Recent Research on Linseed Oil Use in Wood Protection—A Review
Abstract
:1. Introduction
2. Surface Treatment
3. Impregnation
Authors | Reference | Impregnant | Wood Substrate | Impregnation Method |
---|---|---|---|---|
Ruwoldt and Toven | [41] | Blend of raw LO, alcohol, pyrolysis oil | Scots pine | Immersion (1 h) 75 °C |
Fadl and Basta | [42] | Boiled LO | Okoume, spruce (acetylated) | Vacuum, curing (1–5 h) at 70–190 °C |
Liu et al. | [46] | LO | Chinese ash (sapwood) | Vacuum (0.01 MPa) 1.5 h, atmospheric pressure 1.5 h |
Liu et al. | [47] | LO | Ailanthus (sapwood) | Vacuum (0.01 MPa) 1.5 h, atmospheric pressure 1.5 h |
Kaya | [49] | Natural LO (100% purity) | Mediterranean cypress, field maple | Hot–cold bath 1h at 130 °C and 1h at 30 °C (followed by heat treatment at 160–240 °C) |
Pelit and Arısüt | [50] | LO and synthetic thinner (1:1) | Aspen, fir | Pre-vacuum (760 mm Hg) 1 h, atmospheric pressure 24 h |
Epmeier et al. | [52] | Reactive LO derivative | Scots pine (sapwood, heartwood), European beech, silver birch | Vacuum 30 min, pressure 45 min, post-vacuum 60 min |
Humar and Lesar | [53] | LO (100%) | Norway spruce, European beech | Not specified |
Can and Sivrikaya | [54] | LO and ethanol (1:1) | Scots pine pre-impregnated with Cu azole | Vacuum (650 mmHg), 30 min; pressure (6 bars), 1 h; hot bath (80 °C), 4 h |
Fredriksson et al. | [55] | Boiled LO | Norway spruce (mature sapwood and juvenile and mature heartwood) | Pressure (1 MPa) at 100 °C |
Demirel et al. | [56] | LO | Scots pine (sapwood) | Empty cell process |
4. Base for Biofinish
5. Medium in Thermal Modification of Wood
6. Performance Optimization by LO Chemical Modification
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahendran, A.R.; Wuzella, G.; Aust, N.; Kandelbauer, A.; Müller, U. Photocrosslinkable Modified Vegetable Oil Based Resin for Wood Surface Coating Application. Prog. Org. Coat. 2012, 74, 697–704. [Google Scholar] [CrossRef]
- Chang, C.W.; Chang, J.P.; Lu, K.T. Synthesis of Linseed Oil-Based Waterborne Urethane Oil Wood Coatings. Polymers 2018, 10, 1235. [Google Scholar] [CrossRef]
- Poth, U. Drying Oils and Related Products. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH&Co. KGaA: Weinheim, Germany, 2001. [Google Scholar] [CrossRef]
- Soucek, M.D.; Khattab, T.; Wu, J. Review of Autoxidation and Driers. Prog. Org. Coat. 2012, 73, 435–454. [Google Scholar] [CrossRef]
- Arminger, B.; Jaxel, J.; Bacher, M.; Gindl-Altmutter, W.; Hansmann, C. On the Drying Behavior of Natural Oils Used for Solid Wood Finishing. Prog. Org. Coat. 2020, 148, 105831. [Google Scholar] [CrossRef]
- Tan, S.G.; Chow, W.S. Biobased Epoxidized Vegetable Oils and Its Greener Epoxy Blends: A Review. Polym.-Plast. Technol. Eng. 2010, 49, 1581–1590. [Google Scholar] [CrossRef]
- Singh, T.; Singh, A.P. A Review on Natural Products as Wood Protectant. Wood Sci. Technol. 2012, 46, 851–870. [Google Scholar] [CrossRef]
- Teacă, C.A.; Roşu, D.; Mustaţă, F.; Rusu, T.; Roşu, L.; Roşca, I.; Varganici, C.D. Natural Bio-Based Products for Wood Coating and Protection against Degradation: A Review. Bioresources 2019, 14, 4873–4901. [Google Scholar] [CrossRef]
- Kymäläinen, M.; Dömény, J.; Rautkari, L. Moisture Sorption of Wood Surfaces Modified by One-Sided Carbonization as an Alternative to Traditional Façade Coatings. Coatings 2022, 12, 1273. [Google Scholar] [CrossRef]
