, 1996. [Google Scholar]
- Haaland, C.; van den Bosch, C.K. Challenges and strategies for urban green space planning in cities undergoing densification: A review. Urban For. Urban Green. 2015, 14, 760–771. [Google Scholar] [CrossRef]
- Breheny, M. (Ed.) Sustainable Development and Urban Form; Pion: London, UK, 1992. [Google Scholar]
- Williams, K.; Burton, E.; Jenks, M. (Eds.) Achieving Sustainable Urban Form; E. & F.N. Spot: London, UK, 2000. [Google Scholar]
- Shim, G.-E.; Rhee, S.-M.; Ahn, K.-H.; Chung, S.-B. The relationship between the characteristics of transportation energy consumption and urban form. Ann. Reg. Sci. 2006, 40, 351–367. [Google Scholar] [CrossRef]
- Fang, C.; Wang, S.; Li, G. Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities. Appl. Energy 2015, 158, 519–531. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Kamruzzaman, M. Does smart city policy lead to sustainability of cities? Land Use Policy 2018, 73, 49–58. [Google Scholar] [CrossRef]
- Mouratidis, K. Is compact city livable? The impact of compact versus sprawled neighbourhoods on neighbourhood satisfaction. Urban Stud. 2018, 55, 2408–2430. [Google Scholar] [CrossRef]
- Pourtaherian, P.; Jaeger, J.A.G. How effective are greenbelts at mitigating urban sprawl? A comparative study of 60 European cities. Landsc. Urban Plan. 2022, 227, 104532. [Google Scholar] [CrossRef]
- Kaklauskas, A.; Zavadskas, E.K.; Radzeviciene, A.; Ubarte, I.; Podviezko, A.; Podvezko, V.; Kuzminske, A.; Banaitis, A.; Binkyte, A.; Bucinskas, V. Quality of life multiple criteria analysis. Cities 2018, 72, 82–93. [Google Scholar] [CrossRef]
- Talmage, C.A.; Frederick, C. Quality of life, multimodality, and the demise of the autocentric metropolis: A multivariate analysis of 148 mid-size U.S. cities. Soc. Indic. Res. 2019, 141, 365–390. [Google Scholar] [CrossRef]
- Mouratidis, K. Urban planning and quality of life: A review of pathways linking the built environment to subjective well-bing. Cities 2021, 115, 103229. [Google Scholar] [CrossRef]
- Bovkır, R.; Ustaoglu, E.; Aydınoglu, A.C. Assessment of urban quality of life index at local scale with different weighting approaches. Soc. Indic. Res. 2023, 165, 655–678. [Google Scholar] [CrossRef]
- Komalawati, R.A.; Lim, J. Reality of compact development in a developing country: Focusing on perceived quality of life in Jakarta, Indonesia. Int. J. Urban Sci. 2021, 25, 542–573. [Google Scholar] [CrossRef]
- Wang, H.-C. Prioritizing compactness for a better quality of life: The case of U.S. cities. Cities 2022, 123, 103566. [Google Scholar] [CrossRef]
- Zoeteman, K.; Mommaas, H.; Dagevos, J. Are large cities more sustainable? Lessons from integrated sustainability monitoring in 403 Dutch municipalities. Environ. Dev. 2016, 17, 57–72. [Google Scholar] [CrossRef]
- Arifwidodo, S.D. Exploring the effect of compact development policy to urban quality of life in Bandung, Indonesia. City Cult. Soc. 2012, 3, 303–311. [Google Scholar] [CrossRef]
- Xiao, Y.; Chai, J.; Wang, R.; Huang, H. Assessment and key factors of urban liveability in underdeveloped regions: A case study of the Loess Plateau, China. Sustain. Cities Soc. 2022, 79, 103674. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, R. Remote sensing monitoring and driving force analysis of urban expansion in Guangzhou City, China. Habitat Int. 2010, 34, 228–235. [Google Scholar] [CrossRef]
- Xu, X.; Min, X. Quantifying spatiotemporal patterns of urban expansion in China using remote sensing data. Cities 2013, 35, 104–113. [Google Scholar] [CrossRef]
- Chen, J.; Chang, K.-T.; Karacsonyi, D.; Zhang, X. Comparing urban land expansion and its driving factors in Shenzhen and Dongguan, China. Habitat Int. 2014, 43, 61–71. [Google Scholar] [CrossRef]
- Schatz, E.-M.; Bovet, J.; Lieder, S.; Schroeter-Schlaack, C.; Strunz, S.; Marquard, E. Land take in environmental assessments: Recent advances and persisting challenges in selected EU countries. Land Use Policy 2021, 111, 105730. [Google Scholar] [CrossRef]
- EEA. Land Take in Europe. Indicator Specification; European Environment Agency: Copenhagen, Denmark, 2019. Available online: https://www.eea.europa.eu/data-and-maps/indicators/land (accessed on 9 August 2023).
