Assessment of Shoreline Changes for the Selangor Coast, Malaysia, Using the Digital Shoreline Analysis System Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Shoreline Analysis
2.4. Shoreline Changes Prediction
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- 52nd Session of the IPCC Paris, France, 24–28 February 2020—Final Report of the Task Group on the Organization of the Future Work of the IPCC in Light of the Global Stocktake, IPCC LII/Doc. 5. 2020. Available online: https://www.ipcc.ch/site/assets/uploads/2019/12/120220200944Doc.5futureworkIPCC.pdf (accessed on 25 May 2022).
- Mohd, F.A.; Abdul Maulud, K.N.; Karim, A.O.; Begum, R.A.; Awang, N.; Ahmad, A.; Azhary, W.A.H.W.M.; Kamarudin, M.K.A.; Jaafar, M.; Mohtar, W.H.W. Comprehensive Coastal Vulnerability Assessment and Adaptation for Cherating-Pekan Coast, Pahang, Malaysia. Ocean Coast. Manag. 2019, 182, 104948. [Google Scholar] [CrossRef]
- Rudiarto, I.; Handayani, W.; Sih Setyono, J. A regional perspective on urbanization and climate-related disasters in the northern coastal region of central Java, Indonesia. Land 2018, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.I.; Rahmat, N.H. The effect of coastline changes to local community’s social economic. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives, Kuala Lumpur, Malaysia, 3–5 October 2016; pp. 25–36. [Google Scholar]
- Daud, S.; Milow, P.; Zakaria, R.M. Analysis of shoreline change trends and adaptation of Selangor Coastline, Using Landsat Satellite Data. J. Indian Soc. Remote Sens. 2021, 49, 1869–1878. [Google Scholar] [CrossRef]
- Bilskie, M.V.; Hagen, S.C. Defining flood zone transitions in low-gradient coastal regions. Geophys. Res. Lett. 2018, 45, 2761–2770. [Google Scholar] [CrossRef]
- Mohd, F.A.; Maulud, K.N.A.; Begum, R.A.; Selamat, S.N.; Karim, O.A. Impact of Shoreline Changes to Pahang Coastal Area by Using Geospatial Technology. Sains Malays. 2018, 47, 991–997. [Google Scholar] [CrossRef]
- Department of Irrigation and Drainge. National Coastal Erosion Study. 2015. Available online: http://nces.water.gov.my/nces/about (accessed on 20 April 2022).
- Mohamed Rashidi, A.H.; Jamal, M.H.; Hassan, M.Z.; Mohd Sendek, S.S.; Mohd Sopie, S.L.; Abd Hamid, M.R. Coastal structures as beach erosion control and sea level rise adaptation in malaysia: A review. Water 2021, 13, 1741. [Google Scholar] [CrossRef]
- Noor, N.M.; Abdul Maulud, K.N. Coastal Vulnerability: A Brief Review on Integrated Assessment in Southeast Asia. J. Mar. Sci. Eng. 2022, 10, 595. [Google Scholar] [CrossRef]
- Himmelstoss, E.A. DSAS 4.0 Installation Instructions and User Guide. In 2009 Digital Shoreline Analysis System (DSAS) Version 4.0—An ArcGIS Extension for Calculating Shoreline Change: U.S. Geological Survey Open File Report 2008-1278; Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., Ergul, A., Eds.; U.S. Geological Survey: Reston, VA, USA.
- Selamat, S.N.; Maulud, K.N.A.; Mohd, F.A.; Rahman, A.A.A.; Zainal, M.K.; Wahid, M.A.A.; Awang, N.A. Multi method analysis for identifying the shoreline erosion during northeast monsoon season. J. Sustain. Sci. Manag. 2019, 14, 43–54. [Google Scholar]
- Thieler, E.R.; Himmelstoss, E.A.; Zichichi, J.L.; Ergul, A. The Digital Shoreline Analysis System (DSAS), Version 4.0; U.S. Geological Survey: Reston, VA, USA, 2017.
