Sustainability Assessment of Cement Types via Integrated Life Cycle Assessment and Multi-Criteria Decision-Making Methods
Abstract
1. Introduction
2. Literature Review
3. Methodology
3.1. Integrating LCA into COPRAS-ARAS MCDM for Cement Types Assessment
3.2. Life Cycle Assessment
3.2.1. Goal and Scope Definition
3.2.2. Inventory Analysis
3.2.3. Impact Assessment
3.2.4. Interpretation
3.3. Multi-Criteria Decision-Making (MCDM)
3.3.1. Entropy Method
3.3.2. Preference Ranking
Complex Proportional Assessment (COPRAS) Method
Additive Ratio Assessment Method (ARAS)
3.3.3. Sensitivity Analysis
3.4. Justification of MCDM Method Selection
4. Results and Discussions
4.1. Results of LCA
4.2. Weight of Criteria
4.3. Result of MCDM Analysis
4.4. LCA Characterization Results at the Midpoint Method
4.5. Low Entropy Weight for Global Warming Potential
4.6. Sensitivity Analysis of MCDM Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviation | Definition |
LCA | Life Cycle Assessment |
LCIA | Life Cycle Impact Assessment |
LCI | Life Cycle Inventory |
MCDM | Multi-Criteria Decision-Making |
COPRAS | Complex Proportional Assessment |
MOORA | Multi-Objective Optimization Based on Ratio Analysis |
ARAS | Additive Ratio Assessment |
TOPSIS | Technique for Order of Preference by Similarity to Ideal Solution |
DEMATEL | Decision-Making Trial and Evaluation Laboratory |
DEA | data Envelopment analysis |
ELECTRA | Elimination of Choice Translating Reality |
VIKOR | Multi-Criteria Optimization And Compromise Solution |
MUA | Multi-Attribute Utility Analysis |
ANP | Analytic Network Process |
Fuzzy TOPSIS | Fuzzy Technique for Order Preference by Similarity to Ideal Solution |
AHP | Analytic Hierarchy Process |
Fuzzy AHP | Fuzzy Analytic Hierarchy Process |
Fuzzy PROMETHEE | Fuzzy Preference Ranking Organization Method for Enrichment Evaluation |
IT2FS | Interval Type-2 Fuzzy Sets |
IVIF | Interval-Valued Intuitionistic Fuzzy |
IFS | Intuitionistic Fuzzy Sets |
CODAS | Combinative Distance Assessment |
GWP | Global Warming Potential |
GHG | Greenhouse Gas |
SCMs | Supplementary Cementitious Materials |
GGBFS | Ground Granulated Blast Furnace Slag |
ISO | International Organization for Standardization |
SimaPro | LCA Modeling Software by PRé Consultants |
ReCiPe | LCA Impact Assessment Methodology |
DCBeq | Dichlorobenzene Equivalent (used in toxicity metrics) |
References
- Verma, Y.K.; Mazumdar, B.; Ghosh, P. Thermal energy consumption and its conservation for a cement production unit. Environ. Eng. Res. 2021, 26, 200111. [Google Scholar] [CrossRef]
- Zhang, Z.; Lin, B. Energy conservation and emission reduction of Chinese cement industry: From a perspective of factor substitutions. Emerg. Mark. Financ. Trade 2019, 55, 967–979. [Google Scholar] [CrossRef]
- Putra, M.A.; Teh, K.C.; Tan, J.; Choong, T.S.Y. Sustainability assessment of Indonesian cement manufacturing via integrated life cycle assessment and analytical hierarchy process method. Environ. Sci. Pollut. Res. 2020, 27, 29352–29360. [Google Scholar] [CrossRef]
- Ahmed, M.; Bashar, I.; Alam, S.T.; Wasi, A.I.; Jerin, I.; Khatun, S.; Rahman, M. An overview of Asian cement industry: Environmental impacts, research methodologies and mitigation measures. Sustain. Prod. Consum. 2021, 28, 1018–1039. [Google Scholar] [CrossRef]
- Cruz Juarez, R.I.; Finnegan, S. The environmental impact of cement production in Europe: A holistic review of existing EPDs. Clean. Environ. Syst. 2021, 3, 100053. [Google Scholar] [CrossRef]