- European Commission (EC). COM (2011) 571—Roadmap to a Resource Efficient Europe; Documentation and Data; European Commission: Brussels, Belgium, 2011. Available online: http://ec.europa.eu/environment/resource_efficiency/pdf/com2011_571.pdf (accessed on 15 August 2023).
- Commission of European Communities. Green Paper on the Urban Environment. Communication from the Commission to the Council and the Parliament; EUR 12902; EC: Brussels, Belgium, 1990. [Google Scholar]
- Burton, E. The compact city: Just or just compact? A preliminary analysis. Urban Stud. 2000, 37, 1969–2001. [Google Scholar] [CrossRef]
- Newman, P. The environmental impact of cities. Environ. Urban. 2006, 18, 275–295. [Google Scholar] [CrossRef]
- Williams, K. Spatial planning, urban form and sustainable transport: An introduction. In Spatial Planning, Urban Form and Sustainable Transport; Williams, K., Ed.; Ashgate: Hampshire, UK, 2005. [Google Scholar]
- Neumann, M. The compact city fallacy. J. Plan. Educ. Res. 2005, 25, 11–26. [Google Scholar] [CrossRef]
- ESPON. COMPASS—Comparative Analysis of Territorial Governance and Spatial Planning Systems in Europe; ESPON: Luxembourg, 2018. [Google Scholar]
- Williams, B.; Nedovic-Budic, Z. Transitions of spatial planning in Ireland: Moving from localised to a strategic national and regional approach. Plan. Pract. Res. 2023, 38, 639–658. [Google Scholar] [CrossRef]
- Nadin, V.; Fernandez Maldonado, A.M.; Zonneveld, W.; Stead, D. COMPASS—Comparative Analysis of Territorial Governance and Spatial Planning Systems in Europe: Applied Research 2016–2018 Final Report; ESPON: Luxembourg, 2018. [Google Scholar]
- Gold, J. Creating the Charter of Athens: CIAM and the Functional City 1933–1943. Town Plan. Rev. 1998, 69, 225–247. [Google Scholar] [CrossRef]
- Curtis, W. Modern Architecture since 1900; Phaidon: New York, NY, USA, 1986. [Google Scholar]
- Smętkowski, M.; Moore-Cherry, N.; Celinska-Janowicz, D. Spatial transformation, public policy and metropolitan governance: Secondary business districts in Dublin and Warsaw. Eur. Plan. Stud. 2021, 29, 1331–1352. [Google Scholar] [CrossRef]
- Harvey, D. The Limits to Capital; Blackwell: Oxford, UK, 1982. [Google Scholar]
- Kjærås, K. Towards a relational conception of the compact city. Urban Stud. 2020, 58, 1176–1192. [Google Scholar] [CrossRef]
- Redmond, D.; Yang, H. The centralization of planning policy: The case of apartment development. In Housing in Ireland: Beyond the Markets; Sirr, L., Ed.; Institute of Public Administration: Dublin, Ireland, 2022. [Google Scholar]
- Ahfeldt, G.M.; Pietrostefani, E. The Compact City in Empirical Research: A quantitative Literature Review; SERC Discussion Papers (SERCDP0215); Spatial Economics Research Centre, London School of Economics and Political Science: London, UK, 2017. [Google Scholar]
- Lennon, M.; Waldron, R. De-democratising the Irish planning system. Eur. Plan. Stud. 2019, 27, 1607–1625. [Google Scholar] [CrossRef]
- Russell, P.; Williams, B. Irish Urban Policy: From Benign Neglect to National Strategic Planning. In A Modern Guide to National Urban Policies in Europe; Edward Elgar Publishing: Cheltenham, UK, 2021. [Google Scholar]
- Briata, P.; Raco, M. The financialisation of urban policy in the UK: From area-based initiatives to area-based value-capture. In Identifying Models of National Urban Agendas: A View to the Global Transition; Gelli, F., Basso, M., Eds.; Palgrave Macmillan: London, UK, 2022. [Google Scholar]
- Hermann, D.L.; Schwarz, K.; Shuster, W.D.; Berland, A.; Chaffin, B.C.; Garmestani, A.S.; Hopton, M.E. Ecology for the shrinking city. Bioscience 2016, 66, 965–973. [Google Scholar] [CrossRef]
- Checkland, P.; Scholes, J. Soft Systems Methodology in Action; Wiley: Chichester, UK, 1990. [Google Scholar]
- EEA. Corine Land Cover Database; European Environment Agency: Copenhagen, Denmark, 2023.