- Ibanez, C.M.; Kartal, S.N.; Soytürk, E.E.; Kurul, F.; Şeker, S.; Önses, M.S.; Çelik, N.; Temiz, A.B. Changes in the physical and mechanical properties of Pinus teada and Eucalyptus bosistoana wood modified by contact charring. BioResources 2023, 18, 8614–8630. [Google Scholar] [CrossRef]
- Soytürk, E.E.; Kartal, S.N.; Arango, R.A.; Ohno, K.M.; Solhan, E.; Çağlayan, İ.; Ibanez, C.M. Surface Carbonization of Wood: Comparison of the Biological Performance of Pinus Taeda and Eucalyptus Bosistoana Woods Modified by Contact Charring Method. Wood Mater. Sci. Eng. 2023, 18, 1888–1899. [Google Scholar] [CrossRef]
- Tuncer, F.D.; Kartal, S.N.; Soytürk, E.E.; Arango, R.A.; Ohno, K.M.; Önses, M.S.; Çelik, N.; Ibanez, C.M. Changes in Chemical Properties and Microstructure of Pinus Taeda and Eucalyptus Bosistoana Woods Modified by Contact Charring. Eur. J. Wood Wood Prod. 2024, 82, 107–121. [Google Scholar] [CrossRef]
- Weththimuni, M.L.; Canevari, C.; Legnani, A.; Licchelli, M.; Malagodi, M.; Ricca, M.; Zeffiro, A. Experimental Characterization of Oil-Colophony Varnishes: A Preliminary Study. Int. J. Conserv. Sci. 2016, 7, 813–826. [Google Scholar]
- Timar, M.C.; Varodi, A.M.; Liu, X.Y. The Influence of Artificial Ageing on Selected Properties of Wood Surfaces Finished With Traditional Materials—An Assessment for Conservation Purposes. Bull. Transilv. Univ. Bras. Ser. II For. Wood Ind. Agric. Food Eng. 2020, 13, 82–94. [Google Scholar] [CrossRef]
- Janesch, J.; Gusenbauer, C.; Mautner, A.; Gindl-Altmutter, W.; Hansmann, C. Efficient Wood Hydrophobization Exploiting Natural Roughness Using Minimum Amounts of Surfactant-Free Plant Oil Emulsions. ACS Omega 2021, 6, 22202–22212. [Google Scholar] [CrossRef] [PubMed]
- Yaremchuk, L.; Hogaboam, L.; Slabejová, G.; Sedliačik, J. Comparative Analysis of the Quality Properties of Oil-Based and Alkyd Coating Materials for Wood. Acta Fac. Xylologiae Zvolen 2023, 65, 63–71. [Google Scholar] [CrossRef]
- Šeda, V.; Baar, J.; Pluháček, V.; Šernek, M.; Čermák, P. Artificial weathering resistance and biological durability of surface-charred beech wood combined with linseed oil coating. BioResources 2023, 18, 7645–7662. [Google Scholar] [CrossRef]
- Kutnar, A.; Rautkari, L.; Laine, K.; Hughes, M. Thermodynamic Characteristics of Surface Densified Solid Scots Pine Wood. Eur. J. Wood Wood Prod. 2012, 70, 727–734. [Google Scholar] [CrossRef]
- Petrič, M.; Kutnar, A.; Rautkari, L.; Laine, K.; Hughes, M. Influence of Surface Densification of Wood on Its Dynamic Wettability and Surface Free Energy. In Advances in Contact Angle, Wettability and Adhesion; Mital, K.L., Ed.; Scrivener Publishing LLC: Beverly, MA, USA, 2013; Volume 1, pp. 279–296. [Google Scholar] [CrossRef]
- Ekstedt, J.; Östberg, G. Liquid Water Permeability of Exterior Wood Coatings-Testing According to a Proposed European Standard Method. J. Coat. Technol. 2001, 73, 53–59. [Google Scholar] [CrossRef]
- Bennouna, F.; Sadiki, M.; Elabed, S.; Ibnsouda Koraichi, S.; Lachkar, M. The Effect of Different Vegetable Oils on Cedar Wood Surface Energy: Theoretical and Experimental Fungal Adhesion. Int. J. Biomater. 2022, 2022, 9923079. [Google Scholar] [CrossRef]
- Fjällström, P.; Andersson, B.; Nilsson, C. Drying of Linseed Oil Paints: The Effects of Substrate on the Emission of Aldehydes. Indoor Air 2003, 13, 277–282. [Google Scholar] [CrossRef]
