Integrating Data-Driven and Participatory Modeling to Simulate Future Urban Growth Scenarios: Findings from Monastir, Tunisia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Simulating Urban Growth until 2030
2.2.1. SLEUTH Urban Growth Model
Data Acquisition and Pre-Processing
SLEUTH Calibration
Data-Driven Business-as-Usual (BaU) Prediction
2.2.2. Participatory Scenario Development
2.2.3. Integrating Participatory and Data-Driven Modeling
3. Results
3.1. Past Urban Growth from 1975 to 2017
3.2. Scenario Framework
3.3. Future Urban Growth until 2030
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- UN-DESA United Nationss Department of Economic and Social Affairs-Population Division. Available online: https://esa.un.org (accessed on 10 May 2019).
- Hall, P. The City of Theory. In Cities of Tomorrow: An Intellectual History of Urban Planning and Design since 1880; John Wiley & Sons: West Sussex, UK, 2014; ISBN 978-1-118-45647-7. [Google Scholar]
- Urbanization and development. Emerging Futures: World Cities Report 2016; United Nations Human Settlements Programme: Nairobi, Kenya, 2016. [Google Scholar]
- Garschagen, M.; Romero-Lankao, P. Exploring the relationships Between Urbanization Trends and Climate Change Vulnerability. Clim. Chang. 2015, 133, 37–52. [Google Scholar] [CrossRef]
- Lynch, K. Growth and Conservation. In A Theory of Good City Form; The MIT Press: Cambridge, MA, USA, 1984; ISBN 10: 0262620464. [Google Scholar]
- Ratcliffe, J.; Krawczyk, E. Imagineering city futures: The use of prospective through scenarios in urban planning. Futures 2011, 43, 642–653. [Google Scholar] [CrossRef]
- Li, X.; Gong, P. Urban growth models: Progress and perspective. Sci. Bull. 2016, 61, 1637–1650. [Google Scholar] [CrossRef]
- Houet, T.; Marchadier, C.; Bretagne, G.; Moine, M.P.; Aguejdad, R.; Viguié, V.; Bonhomme, M.; Lemonsu, A.; Avner, P.; Hidalgo, J.; et al. Combining narratives and modelling approaches to simulate fine scale and long-Term urban growth scenarios for climate adaptation. Environ. Model. Softw. 2016, 86, 1–13. [Google Scholar] [CrossRef]
- Seto, K.C.; Parnell, S.; Elmqvist, T. A global outlook on urbanization. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Hall, P.; Pfeiffer, U. Urban Growth and Change. In Urban Future 21: A Global Agenda for Twenty-First Century Cities; Routledge: London, UK, 2013; pp. 113–133. [Google Scholar]
- Rienow, A.; Goetzke, R. Supporting SLEUTH–Enhancing a cellular automaton with support vector machines for urban growth modeling. Comput. Environ. Urban Syst. 2015, 49, 66–81. [Google Scholar] [CrossRef]
- Chaudhuri, G.; Clarke, K. The SLEUTH land use change model: A review. Environ. Resour. Res. 2013, 1, 88–105. [Google Scholar] [CrossRef]
- Saxena, A.; Jat, M.K. Capturing heterogeneous urban growth using SLEUTH model. Remote Sens. Appl. Soc. Environ. 2019, 13, 426–434. [Google Scholar] [CrossRef]
- Overmars, K.P.; Verburg, P.H.; Veldkamp, T. Comparison of a deductive and an inductive approach to specify land suitability in a spatially explicit land use model. Land Use Policy 2007, 24, 584–599. [Google Scholar] [CrossRef]
- Monastir Urban City, Plan Rapport de présentation du Plan d’Aménagement Urbain de la Commune de Monastir. 2013. Available online: www.courdescomptes.nat.tn (accessed on 19 February 2020).
- Statistiques Tunisie. The National Institute of Statistics. Available online: http://www.ins.tn (accessed on 15 June 2019).