- Eurostat. General and Regional Statistics Database. 2023. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 17 March 2023).
- Baranzelli, C.; Lavalle, C.; Sgobbi, A.; Aurambout, J.-P.; Trombetti, M.; Jacobs-Crisioni, C.; Cristobal, J.; Kancs, D.; Kavalov, B. Regional Patterns of Energy Production and Consumption Factors in Europe-Exploratory Project EREBILAND-European Regional Energy Balance and Innovation Landscape; European Union: Luxembourg, 2016. [Google Scholar]
- Teffera, Z.L.; Li, J.; Debsu, T.M.; Menegesha, B.Y. Assessing land use and land cover dynamics using composites of spectral indices and principal component analysis: A case study in middle Awash subbasin, Ethiopia. Appl. Geogr. 2018, 96, 109–129. [Google Scholar] [CrossRef]
- Jimenez-Fernandez, E.; Sanchez, A.; Sanchez Perez, E.A. Unsupervised machine learning approach for building composite indicators with fuzzy metrics. Expert Syst. Appl. 2022, 200, 116927. [Google Scholar] [CrossRef]
- Floridi, M.; Pagni, S.; Falorni, S.; Luzzati, T. An exercise in composite indicators construction: Assessing the sustainability of Italian regions. Ecol. Econ. 2011, 70, 1440–1447. [Google Scholar] [CrossRef]
- Mascarenhas, A.; Nunes, L.M.; Ramos, T.B. Selection of sustainability indicators for planning: Combining stakeholders’ participation and data reduction techniques. J. Clean. Prod. 2015, 92, 295–307. [Google Scholar] [CrossRef]
- Annoni, P.; Bolsi, P. The Regional Dimension of Social Progress in Europe: Presenting the New EU Social Progress Index; Working Paper WP 06/2020; Publication Office of the EU: Luxembourg, 2020. [Google Scholar]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Saaty, T.L. Tha Analytic Hierarchy Process; McGraw Hill: New York, NY, USA, 1980. [Google Scholar]
- Liu, P.; Zhu, B.; Wang, P. A weighting model based on best-worst method and its application for environmental performance evaluation. Appl. Soft Comput. 2021, 103, 107168. [Google Scholar] [CrossRef]
- Rosalina, V.; Agustiawan, W.; Purnamasari, A. A decision support system for determining the best customer using the Simple Multi-Attribute Rating Technique (SMART). Int. J. Inf. Technol. Comput. Sci. Appl. 2023, 1, 58–65. [Google Scholar] [CrossRef]
- Yang, X.; Xu, Z.; Xu, J. Large-scale group Delphi method with heterogeneous decision information and dynamic weights. Expert Syst. Appl. 2023, 213, 118782. [Google Scholar] [CrossRef]
- Wu, H.-W.; Li, E.-Q.; Sun, Y.-Y.; Dong, B.-T. Research on the operation safety evaluation of urban rail stations based on the improved TOPSIS method and entropy weight method. J. Rail. Transp. Plan. Manag. 2021, 20, 100262. [Google Scholar] [CrossRef]
- Pang, J.; Liang, J.; Song, P. An adaptive consensus method for multi-attribute group decision making under uncertain linguistic environment. Appl. Soft Comput. 2017, 58, 339–353. [Google Scholar] [CrossRef]
- Liu, B.; Shen, Y.; Chen, Y.; Chen, X.; Wang, Y. A two-layer weight determination method for complex multi-attribute large-group decision-making experts in a linguistic environment. Inf. Fusion 2015, 23, 156–165. [Google Scholar] [CrossRef]
- Chen, Z.; Zhong, P.; Liu, M.; Ma, Q.; Si, G. An integrated expert weight determination method for design concept evaluation. Sci. Rep. 2022, 12, 6358. [Google Scholar] [CrossRef]
- Zhang, H.; Peng, Y.; Tian, G.; Wang, D.; Xie, P. Green material selection for sustainability: A hybrid MCDM approach. PLoS ONE 2017, 12, e0177578. [Google Scholar] [CrossRef]
- Rosic, M.; Pesic, D.; Kukic, D.; Antic, B.; Bozovic, M. Methods for selection of optimal road safety composite index with examples from DEA and TOPSIS method. Accid. Anal. Prev. 2017, 98, 277–286. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, Y.B.; Zhang, J.; Lv, X.G. Improved TOPSIS model and its application in the evaluation of NCAA basketball coaches. Mod. Appl. Sci. 2015, 9, 259–268. [Google Scholar] [CrossRef]
- Lee, C.M.; Chou, H.H. Green growth in Taiwan—An application of the oecd green growth monitoring indicators. Singap. Econ. Rev. 2018, 63, 249–274. [Google Scholar] [CrossRef]