- Stenberg, C.; Svensson, M.; Wallström, E.; Johansson, M. Drying of Linseed Oil Wood Coatings Using Reactive Diluents. Surf. Coat. Part B Coat. Trans. 2005, 88, 119–126. [Google Scholar] [CrossRef]
- Hubmann, M.; von Gunten, K.; Alessi, D.S.; Curtis, J.M. Epoxidized Linseed Lipids as a Durable and Fast-Curing Alternative to Drying Oils. Prog. Org. Coat. 2021, 159, 106406. [Google Scholar] [CrossRef]
- Petric, M.; Kricej, B.; Humar, M.; Pavlic, M.; Tomazic, M. Patination of Cherry Wood and Spruce Wood with Ethanolamine and Surface Finishes. Surf. Coat. Part B Coat. Trans. 2004, 87, 195–201. [Google Scholar] [CrossRef]
- Fodor, F.; Németh, R. Testing the Photostability of Acetylated and Boiled Linseed Oil-Coated Common Hornbeam (Carpinus betulus L.) Wood. Acta Silv. Lignaria Hung. 2017, 13, 81–94. [Google Scholar] [CrossRef]
- Bansal, R.; Nair, S.; Pandey, K.K. UV Resistant Wood Coating Based on Zinc Oxide and Cerium Oxide Dispersed Linseed Oil Nano-Emulsion. Mater. Today Commun. 2022, 30, 103177. [Google Scholar] [CrossRef]
- Vega Gutierrez, S.M.; Stone, D.W.; He, R.; Vega Gutierrez, P.T.; Walsh, Z.M.; Robinson, S.C. Potential Use of the Pigments from Scytalidium Cuboideum and Chlorociboria Aeruginosa to Prevent ‘Greying’ Decking and Other Outdoor Wood Products. Coatings 2021, 11, 511. [Google Scholar] [CrossRef]
- Kymäläinen, M.; Lourençon, T.V.; Lillqvist, K. Natural Weathering of Soft- and Hardwoods Modified by Contact and Flame Charring Methods. Eur. J. Wood Wood Prod. 2022, 80, 1309–1320. [Google Scholar] [CrossRef]
- Robinson, S.C.; Gutierrez, S.M.V.; Garcia, R.A.C.; Iroume, N.; Vorland, N.R.; McClelland, A.; Huber, M.; Stanton, S. Potential for Carrying Dyes Derived from Spalting Fungi in Natural Oils. J. Coat. Technol. Res. 2017, 14, 1107–1113. [Google Scholar] [CrossRef]
- Robinson, S.C.; Vega Gutierrez, S.M.; Garcia, R.A.C.; Iroume, N.; Vorland, N.R.; Andersen, C.; de Oliveira Xaxa, I.D.; Kramer, O.E.; Huber, M.E. Potential for Fungal Dyes as Colorants in Oil and Acrylic Paints. J. Coat. Technol. Res. 2018, 15, 845–849. [Google Scholar] [CrossRef]
- Vidholdová, Z.; Slabejová, G.; Šmidriaková, M. Quality of Oil-and Wax-Based Surface Finishes on Thermally Modified Oak Wood. Coatings 2021, 11, 143. [Google Scholar] [CrossRef]
- Veigel, S.; Lems, E.M.; Grüll, G.; Hansmann, C.; Rosenau, T.; Zimmermann, T.; Gindl-Altmutter, W. Simple Green Route to Performance Improvement of Fully Bio-Based Linseed Oil Coating Using Nanofibrillated Cellulose. Polymers 2017, 9, 425. [Google Scholar] [CrossRef] [PubMed]
- López-Gómez, Y.M.; Barbero-López, A.; González-Prieto, O.; Venäläinen, M.; Haapala, A. Tree species-based differences vs. decay performance and mechanical properties following chemical and thermal treatments. BioResources 2022, 17, 3148–3162. [Google Scholar] [CrossRef]
- Ohshima, K.; Sugimoto, H.; Sugimori, M.; Sawada, E. Effect of the Internal Structure on Color Changes in Wood by Painting Transparent. Color. Res. Appl. 2021, 46, 645–652. [Google Scholar] [CrossRef]
- Sansonetti, E.; Andersons, B.; Andersone, I. Novel Alkyd-Linseed Oil Emulsion Formulations for Wood Coatings. IOP Conf. Ser. Mater. Sci. Eng. 2016, 111, 012020. [Google Scholar] [CrossRef]
- Eriksson, D.; Geladi, P.; Ulvcrona, T. Near-Infrared Spectroscopy for the Quantification of Linseed Oil Uptake in Scots Pine (Pinus sylvestris L.). Wood Mater. Sci. Eng. 2011, 6, 170–176. [Google Scholar] [CrossRef]