- IEA. Technology Roadmap—Low-Carbon Transition in the Cement Industry; World Business Council for Sustainable Development (WBCSD): Geneva, Switzerland; International Energy Agency (IEA): Paris, France, 2018. [Google Scholar]
- Schneider, M. The cement industry on the way to a low-carbon future. Cem. Concr. Res. 2019, 124, 105792. [Google Scholar] [CrossRef]
- Huntzinger, D.N.; Eatmon, T.D. A life-cycle assessment of Portland cement manufacturing: Comparing the traditional process with alternative technologies. J. Clean. Prod. 2009, 17, 668–675. [Google Scholar] [CrossRef]
- Proaño, L.; Sarmiento, A.T.; Figueredo, M.; Cobo, M. Techno-economic evaluation of indirect carbonation for CO2 emissions capture in cement industry: A system dynamics approach. J. Clean. Prod. 2020, 263, 121457. [Google Scholar] [CrossRef]
- Andrew, R.M. Global CO2 emissions from cement production. Earth Syst. Sci. Data 2018, 10, 195–217. [Google Scholar] [CrossRef]
- Benhelal, E.; Zahedi, G.; Shamsaei, E.; Bahadori, A. Global strategies and potentials to curb CO2 emissions in cement industry. J. Clean. Prod. 2013, 51, 142–161. [Google Scholar] [CrossRef]
- Ige, O.E.; Von Kallon, D.V.; Desai, D. Carbon emissions mitigation methods for cement industry using a systems dynamics model. Clean Technol. Environ. Policy 2024, 26, 579–597. [Google Scholar] [CrossRef]
- Ige, O.E.; Olanrewaju, O.A.; Duffy, K.J.; Collins, O.C. A review of the effectiveness of Life Cycle Assessment for gauging environmental impacts from cement production. J. Clean. Prod. 2021, 324, 129213. [Google Scholar] [CrossRef]
- Guo, Y.; Luo, L.; Liu, T.; Hao, L.; Li, Y.; Liu, P.; Zhu, T. A review of low-carbon technologies and projects for the global cement industry. J. Environ. Sci. 2024, 136, 682–697. [Google Scholar] [CrossRef]
- Mamchii, O. Largest Cement Producers in the World; Best Diplomats: New York, NY, USA, 2024. [Google Scholar]
- Mokhtar, A.; Nasooti, M. A decision support tool for cement industry to select energy efficiency measures. Energy Strategy Rev. 2020, 28, 100458. [Google Scholar] [CrossRef]
- Soomro, M.; Tam, V.W.Y.; Jorge Evangelista, A.C. (Eds.) 2—Production of cement and its environmental impact. In Recycled Concrete; Woodhead Publishing: Cambridge, UK, 2023; pp. 11–46. [Google Scholar]
- Khan, Z.A.; Salami, B.A.; Hussain, S.A.; Hasan, M.A.; Al-Ramadan, B.; Rahman, S.M. Dynamics of Greenhouse Gas Emissions from Cement Industries in Saudi Arabia-Challenges and Opportunities. IEEE Access 2023, 11, 125631–125647. [Google Scholar] [CrossRef]
- Anderson, T.R.; Hawkins, E.; Jones, P.D. CO2, the greenhouse effect and global warming: From the pioneering work of Arrhenius and Callendar to today’s Earth System Models. Endeavour 2016, 40, 178–187. [Google Scholar] [CrossRef]
- Andrew, R.M. Global CO2 emissions from cement production, 1928–2017. Earth Syst. Sci. Data 2018, 10, 2213–2239. [Google Scholar] [CrossRef]
- Li, H.; Wang, L.; Zhang, Y.; Yang, J.; Tsang, D.C.; Mechtcherine, V. Biochar for sustainable construction industry. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2023; pp. 63–95. [Google Scholar]
- Turner, L.K.; Collins, F.G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- Miccoli, S.; Finucci, F.; Murro, R. Assessing project quality: A multidimensional approach. In Advanced Materials Research; Trans Tech Publications: Zürich, Switzerland, 2014. [Google Scholar]