- El Gibari, S.; Gomez, T.; Ruiz, F. Building composite indicators using multicriteria methods: A review. J. Buss. Econ. 2019, 89, 1–24. [Google Scholar] [CrossRef]
- Correa Machado, A.M.; Ekel, P.I.; Liborio, M.P. Goal-based participatory weighting scheme: Balancing objectivity and subjectivity in the construction of composite indicators. Qual. Quant. 2023, 57, 4387–4407. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell. Syst. Tech. J. 1948, 27, 623–656. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; The University of Illinois Press: Champaign, IL, USA, 1947. [Google Scholar]
- Mazziotta, M.; Pareto, A. Use and misuse of PCA for measuring well-being. Soc. Indic. Res. 2019, 142, 451–476. [Google Scholar] [CrossRef]
- Liborio, M.P.; Karagiannis, R.; Diniz, A.M.A.; Ekel, P.I.; Vieira, D.A.G.; Ribeiro, L.C. The use of information entropy and expert opinion in maximizing the discriminating power of composite indicators. Entropy 2024, 26, 143. [Google Scholar] [CrossRef]
- Gan, X.; Fernandez, I.C.; Guo, J.; Wilson, M.; Zhao, Y.; Zhou, B.; Wu, J. When to use what: Methods for weighting and aggregating sustainability indicators. Ecol. Indic. 2017, 81, 491–502. [Google Scholar] [CrossRef]
- Munda, G. Multiple criteria decision analysis and sustainable development. In Multiple Criteria Decision Analysis: State of the Art Surveys; Figueira, J., Greco, S., Ehrgott, M., Eds.; Springer: New York, NY, USA, 2005. [Google Scholar]
- Rowley, H.V.; Peters, G.M.; Lundie, S.; Moore, S.J. Aggregating sustainability indicators: Beyond the weighted sum. J. Environ. Manag. 2012, 111, 24–33. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A meta-analysis of global urban land expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef]
- Burton, E. Measuring urban compactness in UK towns and cities. Environ. Plan. B 2002, 29, 219–250. [Google Scholar] [CrossRef]
- Chen, H.; Jia, B.; Lau, S.S.Y. Sustainable urban form for Chinese compact cities: Challenges of a rapid urbanized economy. Habitat Int. 2008, 32, 28–40. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Anselin, L. Local indicators of spatial association-LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Anselin, L.; Syabri, I.; Smirnov, O. Visualizing multivariate spatial correlation with dynamically linked windows. In New Tools for Spatial Data Analysis: Proceedings of the Specialist Meeting; Anselin, L., Rey, S., Eds.; Center for Spatially Integrated Social Science (CSISS), University of California: Santa Barbara, CA, USA, 2002. [Google Scholar]
- Jackson, L.E. The relationship of urban design to human health and condition. Landsc. Urban Plan. 2003, 64, 191–200. [Google Scholar] [CrossRef]
- Berman, M.A. The transportation effects of neo-traditional development. J. Plan. Lit. 1996, 10, 347–363. [Google Scholar] [CrossRef]
- Cervero, R. Mixed land-uses and commuting: Evidence from the American housing survey. Transp. Res. A 1996, 30, 361–377. [Google Scholar] [CrossRef]
- De Roo, G. Environmental conflicts in compact cities: Complexity, decision-making, and policy approaches. Environ. Plan. B Plan. Des. 2000, 27, 151–162. [Google Scholar] [CrossRef]
- Angel, S.; Blei, A.M. The productivity of American cities: How densification, relocation, and greater mobility sustain the productive advantage of larger U.S. metropolitan labor markets. Cities 2016, 51, 36–51. [Google Scholar] [CrossRef]
- Valecia, V.H.; Levin, G.; Ketzel, M. Densification versus urban sprawl. Modeling the impact of two urban growth scenarios on air quality. Atmosp. Environ. 2023, 310, 119963. [Google Scholar] [CrossRef]
- OECD. Compact City Policies: A Comparative Assessment; OECD Green Growth Studies; OECD Publishing: Paris, France, 2012. [Google Scholar]
- Eurostat. General Government Expenditure in the EU in 2018. Eurostat Newsrelease 33/2020. 2020. Available online: https://ec.europa.eu/eurostat/documents/2995521/10474879/2-27022020-AP-EN.pdf/4135f313-1e3f-6928-b1fd-816649bd424b (accessed on 9 February 2024).