- Geladi, P.; Eriksson, D.; Ulvcrona, T. Data Analysis of Hyperspectral NIR Image Mosaics for the Quantification of Linseed Oil Impregnation in Scots Pine Wood. Wood Sci. Technol. 2014, 48, 467–481. [Google Scholar] [CrossRef]
- Ulvcrona, T.; Lindberg, H.; Bergsten, U. Impregnation of Norway Spruce (Picea abies L. Karst.) Wood by Hydrophobic Oil and Dispersion Patterns in Different Tissues. Forestry 2006, 79, 123–134. [Google Scholar] [CrossRef]
- Ulvcrona, T.; Bergsten, U. Possibilities for Compositional Tailoring of Norway Spruce (Picea abies L. Karst.) Wood Using a Hydrophobic Oil Impregnation Process. Holz Als Roh-Und Werkst. 2007, 65, 167–169. [Google Scholar] [CrossRef]
- Ruwoldt, J.; Toven, K. Alternative Wood Treatment with Blends of Linseed Oil, Alcohols and Pyrolysis Oil. J. Bioresour. Bioprod. 2022, 7, 278–287. [Google Scholar] [CrossRef]
- Fadl, N.A.; Basta, A.H. Enhancement of the Dimensional Stability of Natural Wood by Impregnates. Pigment Resin. Technol. 2005, 34, 72–87. [Google Scholar] [CrossRef]
- Ahmed, S.; Fatima, R.; Hassan, B. Evaluation of Different Plant Derived Oils as Wood Preservatives against Subterranean Termite. Maderas Cienc. Tecnol. 2020, 22, 109–120. [Google Scholar] [CrossRef]
- Olsson, T.; Megnis, M.; Varna, J.; Lindberg, H. Measurement of the Uptake of Linseed Oil in Pine by the Use of an X-Ray Microdensitometry Technique. J. Wood Sci. 2001, 47, 275–281. [Google Scholar] [CrossRef]
- Megnis, M.; Olsson, T.; Varna, J.; Lindberg, H. Mechanical Performance of Linseed Oil Impregnated Pine as Correlated to the Take-up Level. Wood Sci. Technol. 2002, 36, 3148–3162. [Google Scholar] [CrossRef]
- Liu, Z.; Wen, L.; Wang, X.; Zhang, Y.; Cai, L. Leachability of ACQ-D after Three Different Preservative Treatments. Wood Res. 2020, 65, 591–604. [Google Scholar] [CrossRef]
- Liu, M.; Wang, J.; Xu, G.; Tu, X.W.; Liu, X.Y.; Wu, Z. Efficacy of linseed oil-treated wood to improve hydrophobicity, dimensional stability, and thermostability. Wood Res. 2021, 66, 777–788. [Google Scholar] [CrossRef]
- Timar, M.C.; Pop, D.M.; Buchner, J.; Irle, M. The Protection of Beech Wood (Fagus Sylvatica) Against the Brown Rot Postia Placenta Using Clove (Eugenia Caryophyllata) Essential Oil in a Linseed Oil Medium. Bull. Transilv. Univ. Bras. Ser. II For. Wood Ind. Agric. Food Eng. 2021, 14–63, 61–74. [Google Scholar] [CrossRef]
- Kaya, A.I. Combined effects of linseed oil and heat treatment on the properties of cypress and maple wood Part 1: Water absorption, mechanical properties, and sound absorption capacity. BioResources 2023, 18, 2940–2963. [Google Scholar] [CrossRef]
- Pelit, H.; Arısüt, U. Roughness, wettability, and morphological properties of impregnated and densified wood materials. BioResources 2023, 18, 429–446. [Google Scholar] [CrossRef]
- van Eckeveld, A.; Homan, W.J.; Militz, H. Increasing the water repellency of Scots pine sapwood by impregnation with undiluted linseed oil, wood oil, coccos oil and tall oil. Holzforsch. Holzverw. 2001, 6, 113–115. [Google Scholar]
- Epmeier, H.; Westin, M.; Rapp, A. Differently Modified Wood: Comparison of Some Selected Properties. Scand. J. For. Res. 2004, 19, 31–37. [Google Scholar] [CrossRef]
- Humar, M.; Lesar, B. Efficacy of Linseed- and Tung-Oil-Treated Wood against Wood-Decay Fungi and Water Uptake. Int. Biodeterior. Biodegrad. 2013, 85, 223–227. [Google Scholar] [CrossRef]