- Moussaid, J.; Ait Flora, A.; Zourarah, B.; Maanan, M. Using automatic computation to analyze the rate of shoreline change on the Kenitra coast, Morocco. Ocean. Eng. 2015, 102, 71–77. [Google Scholar] [CrossRef]
- Yanalagaran, R.; Ramli, N.I. Assessment of coastal erosion related to wind characteristics in peninsular Malaysia. J. Eng. Sci. Technol. 2018, 13, 3677–3690. [Google Scholar]
- Sheeja, P.S.; Ajay Gokul, A.J. Application of Digital Shoreline Analysis System in Coastal Erosion Assessment. Int. J. Eng. Sci. Comput. 2016, 6, 7876–7883. [Google Scholar]
- Terres de Lima, L.; Fernández-Fernández, S.; Marcel de Almeida Espinoza, J.; da Guia Albuquerque, M.; Bernardes, C. End point rate tool for QGIS (EPR4Q): Validation using DSAS and AMBUR. ISPRS Int. J. Geo-Inf. 2021, 10, 162. [Google Scholar] [CrossRef]
- Fitri, A.; Hashim, R.; Abolfathi, S.; Abdul Maulud, K.N. Dynamics of sediment transport and erosion-deposition patterns in the locality of a detached low-crested breakwater on a cohesive coast. Water 2019, 11, 1721. [Google Scholar] [CrossRef]
- Vitousek, S.; Barnard, P.L.; Limber, P.; Erikson, L.; Cole, B. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change. J. Geophys. Res. Earth Surf. 2017, 122, 782–806. [Google Scholar] [CrossRef]
- Jahi, J.M. Pembangunan Pelancongan dan Impaknya terhadap Persekitaran Fizikal Pinggir Pantai. Malays. J. Environ. Manag. 2009, 10, 71–88. [Google Scholar]
- Asmawi, M.Z.; Ibrahim, A.N. The Perception of Community on Coastal Erosion Issue in Selangor, Malaysia. J. Clean Energy Technol. 2013, 1, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, M.; Zaiton Ibrahim, Z.; Mansor, S.; Manaf, L.A.; Akhir, M.F.; Talaat, W.I.A.W.; Beiranvand Pour, A. Land-Use Suitability Assessment Using Delphi and Analytical Hierarchy Process (D-AHP) Hybrid Model for Coastal City Management: Kuala Terengganu, Peninsular Malaysia. ISPRS Int. J. Geo-Inf. 2021, 10, 621. [Google Scholar] [CrossRef]
- Sakawi, Z.; Awang, A.H. Local Knowledge of Coastal Community to Sea Level Rise and Climate Change. Eur. J. Multidiscip. Stud. 2017, 4, 128–136. [Google Scholar]
- Hashim, A.M.; Noor, N.D.M. Performance Evaluation of Innovative Concrete Armor Unit for Coastal Protection Structure. In Proceedings of the 2013 IEEE Business Engineering and Industrial Applications Colloquium (BEIAC), Langkawi, Malaysia, 7–9 April 2013; pp. 648–653. [Google Scholar]
- Esmail, M.; Mahmod, W.E.; Fatha, H. Assessment and prediction of shoreline change using multi-temporal satellite images and statistics: Case study of Damietta coast. Egypt Appl. Ocean Res. 2019, 82, 274–282. [Google Scholar] [CrossRef]
- Garrote, J.; Díaz-Álvarez, A.; Nganhane, H.V.; Garzón Heydt, G. The Severe 2013–14 Winter Storms in the Historical Evolution of Cantabrian (Northern Spain) Beach-Dune Systems. Geosciences 2018, 8, 459. [Google Scholar] [CrossRef] [Green Version]