- Eurostat. Regions in Europe-2023 Edition. 2023. Available online: https://ec.europa.eu/eurostat/web/interactive-publications/regions-2023#environment (accessed on 9 February 2024).
- EU. Major Circular Economy Networks in Europe; Institut National de l’Economie Circulaire: Paris, France, 2020; Available online: https://circulareconomy.europa.eu/platform/sites/default/files/majorcirculareconomynetworks_1.pdf (accessed on 9 February 2024).
- EEA. Urban Sprawl in Europe: The Ignored Challenge; EEA Report No. 10/2006; European Environment Agency: Copenhagen, Denmark, 2006.
- European Commission (EC). Investment for Jobs and Growth: Promoting Development and Good Governance in EU Regions and Cities. Sixth Report on Economic, Social and Territorial Cohesion; EC: Luxembourg, 2014. [Google Scholar]
- Roose, A.; Kull, A.; Gauk, M.; Tali, T. Land use policy shocks in the post-communist urban fringe: A case study of Estonia. Land Use Policy 2013, 30, 76–83. [Google Scholar] [CrossRef]
- Suditu, B.; Ginavar, A.; Muica, A.; Lordachescu, C.; Vardol, A.; Ghinea, B. Urban sprawl characteristics and typologies in Romania. J Stud. Res. Hum. Geogr. 2010, 4, 79–87. [Google Scholar]
- EEA. Urban Sprawl in Europe. Joint EEA-FOEN Report; EEA Report No. 11/2016; European Environment Agency: Copenhagen, Denmark, 2016.
- Chen, M.; Liu, W.; Lu, D. Challenges and the way forward in China’s new-type urbanization. Land Use Policy 2016, 55, 334–339. [Google Scholar] [CrossRef]
- Breheny, M. The compact city and transport energy consumption. Trans. Inst. Br. Geogr. 1995, 20, 81–101. [Google Scholar] [CrossRef]
- Breheny, M. Urban compaction: Feasible and acceptable? Cities 1997, 14, 209–217. [Google Scholar] [CrossRef]
- Dempsey, N.; Brown, C.; Bramley, G. The key to sustainable urban development in UK cities? The influence of density on social sustainability. Prog. Plan. 2012, 77, 89–141. [Google Scholar] [CrossRef]
- Carrus, G.; Scopelliti, M.; Lafortezza, R.; Colangelo, G.; Ferrini, F.; Salbitano, F.; Agrimi, M.; Portoghesi, L.; Semenzato, P.; Sanesi, G. Go greener, feel better? The positive effects of biodiversity on the well- being of individuals visiting urban and peri-urban green areas. Landsc. Urban Plan. 2015, 134, 221–228. [Google Scholar] [CrossRef]
- Morrison, P.S. Local expressions of subjective well-being: The New Zealand experience. Reg. Stud. 2011, 45, 1039–1058. [Google Scholar] [CrossRef]
- Coppola, P.; Papa, E.; Angiello, G.; Carpentieri, G. Urban form and sustainability: The case study of Rome. Procedia-Soc. Behav. Sci. 2014, 160, 557–566. [Google Scholar] [CrossRef]
- Gatrell, J.D.; Jensen, R.R.; Patterson, M.; Hoalst-Pullen, N. Urban Sustainability: Policy and Praxis; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Wang, Y.; Shaw, D. The complexity of high-density neighbourhood development in China: Intensification, deregulation and social sustainability challenges. Sustain. Cities Soc. 2018, 43, 578–586. [Google Scholar] [CrossRef]
- Kwon, D.; Oh, S.E.S.; Choi, S.; Kim, B.H.S. Viability of compact cities in the post-COVID-19 era: Subway ridership variations in Seoul Korea. Ann. Reg. Sci. 2023, 71, 175–203. [Google Scholar] [CrossRef]
- Sinclair-Smith, K. Polycentric development in the Cape Town city-region: Emprical assessment and consideration of spatial policy implications. Dev. S. Afr. 2015, 32, 131–150. [Google Scholar] [CrossRef]
- Williams, K.; Burton, E.; Jenks, M. Achieving the compact city through intensification: An acceptable option? In The Compact City: A Sustainable Urban Form? Jenks, M., Burton, E., Williams, K., Eds.; E&FN Spon: London, UK, 1996. [Google Scholar]
- Bretherton, J.; Pleace, N. Residents’ Views of New Forms of High Density Affordable Living. What Do Claimants Think? Chartered Institute of Housing: Coventry, UK, 2008. [Google Scholar]
- Ustaoglu, E.; Williams, B. Institutional settings and effects on agricultural land conversion: A global and spatial analysis of European regions. Land 2023, 12, 47. [Google Scholar] [CrossRef]
- Dombi, M. Type of planning systems and effects on construction material volumes: An explanatory analysis in Europe. Land Use Policy 2021, 109, 105682. [Google Scholar] [CrossRef]
- Williams, B.; Convery, S. Decision Support Tools for Managing the Urban Environment in Ireland; Environment Protection Agency: Wexford, Ireland, 2012.