- Can, A.; Sivrikaya, H. Combined Effects of Copper and Oil Treatment on the Properties of Scots Pine Wood. Drewno 2017, 60, 89–103. [Google Scholar] [CrossRef]
- Fredriksson, M.; Wadsö, L.; Ulvcrona, T. Moisture Sorption and Swelling of Norway Spruce [Picea abies (L.) Karst.] Impregnated with Linseed Oil. Wood Mater. Sci. Eng. 2010, 5, 135–142. [Google Scholar] [CrossRef]
- Demirel, G.K.; Temiz, A.; Jebrane, M.; Terziev, N.; Gezer, E.D. Micro-Distribution, Water Absorption, and Dimensional Stability of Wood Treated with Epoxidized Plant Oils. Bioresources 2019, 13, 5124–5138. [Google Scholar] [CrossRef]
- Terziev, N.; Panov, D. Plant Oils As “Green” Substances for Wood Protection. In Proceedings of the 4th International Conference on Environment-Friendly Forest Products, Porto, Portugal, 8–10 September 2010; pp. 143–149. [Google Scholar]
- Lyona, F.; Thevenon, M.F.; Hwang, W.J.; Imamura, Y.; Gril, J.; Pizzi, A. Effect of an Oil Heat Treatment on the Leachability and Biological Resistance of Boric Acid Impregnated Wood. Ann. For. Sci. 2007, 64, 673–678. [Google Scholar] [CrossRef]
- Hassan, B.; Mankowski, M.E.; Kirker, G.T. Evaluation of Heartwood Extracts Combined with Linseed Oil as Wood Preservatives in Field Tests in Southern Mississippi, USA. Insects 2021, 12, 803. [Google Scholar] [CrossRef]
- Przewloka, S.R.; Ahmed, B.; Vinden, P.; French, J.; Hann, J.A. Biodeterioration of Treated Pinus Radiata Timber by Australian Decay Fungi and the Termite Coptotermes Acinaciformis in Laboratory Bioassays and Field Conditions. Holzforschung 2007, 61, 207–213. [Google Scholar] [CrossRef]
- Bansal, R.; Mamatha, N.; Kumar, R.; Pandey, K.K. Fungal Resistance of Hevea Brasiliensis (Rubberwood) Treated with Nano-ZnO and Nano-CuO Dispersed Linseed Oil and Paraffin Wax Nanoemulsion. Eur. J. Wood Wood Prod. 2024, 82, 1095–1109. [Google Scholar] [CrossRef]
- Ulvcrona, T.; Flæte, P.O.; Alfredsen, G. Effects of Lateral Wood Zone on Brown Rot Resistance of Untreated and Linseed Oil-Impregnated Scots Pine Wood. Eur. J. Wood Wood Prod. 2012, 70, 771–773. [Google Scholar] [CrossRef]
- Fatima, R.; Morrell, J.J. Ability of Plant-Derived Oils to Inhibit Dampwood Termite (Zootermopsis Augusticollis) Activity. Maderas Cienc. Tecnol. 2015, 17, 685–690. [Google Scholar] [CrossRef]
- Hassan, B.; Ahmed, S.; Kirker, G.; Mankowski, M.E.; Misbah ul Haq, M. Synergistic Effect of Heartwood Extracts in Combination with Linseed Oil as Wood Preservatives against Subterranean Termite Heterotermes Indicola (Blattodea: Rhinotermitidae). Environ. Sci. Pollut. Res. 2020, 27, 3076–3085. [Google Scholar] [CrossRef]
- Temiz, A.; Terziev, N.; Eikenes, M.; Hafren, J. Effect of Accelerated Weathering on Surface Chemistry of Modified Wood. Appl Surf. Sci. 2007, 253, 5355–5362. [Google Scholar] [CrossRef]
- Can, A.; Sivrikaya, H.; Taşcioğlu, C. Determination of Metal Corrosion in Wood Treated with New-Generation Water-Borne Preservatives. Drewno 2020, 63, 59–68. [Google Scholar] [CrossRef]
- Pelit, H.; Emiroglu, F. Effect of Water Repellents on Hygroscopicity and Dimensional Stability of Densified Fir and Aspen Woods. Drv. Ind. 2020, 71, 29–40. [Google Scholar] [CrossRef]
- Pelit, H.; Emiroglu, F. Density, Hardness and Strength Properties of Densified Fir and Aspen Woods Pretreated with Water Repellents. Holzforschung 2021, 75, 358–367. [Google Scholar] [CrossRef]