- Miccoli, S.; Finucci, F.; Murro, R. Criteria and procedures for regional environmental regeneration: A European strategic project. In Applied Mechanics and Materials; Trans Tech Publications: Zürich, Switzerland, 2014; pp. 401–405. [Google Scholar]
- Aranda Usón, A.; López-Sabirón, A.M.; Ferreira, G.; Llera Sastresa, E. Uses of alternative fuels and raw materials in the cement industry as sustainable waste management options. Renew. Sustain. Energy Rev. 2013, 23, 242–260. [Google Scholar] [CrossRef]
- Zieri, W.; Ismail, I. Alternative fuels from waste products in cement industry. In Handbook of Ecomaterials; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–24. [Google Scholar] [CrossRef]
- Abdul-Wahab, S.A.; Al-Dhamri, H.; Ram, G.; Chatterjee, V.P. An overview of alternative raw materials used in cement and clinker manufacturing. Int. J. Sustain. Eng. 2021, 14, 743–760. [Google Scholar] [CrossRef]
- Ige, O.E.; Olanrewaju, O.A. Comparative Life Cycle Assessment of Different Portland Cement Types in South Africa. Clean Technol. 2023, 5, 901–920. [Google Scholar] [CrossRef]
- Ige, O.; Desai, D.; Kallon, D. Environmental Impact of Blended Cement Produced with Ground-Granulated Blast Furnace Slag Substitution in the South African Cement Industry. In Proceedings of the 5th African International Conference on Industrial Engineering and Operations Management, Johannesburg/Pretoria, South Africa, 23–25 April 2024; IEOM Society International: Southfield, MI, USA; pp. 843–853. [Google Scholar]
- Ige, O.E.; Olanrewaju, O.A.; Duffy, K.J.; Collins, O.C. Environmental Impact Analysis of Portland Cement (CEM1) Using the Midpoint Method. Energies 2022, 15, 2708. [Google Scholar] [CrossRef]
- Ristimäki, M.; Säynäjoki, A.; Heinonen, J.; Junnila, S. Combining life cycle costing and life cycle assessment for an analysis of a new residential district energy system design. Energy 2013, 63, 168–179. [Google Scholar] [CrossRef]
- Palermo, G.C.; Castelo Branco, D.A.; Fiorini, A.C.O.; de Freitas, M.A.V. Comparative life cycle assessment of three 2030 scenarios of the Brazilian cement industry. Environ. Monit. Assess. 2022, 194, 153. [Google Scholar] [CrossRef]
- Stafford, F.N.; Raupp-Pereira, F.; Labrincha, J.A.; Hotza, D. Life cycle assessment of the production of cement: A Brazilian case study. J. Clean. Prod. 2016, 137, 1293–1299. [Google Scholar] [CrossRef]
- García-Gusano, D.; Garraín, D.; Herrera, I.; Cabal, H.; Lechón, Y. Life Cycle Assessment of applying CO2 post-combustion capture to the Spanish cement production. J. Clean. Prod. 2015, 104, 328–338. [Google Scholar] [CrossRef]
- García-Gusano, D.; Herrera, I.; Garraín, D.; Lechón, Y.; Cabal, H. Life cycle assessment of the Spanish cement industry: Implementation of environmental-friendly solutions. Clean Technol. Environ. Policy 2015, 17, 59–73. [Google Scholar] [CrossRef]
- Ma, F.; Sha, A.; Yang, P.; Huang, Y. The Greenhouse Gas Emission from Portland Cement Concrete Pavement Construction in China. Int. J. Environ. Res. Public Health 2016, 13, 632. [Google Scholar] [CrossRef]
- Busola, D.O.; Oludolapo, A.O. Life Cycle Assessment of Ordinary Portland Cement (OPC) Using both Problem Oriented (Midpoint) Approach and Damage Oriented Approach (Endpoint). In Product Life Cycle; Antonella, P., Fabio De, F., Eds.; IntechOpen: Rijeka, Croatia, 2021; Chapter 3. [Google Scholar]
- Kunche, A.; Mielczarek, B. Application of System Dynamic Modelling for Evaluation of Carbon Mitigation Strategies in Cement Industries: A Comparative Overview of the Current State of the Art. Energies 2021, 14, 1464. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Zenonas, T.; Kildienė, S. State of art surveys of overviews on MCDM/MADM methods. Technol. Econ. Dev. Econ. 2014, 20, 165–179. [Google Scholar] [CrossRef]