- Williams, B.; Shahumyan, H. Exploring transport and land use impacts. Examples of urban modelling and spatial analytical tools. In Urban Spatial Economics: Making Places and Spaces; Williams, B., Ed.; McGraw Hill: Maidenhead, UK, 2019. [Google Scholar]
- Valenzuela, L.M.; Tısı, R.; Helle, L. High density architecture as local factory of circular economy. Int. J. Sustain. Dev. Plan. 2018, 13, 985–996. [Google Scholar] [CrossRef]
- Li, Y. Towards concentration and decentralisation: The evolution of urban spatial structure of Chinese cities, 2001–2016. Comput. Environ. Urban Syst. 2020, 80, 101425. [Google Scholar] [CrossRef]
- Meijers, E.J.; Burger, M.J. Spatial structure and productivity in US metropolitan areas. Environ. Plan. A 2010, 42, 1383–1402. [Google Scholar] [CrossRef]
- Kuno, G.; Pradipto. Non-trivial relationship between scaling behaviour and the spatial organisation of GDP in Indonesian cities. PLoS ONE 2022, 17, e0277433. [Google Scholar] [CrossRef]
- Kotharkar, R.; Bahadure, P.; Sarda, N. Measuring compact urban form: A case of Nagpur city, India. Sustainability 2014, 6, 4246–4272. [Google Scholar] [CrossRef]
- Fan, P.; Lee, Y.-C.; Ouyang, Z.; Huang, S.-L. Compact and green urban development-towards a framework to assess urban development for a high-density metropolis. Environ. Res. Lett. 2019, 14, 115006. [Google Scholar] [CrossRef]
- Hamidi, S.; Zandiatashbar, A. Does urban form matter for innovation productivity? A national multi-level study of the association between neighbourhood innovation capacity and urban sprawl. Urban Stud. 2019, 56, 1576–1594. [Google Scholar] [CrossRef]
- Bereitschaft, B. Exploring the spatial intersection of small firm innovation, urban form and demographics in the Washington, DC, Metropolitan Area. Prof. Geogr. 2023, 75, 1006–1023. [Google Scholar] [CrossRef]
- Kang, J.E.; Yoon, D.K.; Bae, H.-J. Evaluating the effect of compact urban form on air quality in Korea. Environ. Plan. B 2019, 46, 179–200. [Google Scholar] [CrossRef]
- Fan, C.; Tian, L.; Zhou, L.; Hou, D.; Song, Y.; Qiao, X.; Li, J. Examining the impacts of urban form on air pollutant emissions: Evidence from China. J. Environ. Manag. 2018, 212, 405–414. [Google Scholar] [CrossRef]
- Wilson, B. Urban form and residential electricity consumption: Evidence from Illinois, USA. Landsc. Urban Plan. 2013, 115, 62–71. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Matsuoka, R.H.; Liang, T.M. Urban form, building characteristics, and residential energy consumption: A case study in Tainan city. Environ. Plan. B 2018, 45, 933–952. [Google Scholar]
- Woldesemayat, E.M.; Genovese, P.V. Land use areas in Addis Ababa, Ethiopia, and their relationship with urban form. Land 2021, 10, 85. [Google Scholar] [CrossRef]
- Tappert, S.; Klöti, T.; Drilling, M. Contested urban green spaces in the compact city: The (re-)negotiation of urban gardening in Swiss cities. Landsc. Urban Plan. 2018, 170, 69–78. [Google Scholar] [CrossRef]
- Artmann, M.; Inostroza, L.; Fan, P. Urban sprawl, compact urban development and green cities. How much do we know, how much do we agree? Ecol. Indic. 2019, 96, 3–9. [Google Scholar] [CrossRef]
- Derudder, B.; Meijers, E.; Harrison, J.; Hoyler, M.; Liu, X. Polycentric urban regions: Conceptualisation, identification and implications. Reg. Stud. 2022, 56, 1–6. [Google Scholar] [CrossRef]
