Capacity Allocation in Cancer Centers Considering Demand Uncertainty
Abstract
:1. Introduction
2. Literature Review
2.1. Capacity Allocation in Outpatient Clinics
2.2. Deterministic and Stochastic Optimization in Outpatient Clinics
2.3. Other Factors Considered in Patient Scheduling in Cancer Centers
- This study innovatively aims to minimize the maximum deviation between patient demand and supply targets, thereby reducing variability in lost patients, including both new and returning patients.
- The proposed model ensures a balanced workload among oncologists and across clinics simultaneously, thereby improving efficiency.
- The proposed model seeks to decrease the cost of the support services that are required for treating cancer patients by limiting the number of cancer types assigned to each clinic session.
- The proposed model can also be used to help a cancer center choose among different oncology candidates to be able to provide timely access to patients if they are expanding.
3. Model Formulation
- Sets
- P: Set of oncologists (P = 1,2,…, p).
- C: Set of cancer types (C = 1,2,…, c).
- T: Set of half-day clinics (T = 1,2,…, t).
- Parameters
- : Current specialization mix of oncologist .
- : Random demand of new patients with cancer type .
- : Random demand of returning patients with cancer type .
- : Target quantile of new patient demand satisfaction for cancer type .
- : Target quantile of returning patient demand satisfaction for cancer type .
- : Maximum number of specializations assigned to oncologist
- : Minimum number of specializations assigned to oncologist .
- : Minimum number of oncologists assigned to cancer type .
- : Number of available slots in clinic of oncologist .
- : Binary input having a value of 1 if oncologist is holding clinic and , and 0 otherwise.
- : Maximum number of new patients oncologist can see in each clinic.
- : Maximum number of cancer types assigned to clinics across all oncologists.
- : Workload difference among the clinics of individual oncologists.
- : Workload difference across oncologists.
- : Returning to new demand ratio for cancer type .
- : a big number.
- Variables
- : Binary variable taking a value of 1 if cancer type is assigned to oncologist , and 0 otherwise.
- : Binary variable taking a value of 1 if cancer type is assigned to clinic , and 0 otherwise.
- : Integer variable for the number of slots assigned to new patients with cancer type in clinic of oncologist .
- : Integer variable for the number of slots assigned to returning patients with cancer type in clinic of oncologist .
- : Utilization of oncologist and oncologist across all clinics.
- : Utilization of oncologist and oncologist in clinic .
- : Deviation ratio from supply target for cancer type for new patients.
- : Deviation ratio from supply target for cancer type for returning patients.
- : Maximum deviation from supply target across new patients.
- : Maximum deviation from supply target across returning patients.
4. Numerical Experiments
4.1. Cancer Center Background and Parameter Setting
4.2. Sample Results from Model Application in the Cancer Center Context
4.3. Evaluation of Cancer Center Parameters
4.3.1. Impact of the Total Number of Cancer Types Assigned to Each Clinic Session
4.3.2. Impact of Specialization Mix Flexibility
4.3.3. Simultaneous Impact of Workload Balance and Specialization Flexibility Level