- Langemeyer, J.; Gómez-Baggethun, E.; Haase, D.; Scheuer, S.; Elmqvist, T. Bridging the gap between ecosystem service assessments and land-use planning through Multi-Criteria Decision Analysis (MCDA). Environ. Sci. Policy 2016, 62, 45–56. [Google Scholar] [CrossRef]
- Yoris-Nobile, A.I.; Slebi-Acevedo, C.J.; Lizasoain-Arteaga, E.; Indacoechea-Vega, I.; Blanco-Fernandez, E.; Castro-Fresno, D.; Alonso-Estebanez, A.; Alonso-Cañon, S.; Real-Gutierrez, C.; Boukhelf, F.; et al. Artificial reefs built by 3D printing: Systematisation in the design, material selection and fabrication. Constr. Build. Mater. 2023, 362, 129766. [Google Scholar] [CrossRef]
- Yoris-Nobile, A.I.; Esther, L.-A.; Slebi-Acevedo, C.J.; Elena, B.-F.; Sara, A.-C.; Irune, I.-V.; Castro-Fresno, D. Life cycle assessment (LCA) and multi-criteria decision-making (MCDM) analysis to determine the performance of 3D printed cement mortars and geopolymers. J. Sustain. Cem.-Based Mater. 2023, 12, 609–626. [Google Scholar] [CrossRef]
- Mokhtar, A.; Nasouti, M.; Shahrestani, D.A. Prioritizing Energy Efficiency Measures in the Cement Industry using decision making techniques. In Proceedings of the 10th International Energy Conference, Tehran, Iran, 26–27 August 2014. [Google Scholar]
- Shmlls, M.; Abed, M.; Fořt, J.; Horvath, T.; Bozsaky, D. Towards closed-loop concrete recycling: Life cycle assessment and multi-criteria analysis. J. Clean. Prod. 2023, 410, 137179. [Google Scholar] [CrossRef]
- Kurda, R.; de Brito, J.; Silvestre, J.D. CONCRETop—A multi-criteria decision method for concrete optimization. Environ. Impact Assess. Rev. 2019, 74, 73–85. [Google Scholar] [CrossRef]
- Soni, A.; Chakraborty, S.; Kumar Das, P.; Kumar Saha, A. Materials selection of reinforced sustainable composites by recycling waste plastics and agro-waste: An integrated multi-criteria decision making approach. Constr. Build. Mater. 2022, 348, 128608. [Google Scholar] [CrossRef]
- Akintayo, B.D.; Ige, O.E.; Babatunde, O.M.; Olanrewaju, O.A. Evaluation and Prioritization of Power-Generating Systems Using a Life Cycle Assessment and a Multicriteria Decision-Making Approach. Energies 2023, 16, 6722. [Google Scholar] [CrossRef]
- Taherdoost, H.; Madanchian, M. Multi-criteria decision making (MCDM) methods and concepts. Encyclopedia 2023, 3, 77–87. [Google Scholar] [CrossRef]
- Azhar, N.A.; Radzi, N.A.M.; Wan Ahmad, W.S.H.M. Multi-criteria Decision Making: A Systematic Review. Recent Adv. Electr. Electron. Eng. 2021, 14, 779–801. [Google Scholar] [CrossRef]
- Bonissone, P.P.; Subbu, R.; Lizzi, J. Multicriteria decision making (mcdm): A framework for research and applications. IEEE Comput. Intell. Mag. 2009, 4, 48–61. [Google Scholar] [CrossRef]
- Castro-Nuño, M.; Arévalo-Quijada, M.T. Assessing urban road safety through multidimensional indexes: Application of multicriteria decision making analysis to rank the Spanish provinces. Transp. Policy 2018, 68, 118–129. [Google Scholar] [CrossRef]
- Yang, J.; Ogunkah, I.C.B. A Multi-Criteria Decision Support System for the Selection of Low-Cost Green Building Materials and Components. J. Build. Constr. Plan. Res. 2013, 1, 42. [Google Scholar] [CrossRef]
- Yang, D.; Fan, L.; Shi, F.; Liu, Q.; Wang, Y. Comparative study of cement manufacturing with different strength grades using the coupled LCA and partial LCC methods—A case study in China. Resour. Conserv. Recycl. 2017, 119, 60–68. [Google Scholar] [CrossRef]