- Churchman, A. Disentangling the concept of density. J. Plan. Lit. 1999, 13, 389–411. [Google Scholar] [CrossRef]
- Mouratidis, K. Compact city, urban sprawl, and subjective well-being. Cities 2019, 92, 261–272. [Google Scholar] [CrossRef]
Index | Equation |
---|---|
Average annual residential land expansion rate (RE) (%) | |
where R1 is the total residential built area at the initial time period, R2 is the total residential built area at the final time period, and T is the time period. | |
Average annual residential land expansion intensity rate (RI) (%) | |
where the expressions are the same as those for the residential land expansion rate. | |
Average annual population growth rate (PR) (%) | |
where P1 is the total population at the initial time period, P2 is the total population at the final time period, and T is the time period. | |
Population growth-to-residential land expansion ratio (PRL) (%) | |
where PR and RE are as defined previously. | |
Urban population density (PD) (persons per km2) | |
where Pi is the total population and Ri is the residential built-up area in year i. | |
Decoupling indicator (DI) | |
where R is the percent change in the residential built-up area and percent change in total GDP. |
Capitals and Stocks | Indicators (Impact) | Weights |
---|---|---|
Economic capital (ECON_C) | 1. Employment in science and technology (+) | 0.0355 |
2. Total employment in Circular Business Model (CBM) sectors (+) | 0.0093 | |
3. Higher education attainment rate (+) | 0.0437 | |
4. Lifelong learning (+) | 0.0437 | |
5. Share of areas in a region that have poor access to primary schools (−) | 0.0364 | |
6. Share of areas in a region that have poor access to closest doctors (−) | 0.0365 | |
7. Share of areas in a region that have poor access to urban morphological centre (−) | 0.0285 | |
8. Share of areas in a region that have poor access to cinemas (−) | 0.0181 | |
Social-cultural capital (SC_C) | 9. Control of corruption (+) | 0.0345 |
10. Crime (−) | 0.0361 | |
11. Assaulted/mugged (−) | 0.0364 | |
12. Housing quality (+) | 0.0439 | |
13. Early school leavers (−) | 0.0424 | |
14. Cancer diseases death rate (−) | 0.0552 | |
15. Life expectancy (+) | 0.0428 | |
16. Unmet medical meets (−) | 0.0151 | |
17. Insufficient food (−) | 0.0228 | |
Ecological capital (ECOL_C) | 18. Average Ozone3 concentration (−) | 0.0492 |
19. Emissions of CO2 per capita (−) | 0.0101 | |
20. Electricity produced by renewable energy resources (+) | 0.0479 | |
21. Municipal solid waste recycling rate (+) | 0.0456 | |
22. Water Retention Index (+) | 0.0472 | |
23. Freshwater consumption per capita (−) | 0.0022 | |
24. Soil retention (+) | 0.0170 | |
25. Forest area within a region (+) | 0.0409 | |
26. Area of NATURA2000 sites relative to regional area (+) | 0.0504 | |
27. Share of urban area in protected areas (−) | 0.0052 | |
28. Development of urban use per capita (−) | 0.0593 | |
29. Change in annual mean number of days with snow cover (−) | 0.0329 | |
Bartlett’s test | ||
Chi-square: 2876.339 | ||
Degrees of freedom: 406 | ||
p-value: 0.000 | ||
Kaiser–Meyer–Olkin measure of sampling adequacy | ||
KMO = 0.609 |
Dependent Variable | MODEL 1 TOTAL_SC | MODEL 2 SC_C | MODEL 3 ECON_C | MODEL 4 ECOL_C |
---|---|---|---|---|
Independent variables 1 | ||||
W_dependent variable | 0.256 ** (0.02) 2 | 0.216 **4 (0.03) | 0.169 ** (0.04) | 0.461 ** (0.03) |