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmadi-Javid, A.; Jalali, Z.; Klassen, K.J. Outpatient appointment systems in healthcare: A review of optimization studies. Eur. J. Oper. Res. 2017, 258, 3–34. [Google Scholar] [CrossRef]
- Cantor, T.J. Waiting times for patients with cancer: Waiting lists are putting patients’ lives in jeopardy. BMJ Br. Med. J. 2000, 321, 236. [Google Scholar] [CrossRef]
- Elit, L.M.; O’Leary, E.M.; Pond, G.R.; Seow, H.Y. Impact of wait times on survival for women with uterine cancer. Obstet. Gynecol. Surv. 2014, 69, 143–144. [Google Scholar] [CrossRef]
- Bilimoria, K.Y.; Ko, C.Y.; Tomlinson, J.S.; Stewart, A.K.; Talamonti, M.S.; Hynes, D.L.; Winchester, D.P.; Bentrem, D.J. Wait times for cancer surgery in the United States: Trends and predictors of delays. Ann. Surg. 2011, 253, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Elit, L. Wait times from diagnosis to treatment in cancer. J. Gynecol. Oncol. 2015, 26, 246. [Google Scholar] [CrossRef]
- Apte, S.M.; Patel, K. Payment reform: Unprecedented and evolving impact on gynecologic oncology. Front. Oncol. 2016, 6, 84. [Google Scholar] [CrossRef] [PubMed]
- Patrick, J.; Puterman, M.L.; Queyranne, M. Dynamic multipriority patient scheduling for a diagnostic resource. Oper. Res. 2008, 56, 1507–1525. [Google Scholar] [CrossRef]
- Gupta, D.; Wang, L. Revenue management for a primary-care clinic in the presence of patient choice. Oper. Res. 2008, 56, 576–592. [Google Scholar] [CrossRef]
- Qu, X.; Rardin, R.L.; Williams, J.A.S. Single versus hybrid time horizons for open access scheduling. Comput. Ind. Eng. 2011, 60, 56–65. [Google Scholar] [CrossRef]
- Saure, A.; Patrick, J.; Tyldesley, S.; Puterman, M.L. Dynamic multi-appointment patient scheduling for radiation therapy. Eur. J. Oper. Res. 2012, 223, 573–584. [Google Scholar] [CrossRef]
- Creemers, S.; Beliën, J.; Lambrecht, M. The optimal allocation of server time slots over different classes of patients. Eur. J. Oper. Res. 2012, 219, 508–521. [Google Scholar] [CrossRef]
- Qu, X.; Peng, Y.; Shi, J.; LaGanga, L. An MDP model for walk-in patient admission management in primary care clinics. Int. J. Prod. Econ. 2015, 168, 303–320. [Google Scholar] [CrossRef]
- Deglise-Hawkinson, J.; Helm, J.E.; Huschka, T.; Kaufman, D.L.; Van Oyen, M.P. A capacity allocation planning model for integrated care and access management. Prod. Oper. Manag. 2018, 27, 2270–2290. [Google Scholar] [CrossRef] [PubMed]
- Cayirli, T.; Dursun, P.; Gunes, E.D. An integrated analysis of capacity allocation and patient scheduling in presence of seasonal walk-ins. Flex. Serv. Manuf. J. 2019, 31, 524–561. [Google Scholar] [CrossRef]
- Saville, C.E.; Smith, H.K.; Bijak, K. Operational research techniques applied throughout cancer care services: A review. Health Syst. 2019, 8, 52–73. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Murali, P.; Dessouky, M.M.; Belson, D. A mixed integer programming approach for allocating operating room capacity. J. Oper. Res. Soc. 2009, 60, 663–673. [Google Scholar] [CrossRef]
- Ghazalbash, S.; Sepehri, M.M.; Shadpour, P.; Atighehchian, A. Operating room scheduling in teaching hospitals. Adv. Oper. Res. 2012, 2012, 548493. [Google Scholar] [CrossRef]
- Kayvanfar, V.; Akbari Jokar, M.R.; Rafiee, M.; Sheikh, S.; Iranzad, R. A new model for operating room scheduling with elective patient strategy. INFOR Inf. Syst. Oper. Res. 2021, 59, 309–332. [Google Scholar] [CrossRef]