- Pushkar, S.; Verbitsky, O. Effects of different allocation approaches for modeling mineral additives in blended cements on environmental damage from five concrete mixtures in Israel. Mater. Struct. 2016, 49, 4401–4415. [Google Scholar] [CrossRef]
- Gökcekuş, H.; Ghaboun, N.; Ozsahin, D.U.; Uzun, B. Evaluation of Cement Manufacturing Methods Using Multi Criteria Decision Analysis (MCDA). In Proceedings of the 2021 14th International Conference on Developments in eSystems Engineering (DeSE), Sharjah, United Arab Emirates, 7–10 December 2021; pp. 39–43. [Google Scholar]
- Bathrinath, S.; Nagesh, S.M.; Dinesh, V.; Sri Ram Ganesh, M.; Koppiahraj, K.; Bhalaji, R.K.A. Analysing the Primary Influential Factors in Cement Manufacturing Industry Using DEMATEL Methodology. In Materials, Design and Manufacturing for Sustainable Environment; Natarajan, E., Vinodh, S., Rajkumar, V., Eds.; Springer Nature: Singapore, 2023; pp. 489–498. [Google Scholar]
- Marinelli, M.; Janardhanan, M. Green cement production in India: Prioritization and alleviation of barriers using the best–worst method. Environ. Sci. Pollut. Res. 2022, 29, 63988–64003. [Google Scholar] [CrossRef]
- Hossain, M.U.; Poon, C.S.; Lo, I.M.C.; Cheng, J.C.P. Comparative LCA on using waste materials in the cement industry: A Hong Kong case study. Resour. Conserv. Recycl. 2017, 120, 199–208. [Google Scholar] [CrossRef]
- Hossain, M.U.; Poon, C.S.; Lo, I.M.C.; Cheng, J.C.P. Evaluation of environmental friendliness of concrete paving eco-blocks using LCA approach. Int. J. Life Cycle Assess. 2016, 21, 70–84. [Google Scholar] [CrossRef]
- Akintayo, B.D.; Babatunde, O.M.; Olanrewaju, O.A. Comparative Analysis of Cement Production Methods Using a Life Cycle Assessment and a Multicriteria Decision-Making Approach. Sustainability 2024, 16, 484. [Google Scholar] [CrossRef]
- Arukala, S.R.; Pancharathi, R.K.; Anand Raj, P. A Qualitative and Quantitative Approach to Prioritize Sustainable Concrete Using TOPSIS. In Advances in Sustainable Construction Materials; Pancharathi, R.K., Sangoju, B., Chaudhary, S., Eds.; Springer: Singapore, 2020; pp. 159–169. [Google Scholar]
- Suárez Silgado, S.; Calderón Valdiviezo, L.; Gassó Domingo, S.; Roca, X. Multi-criteria decision analysis to assess the environmental and economic performance of using recycled gypsum cement and recycled aggregate to produce concrete: The case of Catalonia (Spain). Resour. Conserv. Recycl. 2018, 133, 120–131. [Google Scholar] [CrossRef]
- Hendiani, S.; Walther, G. Towards sustainable futures: Rethinking supplier selection through interval-valued intuitionistic fuzzy decision-making. Int. J. Prod. Econ. 2025, 285, 109620. [Google Scholar] [CrossRef]
- Falqi, I.I.; Ahmed, M.; Mallick, J. Siliceous Concrete Materials Management for Sustainability Using Fuzzy-TOPSIS Approach. Appl. Sci. 2019, 9, 3457. [Google Scholar] [CrossRef]
- Ighravwe, D.E.; Oke, S.A. A multi-hierarchical framework for ranking maintenance sustainability strategies using PROMETHEE and fuzzy entropy methods. J. Build. Pathol. Rehabil. 2017, 2, 9. [Google Scholar] [CrossRef]
- Reddy, L.S.; Murthy, N.R.D.; Srikanth, M.; Sunil, S.; Reddy, P.; Keerthana, D.M. Selection of Building Materials Using Fuzzy Analytical Hierarchy Process. Open Civ. Eng. J. 2024, 18, e18741495311020. [Google Scholar] [CrossRef]