- Zecchin, M.; Catuneanu, O.; Caffau, M. Wave-ravinement surfaces: Classification and key characteristics. Earth-Sci. Rev. 2019, 188, 210–239. [Google Scholar] [CrossRef]
- Quang, D.N.; Ngan, V.H.; Tam, H.S.; Viet, N.T.; Tinh, N.X.; Tanaka, H. Long-Term Shoreline Evolution Using DSAS Technique: A Case Study of Quang Nam Province, Vietnam. J. Mar. Sci. Eng. 2021, 9, 1124. [Google Scholar] [CrossRef]
- Phong, N.T.; Quang, N.H.; Van Sang, T. Shoreline change and community-based climate change adaptation: Lessons learnt from Brebes Regency, Indonesia. Ocean. Coast. Manag. 2022, 218, 106037. [Google Scholar] [CrossRef]
- Emam, W.W.; Soliman, K.M. Applying geospatial technology in quantifying spatiotemporal shoreline dynamics along Marina El-Alamein Resort, Egypt. Environ. Monit. Assess. 2020, 192, 459. [Google Scholar] [CrossRef]
- Hamzah, M.L.; Amir, A.A.; Maulud, K.N.A.; Sharma, S.A.H.; Mohd, F.A.; Selamat, S.N.; Begum, R.A. Assessment of the mangrove forest changes along the pahang coast using remote sensing and gis technology. J. Sustain. Sci. Manag. 2020, 15, 43–58. [Google Scholar] [CrossRef]
No. | Study Area | Latitude | Longitude |
---|---|---|---|
1 | Bagan Nakhoda Omar | 3° 46′ 01.84″ N | 100° 52′ 22.45″ E |
2 | Sungai Pulai | 3° 43′ 28.76″ N | 100° 55′ 02.15″ E |
3 | Bagan Sungai Burong | 3° 41′ 25.75″ N | 100° 55′ 59.70″ E |
4 | Kg Haji Dorani | 3° 38′ 14.30″ N | 101° 01′ 04.99″ E |
5 | Sungai Nibong | 3° 35′ 35.47″ N | 101° 03′ 20.59″ E |
6 | Bagan Pasir | 3° 23′ 55.91″ N | 101° 10′ 12.14″ E |
7 | Pantai Jeram | 3° 13′ 31.25″ N | 101° 18′ 17.26″ E |
8 | Bagan Sungai Janggut | 3° 10′ 19.79″ N | 101° 18′ 17.26″ E |
9 | Pantai Kelanang | 2° 47′ 18.56″ N | 101° 24′ 43.19″ E |
10 | Kg Batu Laut | 2° 43′ 41.16″ N | 101° 27′ 20.45″ E |
11 | Tg Sepat | 2° 39′ 27.87″ N | 101° 33′ 19.05″ E |
Type of Data | Date of Acquisition | Spatial Resolution/Scale |
---|---|---|
Topographic | 1993 | 1: 50 000 |
SPOT 5 | 14/12/2004 | 2.5 m |
03/04/2005 | 2.5 m | |
10/09/2006 | 2.5 m | |
07/06/2007 | 2.5 m | |
13/11/2005 | 2.5 m | |
25/04/2013 | 2.5 m | |
01/09/2014 | 2.5 m | |
04/05/2014 | 2.5 m |
Study Area | Min (m) | Max (m) |
---|---|---|
Bagan Nakhoda Omar | 8.47 | 429.50 |
Sungai Pulai | 103.40 | 317.39 |
Bagan Sungai Burong | 14.24 | 1527.00 |
Kg Haji Dorani | 7.10 | 170.07 |
Sungai Nibong | 12.22 | 180.43 |
Bagan Pasir | 62.88 | 634.17 |
Pantai Jeram | 1.12 | 211.19 |
Bagan Sungai Janggut | 0.89 | 179.12 |
Pantai Kelanang | 0.93 | 280.30 |
Kg Batu Laut | 19.57 | 242.03 |
Tg Sepat | 2.53 | 325.30 |
Erosion (m) | Accretion | |||||
---|---|---|---|---|---|---|
Study Area | Max | Min | % | Max | Min | (%) |
Bagan Nakhoda Omar | 246.04 | 4.21 | 76.2 | 343.92 | 1.33 | 23.8 |
Sungai Pulai | 317.39 | 103.40 | 100.0 | 0 | 0 | 0.0 |