- Leaven, L.; Qu, X. Improving appointment scheduling systems in outpatient clinics using a deterministic modeling approach (MILP). In IIE Annual Conference. Proceedings; Institute of Industrial and Systems Engineers (IISE): Reno, NV, USA, 2011; p. 1. [Google Scholar]
- Issabakhsh, M.; Lee, S.; Kang, H. Scheduling patient appointment in an infusion center: A mixed integer robust optimization approach. Health Care Manag. Sci. 2021, 24, 117–139. [Google Scholar] [CrossRef]
- Cuevas, R.; Ferrer, J.C.; Klapp, M.; Muñoz, J.C. A mixed integer programming approach to multi-skilled workforce scheduling. J. Sched. 2016, 19, 91–106. [Google Scholar] [CrossRef]
- Ang, S.Y.; Razali, M.; Asyikin, S.N.; Kek, S.L. Optimized preference of security staff scheduling using integer linear programming approach. Int. J. Adv. Comput. Technol. 2019, 8, 3103–3111. [Google Scholar]
- Nobil, A.H.; Sharifnia, S.M.E.; Cárdenas-Barrón, L.E. Mixed integer linear programming problem for personnel multi-day shift scheduling: A case study in an Iran hospital. Alex. Eng. J. 2022, 61, 419–426. [Google Scholar] [CrossRef]
- Carello, G.; Landa, P.; Tànfani, E.; Testi, A. Master chemotherapy planning and clinicians rostering in a hospital outpatient cancer centre. Cent. Eur. J. Oper. Res. 2022, 30, 159–187. [Google Scholar] [CrossRef]
- Hesaraki, A.F.; Dellaert, N.P.; de Kok, T. Integrating nurse assignment in outpatient chemotherapy appointment scheduling. OR Spectr. 2020, 42, 935–963. [Google Scholar] [CrossRef]
- Begen, M.A.; Queyranne, M. Appointment scheduling with discrete random durations. Math. Oper. Res. 2011, 36, 240–257. [Google Scholar] [CrossRef]
- Luo, J.; Kulkarni, V.G.; Ziya, S. Appointment scheduling under patient no-shows and service interruptions. Manuf. Serv. Oper. Manag. 2012, 14, 670–684. [Google Scholar] [CrossRef]
- Parizi, M.S.; Ghate, A. Multi-class, multi-resource advance scheduling with no-shows, cancellations and overbooking. Comput. Oper. Res. 2016, 67, 90–101. [Google Scholar] [CrossRef]
- Truong, V.A. Optimal advance scheduling. Manag. Sci. 2015, 61, 1584–1597. [Google Scholar] [CrossRef]
- Wang, S.; Liu, N.; Wan, G. Managing appointment-based services in the presence of walk-in customers. Manag. Sci. 2020, 66, 667–686. [Google Scholar] [CrossRef]
- Begen, M.A.; Levi, R.; Queyranne, M. A sampling-based approach to appointment scheduling. Oper. Res. 2012, 60, 675–681. [Google Scholar] [CrossRef]
- Castaing, J.; Cohn, A.; Denton, B.T.; Weizer, A. A stochastic programming approach to reduce patient wait times and overtime in an outpatient infusion center. IIE Trans. Healthc. Syst. Eng. 2016, 6, 111–125. [Google Scholar] [CrossRef]
- Feldman, J.; Liu, N.; Topaloglu, H.; Ziya, S. Appointment scheduling under patient preference and no-show behavior. Oper. Res. 2014, 62, 794–811. [Google Scholar] [CrossRef]
- Liu, N.; Ziya, S.; Kulkarni, V.G. Dynamic scheduling of outpatient appointments under patient no-shows and cancellations. Manuf. Serv. Oper. Manag. 2010, 12, 347–364. [Google Scholar] [CrossRef]
- Gedik, R.; Zhang, S.; Rainwater, C. Strategic level proton therapy patient admission planning: A Markov decision process modeling approach. Health Care Manag. Sci. 2017, 20, 286–302. [Google Scholar] [CrossRef] [PubMed]
