Parametric Analysis of Rainfall-Induced Loess Soil Slope Due to the Rainwater Infiltration
Abstract
:1. Introduction
2. Mathematical Models for SWCC, HFC, and SSF
3. Hydraulic Properties of the Loess
4. Evaluation of the Rainfall-Induced Slope Stability
5. Conclusions and Recommendations
Author Contributions
Funding
Conflicts of Interest
References
- Rahardjo, H.; Satyanaga, A.; Leong, E.C. Effects of rainfall characteristics on the stability of tropical residual soil slope. E3S Web Conf. 2016, 9, 15004. [Google Scholar] [CrossRef] [Green Version]
- Brand, E.W. Landslides in Southeast Asia, A State-of the Art Report; Proc. 4th Int. Symp. Landslides: Toronto, ON, Canada, 1984. [Google Scholar]
- Kristo, C.; Rahardjo, H.; Satyanaga, A. Effect of Hysteresis on The Stability of Residual Soil Slope. Int. Soil Water Conserv. Res. 2019, 7, 226–238. [Google Scholar] [CrossRef]
- Rahardjo, H.; Satyanaga, A.; Harnas, F.R.; Leong, E.C. Use of Dual Capillary Barrier as Cover System for a Sanitary Landfill in Singapore. Indian Geotech. J. 2016, 46, 228–238. [Google Scholar] [CrossRef]
- Crosta, G. Regionalization of rainfall thresholds: An aid to landslide hazard evaluation. Environ. Geol. 1998, 35, 131–145. [Google Scholar] [CrossRef]
- Basile, A.; Mele, G.; Terribile, F. Soil hydraulic behaviour of a selected benchmark soil involved in the landslide of Sarno 1998. Geoderma 2003, 117, 331–346. [Google Scholar] [CrossRef]
- Ost, L.; Van Den Eeckhaut, M.; Poesen, J.; Vanmaercke-Gottigny, M.C. Characteristics and spatial distribution of large landslides in the Flemish Ardennes (Belgium). Z. Für Geomorphol. 2003, 47, 329–350. [Google Scholar] [CrossRef]
- Fredlund, D.; Morgenstern, N.R.; Widger, R. The shear strength of unsaturated soils. Can. Geotech. J. 1978, 15, 313–321. [Google Scholar] [CrossRef]
- Gardner, W. Mathematics of isothermal water conduction in unsaturated soils. Highw. Res. Board Spec. Rep. 1958, 40, 78–87. [Google Scholar]
- Brooks, R.H.; Corey, A.T. Hydraulic Properties of Porous Media; Colorado State University: Fort Collins, CO, USA, 1965. [Google Scholar]
- Van Genuchten, M. A close form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Amer. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Fredlund, D.; Xing, A.; Huang, S. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve. Can. Geotech. J. 1994, 31, 533–546. [Google Scholar] [CrossRef]
- Zhai, Q.; Rahardjo, H. Determination of soil–water characteristic curve variables. Comput. Geotech. 2012, 42, 37–43. [Google Scholar] [CrossRef]
- Zhai, Q.; Rahardjo, H.; Satyanaga, A. Effects of residual suction and residual water content on the estimation of permeability function. Geoderma 2017, 303, 165–177. [Google Scholar] [CrossRef]
- Wang, S.; Li, W.; Chen, Z.; Tian, G.; Dai, G.; Zhai, Q.; Rahardjo, H. Effect of Cr on the performance of Fredlund and Xing (1994)’s equation in best fitting soil-water characteristic curve data. Results Eng. 2022, 13, 100373. [Google Scholar] [CrossRef]
- Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Richards, L.A. Capillary conduction of liquids through porous mediums. Physics 1931, 1, 318–333. [Google Scholar] [CrossRef]
- Wind, G. A field experiment concerning capillary rise of moisture in a heavy clay soil. Neth. J. Agri-Cult. Sci. 1955, 3, 60–69. [Google Scholar] [CrossRef]
- Averjanov, S. About permeability of surface soils in case of incomplete saturation. Engl. Collect. 1950, 7, 19–21. [Google Scholar]
- Yuster, S. Theoretical considerations of multiphase flow in idealized capillary systems. In Proceedings of the 3rd World Petroleum Congress, The Hague, The Netherlands, 4–6 June 1951. [Google Scholar]
- Childs, E.C.; Collis-George, N. The permeability of porous materials. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 1950, 201, 392–405. [Google Scholar]
- Zhai, Q.; Rahardjo, H. Estimation of permeability function from the soil–water characteristic curve. Eng. Geol. 2015, 199, 148–156. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Fredlund, M.D. Application of ‘estimation procedures’ in unsaturated soil mechanics. Geoscience 2020, 10, 364. [Google Scholar] [CrossRef]
- Vanapalli, S.; Fredlund, D.; Pufahl, D.; Clifton, A. Model for the prediction of shear strength with respect to soil suction. Can. Geotech. J. 1996, 33, 379–392. [Google Scholar] [CrossRef]
- Zhai, Q.; Rahardjo, H.; Satyanaga, A.; Dai, G. Estimation of unsaturated shear strength from soil–water character-istic curve. Acta Geotech. 2019, 14, 1977–1990. [Google Scholar] [CrossRef]
- Zhai, Q.; Rahardjo, H.; Satyanaga, A.; Dai, G. Estimation of tensile strength of sandy soil from soil–water charac-teristic curve. Acta Geotech. 2020, 15, 3371–3381. [Google Scholar] [CrossRef]
- Li, X.; Liu, A.; Liu, L.; Liu, Y.; WU, Y. A rapid method for determining the soil-water characteristic curves in the full suction range. Rock Soil Mech. 2021, 43, 299–306. [Google Scholar]
- Zhang, Z.; Liu, L.F.; Zhao, X.; Zhou, D. A soil water characteristic curve model considering void ratio variation with stress. J. Hydraul. Eng. 2013, 44, 578–585. [Google Scholar]
- Chen, W.; Bi, J.; Ma, Y.; Liu, W.; Jiang, Y. Fitted and predicted equations of MK model for soil-water characteristic curve and their parametric analysis. Rock Soil Mech. 2016, 37, 3208–3214. [Google Scholar]
- Jiang, Y. Study on the Relationship between Structural Properties and Unsaturated Characteristics of Loess. Ph.D Thesis, Jilin University, Changchun, China, 2020. [Google Scholar]
- Liu, P. Study on the Instability Mechanism of Unsaturated Loess Landslide. Ph.D Thesis, Changan University, Xi’an, China, 16 April 2013. [Google Scholar]
- Li, H.; Li, T.; Jiang, R.; Wang, Y.; Zhang, Y. A new method to simultaneously measure the soil-water characteristic curve and hydraulic conductivity function using filter paper. Geotech. Test. J. 2020, 43, 1541–1551. [Google Scholar] [CrossRef]
- Huang, M.; Fredlund, D.; Fredlund, M. Comparison of measured and PTF predictions of SWCCs for loess soils in China. Geotech. Geol. Eng. 2010, 28, 105–117. [Google Scholar] [CrossRef]