RE | −0.004 * (0.01) | 0.008 ** (0.01) | −0.007 * (0.01) | −0.009 ** (0.01) |
PR | 0.047 ** (0.01) | 0.085 ** (0.01) | 0.072 ** (0.01) | 0.007 (0.001) |
PRL | −0.001 (0.01) | −0.001 (0.01) | 0.001 (0.01) | 0.001 (0.01) |
PD_00 | −2.581 * (1.56) | −6.708 ** (2.18) | 1.882 * (0.78) | 1.471 * (0.691) |
DI | −0.001 (0.01) | −0.001 (0.01) | −0.001 (0.01) | −0.001 (0.01) |
Constant | 0.382 ** (0.02) | 0.508 ** (0.02) | 0.423 ** (0.02) | 0.226 ** (0.02) |
Number of observations | 226 | 226 | 226 | 226 |
R-square | 0.46 | 0.49 | 0.28 | 0.54 |
Adjusted R-square | 0.45 | 0.48 | 0.27 | 0.53 |
Breusch–Pagan test | 2.273 [0.811] 3 | 8.399 [0.135] | 6.694 [0.244] | 1.262 [0.938] |
LR test for spatial lag dependence | 82.853 [0.000] | 56.409 [0.000] | 17.111 [0.000] | 135.76 [0.000] |
Root MSE | 0.046 | 0.065 | 0.083 | 0.051 |
Dependent Variable | MODEL 1 TOTAL_SC | MODEL 2 SC_C | MODEL 3 ECON_C | MODEL 4 ECOL_C |
---|---|---|---|---|
Independent variables 1 | ||||
Lamda | 0.832 ** (0.03) 2 | 0.801 **4 (0.04) | 0.499 ** (0.07) | 0.691 ** (0.02) |
RE | −0.007 ** (0.01) | 0.004 ** (0.01) | −0.012 ** (0.01) | −0.011 ** (0.01) |
PR | 0.034 ** (0.01) | 0.049 ** (0.01) | 0.064 ** (0.01) | 0.007 (0.01) |
PRL | 0.001 (0.01) | 0.001 (0.01) | 0.001 (0.01) | 0.001 (0.01) |
PD_00 | 1.470 (1.37) | −3.087 * (1.824) | 6.376 ** (2.88) | 0.758 * (0.69) |
DI | −0.001 (0.01) | −0.001 (0.01) | −0.001 (0.01) | −0.001 (0.01) |
Constant | 0.451 ** (0.01) | 0.618 ** (0.02) | 0.494 ** (0.01) | 0.291 ** (0.01) |
Number of observations | 226 | 226 | 226 | 226 |
R-square | 0.69 | 0.74 | 0.42 | 0.65 |
Adjusted R-square | 0.68 | 0.73 | 0.41 | 0.64 |
Breusch–Pagan test | 0.632 [0.986] 3 | 1.560 [0.541] | 4.594 [0.467] | 3.317 [0.651] |
LR test for spatial lag dependence | 159.54 [0.000] | 160.32 [0.000] | 44.755 [0.000] | 144.986 [0.00] |
Root MSE | 0.035 | 0.046 | 0.076 | 0.043 |
Variable | TOTAL_SC | RE | RI | PR | PU | PD_00 | PD_18 | DI |
---|---|---|---|---|---|---|---|---|
Moran’s Index | 0.3396 | 0.313 | 0.1938 | 0.1703 | 0.1699 | 0.1154 | 0.0379 | −0.0062 |
Variance | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0001 | 0.0004 | 0.0004 | 0.0002 |
Z-Score | 18.121 | 15.944 | 10.461 | 9.221 | 16.1816 | 6.3757 | 2.251 | −0.1091 |
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.9131 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ustaoglu, E.; Williams, B. The Inter-Relationships of Territorial Quality of Life with Residential Expansion and Densification: A Case Study of Regions in EU Member Countries. Urban Sci. 2024, 8, 22. https://doi.org/10.3390/urbansci8010022
Ustaoglu E, Williams B. The Inter-Relationships of Territorial Quality of Life with Residential Expansion and Densification: A Case Study of Regions in EU Member Countries. Urban Science. 2024; 8(1):22. https://doi.org/10.3390/urbansci8010022
Chicago/Turabian StyleUstaoglu, Eda, and Brendan Williams. 2024. "The Inter-Relationships of Territorial Quality of Life with Residential Expansion and Densification: A Case Study of Regions in EU Member Countries" Urban Science 8, no. 1: 22. https://doi.org/10.3390/urbansci8010022
APA StyleUstaoglu, E., & Williams, B. (2024). The Inter-Relationships of Territorial Quality of Life with Residential Expansion and Densification: A Case Study of Regions in EU Member Countries. Urban Science, 8(1), 22. https://doi.org/10.3390/urbansci8010022