- Çebi, F.; Otay, İ. Multi-Criteria and Multi-Stage Facility Location Selection under Interval Type-2 Fuzzy Environment: A Case Study for a Cement Factory. Int. J. Comput. Intell. Syst. 2015, 8, 330–344. [Google Scholar] [CrossRef]
- Mohagheghi, V.; Mousavi, S.M.; Shahabi-Shahmiri, R. Sustainable project portfolio selection and optimization with considerations of outsourcing decisions, financing options and staff assignment under interval type-2 fuzzy uncertainty. Neural Comput. Appl. 2022, 34, 14577–14598. [Google Scholar] [CrossRef]
- Syan, C.S.; Ramsoobag, G. Maintenance applications of multi-criteria optimization: A review. Reliab. Eng. Syst. Saf. 2019, 190, 106520. [Google Scholar] [CrossRef]
- Roy, J.; Das, S.; Kar, S.; Pamučar, D. An Extension of the CODAS Approach Using Interval-Valued Intuitionistic Fuzzy Set for Sustainable Material Selection in Construction Projects with Incomplete Weight Information. Symmetry 2019, 11, 393. [Google Scholar] [CrossRef]
- Lolli, F.; Ishizaka, A.; Gamberini, R.; Rimini, B.; Ferrari, A.M.; Marinelli, S.; Savazza, R. Waste treatment: An environmental, economic and social analysis with a new group fuzzy PROMETHEE approach. Clean Technol. Environ. Policy 2016, 18, 1317–1332. [Google Scholar] [CrossRef]
- Hauschild, M.Z. Introduction to LCA Methodology. In Life Cycle Assessment: Theory and Practice; Hauschild, M.Z., Rosenbaum, R.K., Olsen, S.I., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 59–66. [Google Scholar]
- Hauschild, M.Z.; Rosenbaum, R.K.; Olsen, S.I. Life Cycle Assessment; Springer Nature: Cham, Switzerland, 2018; Volume 2018. [Google Scholar]
- Karaca, C.; Ulutaş, A.; Yağar Yamaner, G.; Topal, A. The selection of the best Olympic place for Turkey using an integrated MCDM model. Decis. Sci. Lett. 2019, 8, 1–16. [Google Scholar] [CrossRef]
- Janhavi Chaidhanya, G.; Ramachandran, M.; Ramu, K.; Murugan, A. Understanding the Performance of Micro and Small Entrepreneurs by (COPRAS). REST J. Data Anal. Artif. Intell. 2022, 1, 33–40. [Google Scholar] [CrossRef]
- Zapolskytė, S.; Vabuolytė, V.; Burinskienė, M.; Antuchevičienė, J. Assessment of Sustainable Mobility by MCDM Methods in the Science and Technology Parks of Vilnius, Lithuania. Sustainability 2020, 12, 9947. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z. A new additive ratio assessment (ARAS) method in multicriteria decision-making. Ukio Technol. Ir Ekon. Vystym. 2010, 16, 159–172. [Google Scholar] [CrossRef]
- ISO 14044; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO (International Organization for Standardization): Geneva, Switzerland, 2006.
- ISO 14040; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO (International Organization for Standardization): Geneva, Switzerland, 2006.
- Keshavarz Ghorabaee, M.; Zavadskas, E.K.; Olfat, L.; Turskis, Z. Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica 2015, 26, 435–451. [Google Scholar] [CrossRef]
- Juanpera, M.; Blechinger, P.; Ferrer-Martí, L.; Hoffmann, M.M.; Pastor, R. Multicriteria-based methodology for the design of rural electrification systems. A case study in Nigeria. Renew. Sustain. Energy Rev. 2020, 133, 110243. [Google Scholar] [CrossRef]
- Saaty, T.L. The analytic hierarchy process (AHP). J. Oper. Res. Soc. 1980, 41, 1073–1076. [Google Scholar]
- Opricovic, S.; Tzeng, G.-H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- Singh, A.; Malik, S.K. Major MCDM Techniques and their application—A Review. IOSR J. Eng. 2014, 4, 15–25. [Google Scholar] [CrossRef]