- Project Gigalopolis. The National Center for Geographic Information and Analysis. Available online: http://www.ncgia.ucsb.edu/projects/gig/Pub/pubs.htm (accessed on 15 August 2019).
- Solecki, W.D.; Oliveri, C. Downscaling climate change scenarios in an urban land use change model. J. Environ. Manag. 2004, 72, 105–115. [Google Scholar] [CrossRef]
- Clarke-Lauer, M.D.; Clarke, K.C. Evolving simulation modeling: Calibrating SLEUTH using a genetic algorithm. In Proceedings of the 11th International Conference on GeoComputation, London, UK, 20–22 July 2011. [Google Scholar]
- KantaKumar, L.N.; Sawant, N.G.; Kumar, S. Forecasting urban growth based on GIS, RS and SLEUTH model in Pune metropolitan area. Int. J. Geomat. Geosci. 2011, 2, 568–579. [Google Scholar]
- Hui-Hui, F.; Hui-Ping, L.; Ying, L.U. Scenario prediction and analysis of urban growth using SLEUTH model. Pedosphere 2012, 22, 206–216. [Google Scholar] [CrossRef]
- Rafiee, R.; Mahiny, A.S.; Khorasani, N.; Darvishsefat, A.A.; Danekar, A. Simulating urban growth in Mashhad City, Iran through the SLEUTH model (UGM). Cities 2009, 26, 19–26. [Google Scholar] [CrossRef]
- Garschagen, M.; Birkmann, J. Qualitative Vulnerability and Adaptation Scenarios at Local Level–A Participatory-Approach. 2014. Available online: https:www.researchgate.net/publication/338792686 (accessed on 5 June 2018).
- Solecki, W.; Link, H.; Garschagen, M. Risk management and adaptation transitions in New York City. J. Extrem. Events 2016. [Google Scholar] [CrossRef]
- Jantz, C.A.; Goetz, S.J.; Donato, D.; Claggett, P. Designing and implementing a regional urban modeling system using the SLEUTH cellular urban model. Comput. Environ. Urban Syst. 2010, 34, 1–16. [Google Scholar] [CrossRef]
- Harb, M.; Hagenlocher, M.; Cotti, D.; Krätzschmar, E.; Baccouche, H.; Ben Khaled, K.; Bellert, F.; Chebil, B.; Ben Fredj, A.; Ayed, S.; et al. Simulating future urban expansion in Monastir, Tunisia, as an input for the development of future risk scenarios. J. Geogr. Inf. Sci. 2019, 7, 3–9. [Google Scholar] [CrossRef]
- Yin, H.; Kong, F.; Yang, X.; James, P.; Dronova, I. Exploring zoning scenario impacts upon urban growth simulations using a dynamic spatial model. Cities 2018, 81, 214–229. [Google Scholar] [CrossRef] [Green Version]
- Yeh, A.G.O.; Li, X. Errors and uncertainties in urban cellular automata. Comput. Environ. Urban Syst. 2006, 30, 10–28. [Google Scholar] [CrossRef]
- Goodspeed, R. Scenario Planning Evaluation Research. In An Evaluation Framework for the Use of Scenarios in Urban Planning; Lincoln Institute of Land Policy: Cambridge, MA, USA, 2017; pp. 6–9. [Google Scholar]
- Batisani, N.; Yarnal, B. Uncertainty awareness in urban sprawl simulations: Lessons from a small US metropolitan region. Land Use Policy 2009, 26, 178–185. [Google Scholar] [CrossRef]
- Silva, E.A.; Clarke, K.C. Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Comput. Environ. Urban Syst. 2002, 26, 525–552. [Google Scholar] [CrossRef]
- Oguz, H.; Klein, A.G.; Srinivasan, R. Using the SLEUTH urban growth model to simulate the impacts of future policy scenarios on urban land use in the Houston-Galveston-Brazoria CMSA. Res. J. Soc. Sci. 2007, 2, 72–82. [Google Scholar]
- Hua, L.; Tang, L.; Cui, S.; Yin, K. Simulating urban growth using the Sleuth Model in a coastal peri-Urban district in China. Sustainability 2014, 6, 3899–3914. [Google Scholar] [CrossRef] [Green Version]
Source | Format and Year | |
---|---|---|