- Li, L.; Li, X.-A.; Wang, L.; Hong, B.; Shi, J.; Sun, J. The effects of soil shrinkage during centrifuge tests on SWCC and soil microstructure measurements. Bull. Eng. Geol. Environ. 2020, 79, 3879–3895. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, W.; Wang, G.; Sun, G.; Zhang, F. Influence of initial dry density and water content on the soil–water characteristic curve and suction stress of a reconstituted loess soil. Bull. Eng. Geol. Env. -Ment 2017, 76, 1085–1095. [Google Scholar] [CrossRef]
- Xie, X.; Li, P.; Hou, X.; Li, T.; Zhang, G. Microstructure of compacted loess and its influence on the soil-water characteristic curve. Adv. Mater. Sci. Eng. 2020. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Xiang, W.; Bi, R. Experimental study of influence of matric suction on disintegration of unsaturated remolded loess. Rock Soil Mech. 2011, 32, 3258–3262. [Google Scholar]
- Li, H.; Li, T.; Jiang, R.; Fan, J. Measurement of unsaturated permeability curve using filter paper method. Rock Soil Mech. 2020, 41, 895–904. [Google Scholar]
- Sun, S.; Chen, Z.; Zhu, Y.; Liu, Y.; Wang, L. Coordinated Ceremic Plate Extractors and Some Problems of SWCC Test. J. Logist. Eng. Univ. 2006, 22, 1–5. [Google Scholar]
- Cai, G.; Han, B.; Yang, Y.; Liu, Y.; Zhao, C. Experimental study on soil-water characteristic curves of sandy loess. Chin. J. Geotech. Eng. 2020, 42, 11–15. [Google Scholar]
- Hu, Z.; Liang, Z.; Guo, J.; Feng, Z.; Wang, K.; She, H. Prediction of permeability coefficient of unsaturated lime-improved loess. Chin. J. Geotech. Eng. 2020, 42, 26–31. [Google Scholar]
- Nie, Y.; Ni, W.; Li, X.; Wang, H.; Yuan, K.; Guo, Y.; Tuo, W. The influence of drying-wetting cycles on the suc-tion stress of compacted loess and the associated microscopic mechanism. Water 2021, 13, 1809. [Google Scholar] [CrossRef]
- Wang, H.; Ni, W.; Li, X.; Li, L.; Yuan, K.; Nie, Y. Predicting the pore size distribution curve based on the evolu-tion mechanism of soil–water characteristic curve. Environ. Earth Sci. 2022, 81, 1–10. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, A.; Ren, W.; Niu, L. Study on the soil water characteristic curve and its fitting model of Ili loess with high level of soluble salts. J. Hydrol. 2019, 578, 124067. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, Z.; Weng, X.; Xie, Y. A new soil-water characteristic curve model for unsaturated loess based on wetting-induced pore deformation. Geofluids 2019, 2019, 1672418. [Google Scholar] [CrossRef]
- Zheng, F.; Shao, S.; She, F.; Yuan, H. True triaxial shear tests of remolded loess under different matrix suctions. Rock Soil Mech. 2020, 41, 156–162. [Google Scholar]
- Fu, Y.; Liao, H.; Chai, X.; Li, Y.; Lv, L. A Hysteretic Model Considering Contact Angle Hysteresis for Fitting Soil-Water Characteristic Curves. Water Resour. Res. 2021, 57. [Google Scholar] [CrossRef]
- Xing, Y.; Li, Z.; An, P. Shear Strength Properties of Loess on South Bank of Crossing the Yellow River Project in the Middle Route of South-to-North Water Diversion Project. South North Water Transf. Water Sci. Technol. 2014, 12, 129–132. [Google Scholar]