- Dubey, M.K.; Pang, S.; Chauhan, S.; Walker, J. Dimensional Stability, Fungal Resistance and Mechanical Properties of Radiata Pine after Combined Thermo-Mechanical Compression and Oil Heat-Treatment. Holzforschung 2016, 70, 793–800. [Google Scholar] [CrossRef]
- Ah, P.V.; Piltonen, P.; Onen, A.H.Y.V.; Jalonen, J.; Kuokkanen, T.; Aki, J.N. Biodegradability Studies of Certain Wood Preservatives in Groundwater As Determined. Water Air Soil Pollut. 2005, 165, 313–324. [Google Scholar]
- Sailer, M.F.; van Nieuwenhuijzen, E.J.; Knol, W. Forming of a Functional Biofilm on Wood Surfaces. Ecol. Eng. 2010, 36, 163–167. [Google Scholar] [CrossRef]
- van Nieuwenhuijzen, E.J.; Sailer, M.F.; Gobakken, L.R.; Adan, O.C.G.; Punt, P.J.; Samson, R.A. Detection of Outdoor Mould Staining as Biofinish on Oil Treated Wood. Int. Biodeterior. Biodegrad. 2015, 105, 215–227. [Google Scholar] [CrossRef]
- van Nieuwenhuijzen, E.J.; Houbraken, J.A.M.P.; Meijer, M.; Adan, O.C.G.; Samson, R.A. Aureobasidium Melanogenum: A Native of Dark Biofinishes on Oil Treated Wood. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2016, 109, 661–683. [Google Scholar] [CrossRef]
- van Nieuwenhuijzen, E.J.; Houbraken, J.A.M.P.; Punt, P.J.; Roeselers, G.; Adan, O.C.G.; Samson, R.A. The Fungal Composition of Natural Biofinishes on Oil-Treated Wood. Fungal Biol. Biotechnol. 2017, 4, 2. [Google Scholar] [CrossRef]
- Poohphajai, F.; Gubenšek, A.; Černoša, A.; Butina Ogorelec, K.; Rautkari, L.; Sandak, J.; Sandak, A. Bioinspired Living Coating System for Wood Protection: Exploring Fungal Species on Wood Surfaces Coated with Biofinish during Its Service Life. Coatings 2024, 14, 430. [Google Scholar] [CrossRef]
- Rensink, S.; van Nieuwenhuijzen, E.J.; Sailer, M.F.; Struck, C.; Wösten, H.A.B. Use of Aureobasidium in a Sustainable Economy. Appl. Microbiol. Biotechnol. 2024, 108, 202. [Google Scholar] [CrossRef]
- Peeters, L.H.M.; Huinink, H.P.; Voogt, B.; Adan, O.C.G. Oil Type and Cross-Linking Influence Growth of Aureobasidium Melanogenum on Vegetable Oils as a Single Carbon Source. Microbiologyopen 2018, 7, e00605. [Google Scholar] [CrossRef] [PubMed]
- van Nieuwenhuijzen, E.J.; Sailer, M.F.; van den Heuvel, E.R.; Rensink, S.; Adan, O.C.G.; Samson, R.A. Vegetable Oils as Carbon and Energy Source for Aureobasidium Melanogenum in Batch Cultivation. Microbiologyopen 2019, 8, e00764. [Google Scholar] [CrossRef] [PubMed]
- Poohphajai, F.; Sandak, J.; Sailer, M.; Rautkari, L.; Belt, T.; Sandak, A. Bioinspired Living Coating System in Service: Evaluation of the Wood Protected with Biofinish during One-Year Natural Weathering. Coatings 2021, 11, 701. [Google Scholar] [CrossRef]
- Dubey, M.K.; Pang, S.; Walker, J. Effect of Oil Heating Age on Colour and Dimensional Stability of Heat Treated Pinus Radiata. Eur. J. Wood Wood Prod. 2011, 69, 255–262. [Google Scholar] [CrossRef]
- Karlsson, O.; Sidorova, E.; Morén, T. Influence of Heat Transferring Media on Durability of Thermally Modified Wood. Bioresources 2011, 6, 356–372. [Google Scholar] [CrossRef]
- Dubey, M.K.; Pang, S.; Walker, J. Changes in Chemistry, Color, Dimensional Stability and Fungal Resistance of Pinus Radiata D. Don Wood with Oil Heat-Treatment. Holzforschung 2012, 66, 49–57. [Google Scholar] [CrossRef]
- Bazyar, B. Decay Resistance and Physical Properties of Oil Heat Treated Aspen Wood. Bioresources 2012, 7, 696–702. [Google Scholar] [CrossRef]