- Wang, E.; Alp, N.; Shi, J.; Wang, C.; Zhang, X.; Chen, H. Multi-criteria building energy performance benchmarking through variable clustering based compromise TOPSIS with objective entropy weighting. Energy 2017, 125, 197–210. [Google Scholar] [CrossRef]
- Wang, Z.; Zhan, W. Dynamic Engineering Multi-criteria Decision Making Model Optimized by Entropy Weight for Evaluating Bid. Syst. Eng. Procedia 2012, 5, 49–54. [Google Scholar] [CrossRef]
- Hosseinzadeh Lotfi, F.; Allahviranloo, T.; Pedrycz, W.; Shahriari, M.; Sharafi, H.; Razipour GhalehJough, S. The Complex Proportional Assessment (COPRAS) in Uncertainty Environment. In Fuzzy Decision Analysis: Multi Attribute Decision Making Approach; Hosseinzadeh Lotfi, F., Allahviranloo, T., Pedrycz, W., Shahriari, M., Sharafi, H., Razipour GhalehJough, S., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 291–308. [Google Scholar]
- Okunevičiūtė Neverauskienė, L.; Novikova, M.; Kazlauskienė, E. Factors determining the development of intelligent transport systems. Bus. Manag. Econ. Eng. 2021, 19, 229–243. [Google Scholar] [CrossRef]
- Organ, A.; Yalçın, E. Performance evaluation of research assistants by COPRAS method. Eur. Sci. J. 2016, 12, 102–109. [Google Scholar]
- Taherdoost, H.; Mohebi, A. A Comprehensive Guide to the COPRAS method for Multi-Criteria Decision Making. J. Manag. Sci. Eng. Res. 2024, 7, 1–14. [Google Scholar] [CrossRef]
- Kaklauskas, A.; Zavadskas, E.K.; Trinkunas, V. A multiple criteria decision support on-line system for construction. Eng. Appl. Artif. Intell. 2007, 20, 163–175. [Google Scholar] [CrossRef]
- Ighravwe, D.E.; Oke, S.A. An integrated approach of SWARA and fuzzy COPRAS for maintenance technicians’ selection factors ranking. Int. J. Syst. Assur. Eng. Manag. 2019, 10, 1615–1626. [Google Scholar] [CrossRef]
- Viteikiene, M.; Zavadskas, E.K. Evaluating the sustainability of vilnius city residential areas. J. Civ. Eng. Manag. 2007, 13, 149–155. [Google Scholar] [CrossRef]
- Karabašević, D.; Stanujkić, D.; Urošević, S. The MCDM Model for Personnel Selection Based on SWARA and ARAS Methods. Management 2015, 20, 43–52. [Google Scholar] [CrossRef]
- Karabasevic, D.; Paunkovic, J.; Stanujkic, D. Ranking of companies according to the indicators of corporate social responsibility based on SWARA and ARAS methods. Serbian J. Manag. 2016, 11, 43–53. [Google Scholar] [CrossRef]
- Xu, D.; Li, W.; Shen, W.; Dong, L. Decision-Making for Sustainability Enhancement of Chemical Systems under Uncertainties: Combining the Vector-Based Multiattribute Decision-Making Method with Weighted Multiobjective Optimization Technique. Ind. Eng. Chem. Res. 2019, 58, 12066–12079. [Google Scholar] [CrossRef]
- MASCA, M.; GENÇ, T. Sustainable Development Performance Analysis by Entropy-Based Copras Method: An Application in The European Union Countries. Rev. Manag. Econ. Eng. 2024, 23, 122–130. [Google Scholar] [CrossRef]
- Goswami, S.S.; Behera, D.K. Solving Material Handling Equipment Selection Problems in an Industry with the Help of Entropy Integrated COPRAS and ARAS MCDM techniques. Process Integr. Optim. Sustain. 2021, 5, 947–973. [Google Scholar] [CrossRef]
- Goswami, S.S.; Behera, D.K. Implementation of ENTROPY-ARAS decision making methodology in the selection of best engineering materials. Mater. Today Proc. 2021, 38, 2256–2262. [Google Scholar] [CrossRef]
- Hezer, S.; Gelmez, E.; Özceylan, E. Comparative analysis of TOPSIS, VIKOR and COPRAS methods for the COVID-19 Regional Safety Assessment. J. Infect. Public Health 2021, 14, 775–786. [Google Scholar] [CrossRef] [PubMed]