Bagan Sungai Burong | 471.26 | 43.65 | 38.5 | 1527.06 | 14.24 | 61.5 |
Kg Haji Dorani | 170.07 | 4.32 | 97.6 | 41.34 | 9.15 | 2.4 |
Sungai Nibong | 113.35 | 0.12 | 38.5 | 164.84 | 0.40 | 61.5 |
Bagan Pasir | 634.17 | 27.53 | 98.4 | 91.66 | 9.22 | 1.6 |
Pantai Jeram | 145.91 | 0.20 | 79.7 | 211.19 | 0.38 | 20.3 |
Bagan Sungai Janggut | 179.12 | 0.89 | 90.7 | 85.05 | 2.49 | 9.3 |
Pantai Kelanang | 258.32 | 0.93 | 72.2 | 142.54 | 0.89 | 27.8 |
Kg Batu Laut | 242.03 | 0.40 | 68.4 | 97.84 | 1.16 | 31.6 |
Tg Sepat | 325.30 | 1.14 | 89.7 | 168.70 | 3.08 | 10.3 |
1993–2004 | 2004–2014 | |||||
---|---|---|---|---|---|---|
Study Area | Min | Max | Mean | Min | Max | Mean |
Bagan Nakhoda Omar | −20.93 | 0.52 | −8.24 | −3.31 | 45.77 | 6.45 |
Sungai Pulai | −25.16 | −7.59 | −16.15 | −142.67 | 1.96 | −0.69 |
Bagan Sungai Burong | −36.89 | 84.39 | 35.62 | −33.32 | 61.53 | 10.46 |
Kg Haji Dorani | −10.79 | 3.37 | −4.78 | −7.50 | 3.55 | −2.89 |
Sungai Nibong | −8.69 | 9.17 | −3.14 | −5.72 | 19.86 | 6.37 |
Bagan Pasir | −34.26 | 13.82 | −12.37 | −35.95 | 19.32 | −7.70 |
Pantai Jeram | −0.34 | 4.94 | 0.16 | −21.80 | 28.03 | −4.21 |
Bagan Sungai Janggut | −0.35 | 8.33 | 0.10 | −26.92 | 7.06 | −11.69 |
Pantai Kelanang | −19.43 | 9.88 | −4.32 | −36.96 | 32.45 | −4.72 |
Kg Batu Laut | −18.72 | 14.69 | 1.65 | −31.38 | 24.92 | −7.58 |
Tg Sepat | −20.48 | 6.21 | −6.79 | −21.44 | 20.49 | −4.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdul Maulud, K.N.; Selamat, S.N.; Mohd, F.A.; Md Noor, N.; Wan Mohd Jaafar, W.S.; Kamarudin, M.K.A.; Ariffin, E.H.; Adnan, N.A.; Ahmad, A. Assessment of Shoreline Changes for the Selangor Coast, Malaysia, Using the Digital Shoreline Analysis System Technique. Urban Sci. 2022, 6, 71. https://doi.org/10.3390/urbansci6040071
Abdul Maulud KN, Selamat SN, Mohd FA, Md Noor N, Wan Mohd Jaafar WS, Kamarudin MKA, Ariffin EH, Adnan NA, Ahmad A. Assessment of Shoreline Changes for the Selangor Coast, Malaysia, Using the Digital Shoreline Analysis System Technique. Urban Science. 2022; 6(4):71. https://doi.org/10.3390/urbansci6040071
Chicago/Turabian StyleAbdul Maulud, Khairul Nizam, Siti Norsakinah Selamat, Fazly Amri Mohd, Noorashikin Md Noor, Wan Shafrina Wan Mohd Jaafar, Mohd Khairul Amri Kamarudin, Effi Helmy Ariffin, Nor Aizam Adnan, and Anizawati Ahmad. 2022. "Assessment of Shoreline Changes for the Selangor Coast, Malaysia, Using the Digital Shoreline Analysis System Technique" Urban Science 6, no. 4: 71. https://doi.org/10.3390/urbansci6040071
APA StyleAbdul Maulud, K. N., Selamat, S. N., Mohd, F. A., Md Noor, N., Wan Mohd Jaafar, W. S., Kamarudin, M. K. A., Ariffin, E. H., Adnan, N. A., & Ahmad, A. (2022). Assessment of Shoreline Changes for the Selangor Coast, Malaysia, Using the Digital Shoreline Analysis System Technique. Urban Science, 6(4), 71. https://doi.org/10.3390/urbansci6040071