- Dubey, M.K.; Pang, S.; Walker, J. Oil Uptake by Wood during Heat-Treatment and Post-Treatment Cooling, and Effects on Wood Dimensional Stability. Eur. J. Wood Wood Prod. 2012, 70, 183–190. [Google Scholar] [CrossRef]
- Dubey, M.K.; Pang, S.; Walker, J. Color and Dimensional Stability of Oil Heat-Treated Radiata Pinewood after Accelerated UV Weathering. For. Prod. J. 2010, 60, 453–459. [Google Scholar] [CrossRef]
- Jebrane, M.; Cai, S.; Sandström, C.; Terziev, N. The Reactivity of Linseed and Soybean Oil with Different Epoxidation Degree towards Vinyl Acetate and Impact of the Resulting Copolymer on the Wood Durability. Express Polym. Lett. 2017, 11, 383–395. [Google Scholar] [CrossRef]
- Cai, S.; Jebrane, M.; Terziev, N. Curing of Wood Treated with Vinyl Acetate-Epoxidized Linseed Oil Copolymer (VAc-ELO). Holzforschung 2016, 70, 305–312. [Google Scholar] [CrossRef]
- Jebrane, M.; Fernández-Cano, V.; Panov, D.; Terziev, N.; Daniel, G. Novel Hydrophobization of Wood by Epoxidized Linseed Oil. Part 1. Process Description and Anti-Swelling Efficiency of the Treated Wood. Holzforschung 2015, 69, 173–177. [Google Scholar] [CrossRef]
- Temiz, A.; Akbas, S.; Panov, D.; Terziev, N.; Alma, M.H.; Parlak, S.; Kose, G. Chemical Composition and Efficiency of Bio-Oil Obtained from Giant Cane (Arundo donax L.) as a Wood Preservative. Bioresources 2013, 8, 2084–2098. [Google Scholar] [CrossRef]
- Jebrane, M.; Franke, T.; Terziev, N.; Panov, D. Natural weathering of Scots pine (Pinus sylvestris L.) wood treated with epoxidized linseed oil and methyltriethoxysilane. Wood Mater. Sci. Eng. 2017, 12, 220–227. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Cao, J.; Wang, W. Improved Water Repellency and Dimensional Stability of Wood via Impregnation with an Epoxidized Linseed Oil and Carnaubawax Complex Emulsion. Forests 2020, 11, 271. [Google Scholar] [CrossRef]
- Panov, D.; Terziev, N. Durability of Epoxi-Oil Modified and Alkoxysilane Treated Wood in Field Testing. Bioresources 2015, 10, 2479–2491. [Google Scholar] [CrossRef]
- Jebrane, M.; Fernández-Cano, V.; Panov, D.; Terziev, N.; Daniel, G. Novel Hydrophobization of Wood by Epoxidized Linseed Oil. Part 2. Characterization by FTIR Spectroscopy and SEM, and Determination of Mechanical Properties and Field Test Performance. Holzforschung 2015, 69, 179–186. [Google Scholar] [CrossRef]
- Olsson, S.K.; Matsunaga, H.; Kataoka, Y.; Johansson, M.; Matsumura, J.; Westin, M.; Östmark, E. A SEM Study on the Use of Epoxy Functional Vegetable Oil and Reactive UV-Absorber as UV-Protecting Pretreatment for Wood. Polym. Degrad. Stab. 2015, 113, 40–45. [Google Scholar] [CrossRef]
- Temiz, A.; Kose, G.; Panov, D.; Terziev, N.; Alma, M.H.; Palanti, S.; Akbas, S. Effect of Bio-Oil and Epoxidized Linseed Oil on Physical, Mechanical, and Biological Properties of Treated Wood. J. Appl. Polym. Sci. 2013, 130, 1562–1569. [Google Scholar] [CrossRef]
- Husić, I.; Mahendran, A.R.; Sinic, J.; Jocham, C.; Lammer, H. Interaction of porous substrate and vegetable oil-based hydrophobic thermoset coatings during UV-polymerization. J. Plast. Film Sheet. 2023, 39, 427–446. [Google Scholar] [CrossRef]
- Wuzella, G.; Mahendran, A.R.; Müller, U.; Kandelbauer, A.; Teischinger, A. Photocrosslinking of an Acrylated Epoxidized Linseed Oil: Kinetics and Its Application for Optimized Wood Coatings. J. Polym. Environ. 2012, 20, 1063–1074. [Google Scholar] [CrossRef]