- Malefaki, S.; Markatos, D.; Filippatos, A.; Pantelakis, S. A Comparative Analysis of Multi-Criteria Decision-Making Methods and Normalization Techniques in Holistic Sustainability Assessment for Engineering Applications. Aerospace 2025, 12, 100. [Google Scholar] [CrossRef]
- Aytekin, A. Comparative Analysis of the Normalization Techniques in the Context of MCDM Problems. Decis. Mak. Appl. Manag. Eng. 2021, 4, 1–25. [Google Scholar] [CrossRef]
- Shah, I.H.; Miller, S.A.; Jiang, D.; Myers, R.J. Cement substitution with secondary materials can reduce annual global CO2 emissions by up to 1.3 gigatons. Nat. Commun. 2022, 13, 5758. [Google Scholar] [CrossRef]
- Clark, G.; Davis, M.; Shibani; Kumar, A. Assessment of fuel switching as a decarbonization strategy in the cement sector. Energy Convers. Manag. 2024, 312, 118585. [Google Scholar] [CrossRef]
- Nydrioti, I.; Moutsaki, M.-M.; Leounakis, N.; Grigoropoulou, H. Implementation of the water footprint as a water performance indicator in industrial manufacturing units located in Greece: Challenges and prospects. Environ. Sci. Pollut. Res. 2024, 31, 803–819. [Google Scholar] [CrossRef]
- Etim, M.-A.; Babaremu, K.; Lazarus, J.; Omole, D. Health Risk and Environmental Assessment of Cement Production in Nigeria. Atmosphere 2021, 12, 1111. [Google Scholar] [CrossRef]
- Zhu, Y.; Tian, D.; Yan, F. Effectiveness of Entropy Weight Method in Decision-Making. Math. Probl. Eng. 2020, 2020, 3564835. [Google Scholar] [CrossRef]
- Krishnan, A.R.; Kasim, M.M.; Hamid, R.; Ghazali, M.F. A Modified CRITIC Method to Estimate the Objective Weights of Decision Criteria. Symmetry 2021, 13, 973. [Google Scholar] [CrossRef]
- Akintayo, B.D.; Olanrewaju, O.A.; Olanrewaju, O.I. Life Cycle Assessment of Ordinary Portland Cement Production in South Africa: Mid-Point and End-Point Approaches. Sustainability 2024, 16, 3001. [Google Scholar] [CrossRef]
- Olowoyo, J.O. Trace Metals in Soil and Plants around a Cement Factory in Pretoria, South Africa. Pol. J. Environ. Stud. 2015, 24, 2087–2093. [Google Scholar] [CrossRef] [PubMed]
Cement Types | ARAS | COPRAS | ||||
---|---|---|---|---|---|---|
Si | Ki | Rank | Qi | Ui | Rank | |
CEM I | 0.1588 | 0.5266 | 4 | 0.17 | 74.27 | 4 |
CEM II/A-S | 0.0720 | 0.2389 | 5 | 0.08 | 35.40 | 5 |
CEM II/A-V | 0.1936 | 0.6421 | 2 | 0.21 | 89.06 | 2 |
CEM II/B-S | 0.0642 | 0.2130 | 6 | 0.07 | 29.37 | 6 |
CEM II/B-L | 0.1827 | 0.6061 | 3 | 0.19 | 84.19 | 3 |
CEM II/B-V | 0.2188 | 0.7257 | 1 | 0.23 | 100.00 | 1 |
CEM III/A | 0.0584 | 0.1937 | 7 | 0.05 | 22.06 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ige, O.E.; Moloi, K.; Kabeya, M. Sustainability Assessment of Cement Types via Integrated Life Cycle Assessment and Multi-Criteria Decision-Making Methods. Sci 2025, 7, 85. https://doi.org/10.3390/sci7030085
Ige OE, Moloi K, Kabeya M. Sustainability Assessment of Cement Types via Integrated Life Cycle Assessment and Multi-Criteria Decision-Making Methods. Sci. 2025; 7(3):85. https://doi.org/10.3390/sci7030085
Chicago/Turabian StyleIge, Oluwafemi Ezekiel, Katleho Moloi, and Musasa Kabeya. 2025. "Sustainability Assessment of Cement Types via Integrated Life Cycle Assessment and Multi-Criteria Decision-Making Methods" Sci 7, no. 3: 85. https://doi.org/10.3390/sci7030085
APA StyleIge, O. E., Moloi, K., & Kabeya, M. (2025). Sustainability Assessment of Cement Types via Integrated Life Cycle Assessment and Multi-Criteria Decision-Making Methods. Sci, 7(3), 85. https://doi.org/10.3390/sci7030085