- Jian, W.; Xu, Q.; Wu, H.; Tong, L. Study of unsaturated hydraulic parameters of Huangtupo landslide in Three Gorges reservoir area. Rock Soil Mech. 2014, 35, 3517–3522. [Google Scholar]
- Zhang, D.; Chen, C.; Yang, J.; Wang, J.; Zhang, W. Deformation and water retention behaviour of collapsible loess during wetting under lateral confinement. Chin. J. Rock Mech. Eng. 2016, 35, 604–612. [Google Scholar]
- Mu, Q.; Dang, Y.; Dong, Q.; Liao, H.; Dong, H. Water-retention characteristics and collapsibity behaviors: Com-parison between intact and compacted loesses. Chin. J. Geotech. Eng. 2019, 41, 1496–1504. [Google Scholar]
- Xing, Y.; Luo, Y.; Li, Z. The Rupture Failure Strength of Loess. J. Hydroelectr. Eng. 1999, 4, 36–44. [Google Scholar]
- Wang, Z.; Luo, Y.; Xiao, H.; Yao, Z. Experimental study on suction characteristic s of loess in Yuncheng Region. Rock Soil Mech. 2002, 23, 51–54. [Google Scholar]
- Azarafza, M.; Akgün, H.; Ghazifard, A.; Asghari-Kaljahi, E.; Rahnamarad, J.; Derakhshani, R. Discontinuous rock slope stability analysis by limit equilibrium approaches–a review. Int. J. Digit. Earth 2021, 14, 1918–1941. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chen, H.W.; Wu, W.C. Numerical modeling of interactions of rainfall and earthquakes on slope stability analysis. Environ. Earth Sci. 2021, 80, 1–11. [Google Scholar] [CrossRef]
- Zhang, Z.; Fu, X.; Sheng, Q.; Du, Y.; Zhou, Y.; Huang, J. Stability of cracking deposit slope considering parameter deterioration subjected to rainfall. Int. J. Geomech. 2021, 21, 05021001. [Google Scholar] [CrossRef]
- Deliveris, A.V.; Theocharis, A.I.; Koukouzas, N.C.; Zevgolis, I.E. Numerical Slope Stability Analysis of Deep Excavations Under Rainfall Infiltration. Geotech. Geol. Eng. 2022, 40, 4023–4039. [Google Scholar] [CrossRef]
- Azadi, A.; Esmatkhah Irani, A.; Azarafza, M.; Hajialilue Bonab, M.; Sarand, F.B.; Derakhshani, R. Coupled Numerical and Analytical Stability Analysis Charts for an Earth-Fill Dam under Rapid Drawdown Conditions. Appl. Sci. 2022, 12, 4550. [Google Scholar] [CrossRef]
- Morgenstern, N.R.; Price, V.E. The analysis of the stability of general slip surfaces. Geotech. 1965, 15, 79–93. [Google Scholar]
- Rahardjo, H.; Santoso, V.A.; Leong, E.C.; Ng, Y.S.; Hua, C.J. Numerical Analyses and Monitoring Performance of Residual Soil Slopes. Soils Found. 2011, 51, 471–482. [Google Scholar]
No. | Soil Type | Liquid Limit LL (%) | Plastic Limit PL (%) | Density ρ (Mg/m3) | Water Content w (%) | Void Ratio e | References |
---|---|---|---|---|---|---|---|
1 | Lanzhou loess | 29.5 | 9.4 | - | 14.8 | - | Li et al. [27] |
2 | Xi’an loess | 30.9 | 17.6 | - | 3.3 | - | Zhang et al.[28] |
3 | Xining loess | 23.2 | 14.7 | - | - | - | Chen et al. [29] |
4 | Tongchuan loess | 34.8 | 23.5 | 1.49 | 16.7 | 1.12 | Jiang [30] |
5 | Linxia loess | - | - | 1.28 | 15 | / | Liu [31] |
6 | Qingyang loess | 31.2 | 17.8 | 1.34 | 18 | 1.03 | Li et al. [32] |
7 | Gansu loess | - | - | - | - | - | Huang et al. [33] |