- Kolyaganova, O.V.; Duridivko, M.O.; Klimov, V.V.; Le, M.D.; Kharlamov, V.O.; Bryuzgin, E.V.; Navrotsky, A.V.; Novakov, I.A. Highly hydrophobic and superhydrophobic coatings based on linseed oil and copolymers of glycidyl methacrylate and (fluoro)alkyl methacrylates for wood surfaces. Colloid J. 2022, 84, 416–426. [Google Scholar] [CrossRef]
- Cai, S.; Jebrane, M.; Terziev, N.; Daniel, G. Mechanical Properties and Decay Resistance of Scots Pine (Pinus sylvestris L.) Sapwood Modified by Vinyl Acetate-Epoxidized Linseed Oil Copolymer. Holzforschung 2016, 70, 885–894. [Google Scholar] [CrossRef]
- Perdoch, W.; Depczyńska, E.; Tomkowiak, K.; Furgał, M.; Kurczak, M.; Mazela, B. The Impact of Vinylotrimethoxysilane-Modified Linseed Oil on Selected Properties of Impregnated Wood. Forests 2022, 13, 1265. [Google Scholar] [CrossRef]
- Chang, C.W.; Lu, K.T. Linseed-Oil-Based Waterborne UV/Air Dual-Cured Wood Coatings. Prog. Org. Coat. 2013, 76, 1024–1031. [Google Scholar] [CrossRef]
- Lu, K.T.; Chang, J.P. Synthesis and Antimicrobial Activity of Metal-Containing Linseed Oil-Based Waterborne Urethane Oil Wood Coatings. Polymers 2020, 12, 663. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, S.; Chen, Y.; Yuan, T.; Yang, Z. One-Step Synthesis of Novel Renewable Multi-Functional Linseed Oil-Based Acrylate Prepolymers and Its Application in UV-Curable Coatings. Prog. Org. Coat. 2020, 148, 105820. [Google Scholar] [CrossRef]
Authors | Reference | Wood Substrate | LO Specification | Hydrophobicity Evaluation |
---|---|---|---|---|
Arminger et al. | [5] | Oak, beech | LO without and with (1 wt%) dryer | Effect of drying time |
Kymäläinen et al. | [9] | Norway spruce, Scots pine, silver birch, trembling aspen (sapwood, charred) | LO | Effect of contact and flame charring |
Ibanez et al. | [11] | Eucalyptus (Bosisto’s box), loblolly pine (charred) | LO | |
Weththimuni et al. | [13] | Maple | Cooked (270 °C) LO with colophony | Ratio of components |
Timar et al. | [14] | European ash, European walnut, sycamore maple | Boiled LO | Effect of aging on resistance to water |
Janesch et al. | [15] | Spruce | LO emulsion (1.02 wt% oil content) | |
Yaremchuk et al. | [16] | Scots pine (heart wood) | LO-based product | Resistance to water (immersion 24 h) |
Šeda et al. | [17] | European beech (charred) | LO | Effect of artificial weathering (UV + water spray) |
Kutnar et al. | [18] | Scots pine (densified) | Cold pressed LO | Effect of densification degree |
Petrič et al. | [19] | Scots pine (sapwood, densified) | Cold pressed LO | Effect of densification degree |
Ekstedt and Östberg | [20] | Norway spruce | LO paint (solvent-based) | Effect of artificial weathering (UV + water spray) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cirule, D.; Andersone, I.; Kuka, E.; Andersons, B. Recent Research on Linseed Oil Use in Wood Protection—A Review. Sci 2024, 6, 54. https://doi.org/10.3390/sci6030054
Cirule D, Andersone I, Kuka E, Andersons B. Recent Research on Linseed Oil Use in Wood Protection—A Review. Sci. 2024; 6(3):54. https://doi.org/10.3390/sci6030054
Chicago/Turabian StyleCirule, Dace, Ingeborga Andersone, Edgars Kuka, and Bruno Andersons. 2024. "Recent Research on Linseed Oil Use in Wood Protection—A Review" Sci 6, no. 3: 54. https://doi.org/10.3390/sci6030054
APA StyleCirule, D., Andersone, I., Kuka, E., & Andersons, B. (2024). Recent Research on Linseed Oil Use in Wood Protection—A Review. Sci, 6(3), 54. https://doi.org/10.3390/sci6030054