Slope | The layer was derived from the Digital Terrain Model (DTM) extracted from 2017 high-resolution satellite imageries (World View 3) using stereoscopic techniques (see the Supplementary Materials). The slope was used to determine the influence of the elevation gradient on the urban expansion following the guidelines by the National Center for Geographic Information and Analysis (NCGIA) [17]. | Raster data 2017 |
Land use | The land use/land cover (LULC) layers were extracted from Landsat imageries for the period 1975 to 2017 following the European Urban Atlas standard (see the Supplementary Materials). The scenes were classified based on the LULC classes that best describe the urban setting in Monastir (e.g., agricultural, coastal wetland, green urban areas, industrial, residential and commercial, touristic, and transportation network). | Raster data from: 1975, 1981, 1984, 1986, 1990, 1992, 1999, 2002, 2005, 2008, 2011, 2014, 2017 |
Exclusion | The exclusion layers for the different simulations were derived from the local city plans with inputs from stakeholder workshops and consultations to define prospect of areas being converted into residential urban areas by 2030. | Raster layer derived mainly from the land use data of 2017 |
Urban | This layer represents the urban residential extent according to the historical data derived from 13 Landsat scenes for the period 1975–2017. | Urban classes raster layers from the land use data: 1975, 1981, 1984, 1986, 1990, 1992, 1999, 2002, 2005, 2008, 2011, 2014, 2017 |
Transport | The evolution of the transportation network was manually digitized from Landsat data for the period 1975–2017 and validated using archived aerial imageries for the years 1984 and 2005. | Raster layer from the land use data: 1975, 1981, 1986, 1992, 2005, 2011, 2017 |
Hill shade | The layer was generated from a 5 × 5 m cell size. DTM served for data visualization. | Raster data 2017 |
Diffusion | Breed | Spread | Slope | Road Gravity | |
---|---|---|---|---|---|
Parameters | 1 | 1 | 73 | 25 | 34 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harb, M.; Garschagen, M.; Cotti, D.; Krätzschmar, E.; Baccouche, H.; Ben Khaled, K.; Bellert, F.; Chebil, B.; Ben Fredj, A.; Ayed, S.; et al. Integrating Data-Driven and Participatory Modeling to Simulate Future Urban Growth Scenarios: Findings from Monastir, Tunisia. Urban Sci. 2020, 4, 10. https://doi.org/10.3390/urbansci4010010
Harb M, Garschagen M, Cotti D, Krätzschmar E, Baccouche H, Ben Khaled K, Bellert F, Chebil B, Ben Fredj A, Ayed S, et al. Integrating Data-Driven and Participatory Modeling to Simulate Future Urban Growth Scenarios: Findings from Monastir, Tunisia. Urban Science. 2020; 4(1):10. https://doi.org/10.3390/urbansci4010010
Chicago/Turabian StyleHarb, Mostapha, Matthias Garschagen, Davide Cotti, Elke Krätzschmar, Hayet Baccouche, Karem Ben Khaled, Felicitas Bellert, Bouraoui Chebil, Anis Ben Fredj, Sonia Ayed, and et al. 2020. "Integrating Data-Driven and Participatory Modeling to Simulate Future Urban Growth Scenarios: Findings from Monastir, Tunisia" Urban Science 4, no. 1: 10. https://doi.org/10.3390/urbansci4010010
APA StyleHarb, M., Garschagen, M., Cotti, D., Krätzschmar, E., Baccouche, H., Ben Khaled, K., Bellert, F., Chebil, B., Ben Fredj, A., Ayed, S., Shekhar, H., & Hagenlocher, M. (2020). Integrating Data-Driven and Participatory Modeling to Simulate Future Urban Growth Scenarios: Findings from Monastir, Tunisia. Urban Science, 4(1), 10. https://doi.org/10.3390/urbansci4010010