8 | Shaanxi loess | 31.33 | 15 | - | 12.0 | - | Li et al. [34] |
9 | Lanzhou loess | 27.8 | 17.7 | 1.50 | 7.4 | - | Jiang et al. [35] |
10 | Lanzhou loess | 27.5 | 18.3 | 1.43 | 8.3 | 1.06 | Xie et al. [36] |
11 | Yan’an loess | 28.21 | 17.15 | 1.35 | 5–25 | - | Wang et al. [37] |
12 | Qingyang loess | 31.2 | 17.8 | 1.34 | 37.8 | 1.03 | Li et al. [38] |
13 | Ningxia loess | - | - | 1.29 | 2.6 | 1.099 | Sun et al. [39] |
14 | Yulin loess | 24 | 12.8 | - | 12 | - | Cai et al. [40] |
15 | Weinan loess | 28.6 | 19 | 1.28 | 15.2 | - | Hu et al. [41] |
16 | Yan’an loess | 28.9 | 16.1 | - | 14.11 | - | Nie et al. [42] |
17 | Yan’an loess | 28.9 | 16.1 | - | 14.11 | - | Wang et al. [43] |
18 | Yili loess | - | - | 1.37 | 6.67 | - | Wang et al. [44] |
19 | Xi’an loess | - | - | 1.52 | 14.1 | 0.82 | Zhang et al. [45] |
20 | Xi’an loess | 34.2 | 18.6 | 1.4 | 21 | - | Zheng et al. [46] |
21 | Yan’an loess | - | - | - | 13 | 0.786 | Fu et al. [47] |
22 | Luoyang loess | 30.1 | 17.6 | - | - | - | Xing et al. [48] |
23 | Luoyang loess | 29.8 | 17.2 | - | - | - | Xing et al. [48] |
24 | Badong loess | - | - | - | - | - | Jian et al. [49] |
25 | Xi’an loess | 30.9 | 19.8 | - | - | - | Zhang et al. [50] |
26 | Xi’an loess | 35.7 | 16.2 | 1.52 | 16.6 | - | Mu et al. [51] |
27 | Xianyang loess | 30.5 | 18.6 | 1.30 | - | 1.085 | Xing et al. [52] |
28 | Yuncheng loess | 30.1 | 18 | - | 12.8 | - | Wang et al. [53] |
Soil Layer | Saturation Unit Weight γ (kN/m3) | Cohesion c′(kPa) | Friction Angle φ′(°) | Water Content w (%) |
---|---|---|---|---|
Loess | 15.1 | 16 | 27.2 | 13.5 |
Weathered mudstone | 18.5 | 20 | 30 | 13.2 |
Soil Type | Fitting Parameters | Saturated Hydraulic Conductivity | ||
---|---|---|---|---|
af (kPa) | nf | mf | ks (m/s) | |
Upper bound loess S1 | 45.00 | 1.80 | 0.38 | 10−7 |
Fitting loess S2 | 12.64 | 1.99 | 0.51 | 10−6 |
Lower bound loess S3 | 5.70 | 1.60 | 0.95 | 10−5 |
No. | Soil Type | Slope Angle α (°) | Rainfall Intensity Ir (mm/h) | Slope Height Hs (m) | Total |
---|---|---|---|---|---|
A | S1 S2 S3 | 15 | 8.45 80 ks | 10 | 36 |
30 | |||||
45 | |||||
60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Tian, G.; Wang, S.; Satyanaga, A.; Zhai, Q. Parametric Analysis of Rainfall-Induced Loess Soil Slope Due to the Rainwater Infiltration. Urban Sci. 2022, 6, 54. https://doi.org/10.3390/urbansci6030054
Liu Y, Tian G, Wang S, Satyanaga A, Zhai Q. Parametric Analysis of Rainfall-Induced Loess Soil Slope Due to the Rainwater Infiltration. Urban Science. 2022; 6(3):54. https://doi.org/10.3390/urbansci6030054
Chicago/Turabian StyleLiu, Yang, Gang Tian, Shijun Wang, Alfrendo Satyanaga, and Qian Zhai. 2022. "Parametric Analysis of Rainfall-Induced Loess Soil Slope Due to the Rainwater Infiltration" Urban Science 6, no. 3: 54. https://doi.org/10.3390/urbansci6030054
APA StyleLiu, Y., Tian, G., Wang, S., Satyanaga, A., & Zhai, Q. (2022). Parametric Analysis of Rainfall-Induced Loess Soil Slope Due to the Rainwater Infiltration. Urban Science, 6(3), 54. https://doi.org/10.3390/urbansci6030054