- Gocgun, Y.; Puterman, M.L. Dynamic scheduling with due dates and time windows: An application to chemotherapy patient appointment booking. Health Care Manag. Sci. 2014, 17, 60–76. [Google Scholar] [CrossRef] [PubMed]
- Kolisch, R.; Sickinger, S. Providing radiology health care services to stochastic demand of different customer classes. OR Spectr. 2008, 30, 375–395. [Google Scholar] [CrossRef]
- Min, D.; Yih, Y. Managing a patient waiting list with time-dependent priority and adverse events. RAIRO-Oper. Res. 2014, 48, 53–74. [Google Scholar] [CrossRef]
- Pan, X.; Song, J.; Zhang, B. Dynamic resource allocation in a hierarchical appointment system: Optimal structure and heuristics. IEEE Trans. Autom. Sci. Eng. 2020, 17, 1501–1515. [Google Scholar] [CrossRef]
- Keshtzari, M.; Norman, B.A. Improving patient access in oncology clinics using simulation. J. Ind. Eng. Manag. 2022, 15, 455–469. [Google Scholar] [CrossRef]
- Alvarado, M.; Ntaimo, L. Chemotherapy appointment scheduling under uncertainty using mean-risk stochastic integer programming. Health Care Manag. Sci. 2018, 21, 87–104. [Google Scholar] [CrossRef]
- Karakaya, S.; Gul, S.; Çelik, M. Stochastic scheduling of chemotherapy appointments considering patient acuity levels. Eur. J. Oper. Res. 2023, 305, 902–916. [Google Scholar] [CrossRef]
- Heshmat, M.; Nakata, K.; Eltawil, A. Solving the patient appointment scheduling problem in outpatient chemotherapy clinics using clustering and mathematical programming. Comput. Ind. Eng. 2018, 124, 347–358. [Google Scholar] [CrossRef]
- Corsini, R.R.; Costa, A.; Fichera, S.; Parrinello, V. Hybrid harmony search for stochastic scheduling of chemotherapy outpatient appointments. Algorithms. 2022, 15, 424. [Google Scholar] [CrossRef]
- Mendoza-Gómez, R.; Ríos-Mercado, R.Z. Location of primary health care centers for demand coverage of complementary services. Comput. Ind. Eng. 2022, 169, 108237. [Google Scholar] [CrossRef]
- Huang, J.; Mandelbaum, A.; Momčilović, P. Appointment-driven service systems with many servers. Queueing Syst. 2022, 100, 529–531. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, C.; Liu, F.; Wang, J.; Wu, X. An adjustable chance-constrained approach for flexible ramping capacity allocation. IEEE Trans. Sustain. Energy 2018, 9, 1798–1811. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Guo, H.; Ma, W. Multi-water resources optimal allocation based on multi-objective uncertain chance-constrained programming model. Water Resour. Manag. 2020, 34, 4881–4899. [Google Scholar] [CrossRef]
- Zhou, X.; Luo, R.; Zhao, C.; Xia, X.; Lev, B.; Chai, J.; Li, R. Bilevel fuzzy chance constrained hospital outpatient appointment scheduling model. Sci. Program. 2016, 2016, 4795101. [Google Scholar] [CrossRef]
- Nguyen, T.B.T.; Sivakumar, A.I.; Graves, S.C. Capacity planning with demand uncertainty for outpatient clinics. Eur. J. Oper. Res. 2018, 267, 338–348. [Google Scholar] [CrossRef]
- Ma, X.; Sauré, A.; Puterman, M.L.; Taylor, M.; Tyldesley, S. Capacity planning and appointment scheduling for new patient oncology consults. Health Care Manag. Sci. 2016, 19, 347–361. [Google Scholar] [CrossRef]
- Ernst, A.T.; Jiang, H.; Krishnamoorthy, M.; Owens, B.; Sier, D. An annotated bibliography of personnel scheduling and rostering. Ann. Oper. Res. 2004, 127, 21–144. [Google Scholar] [CrossRef]
- Burke, E.K.; De Causmaecker, P.; Berghe, G.V.; Van Landeghem, H. The state of the art of nurse rostering. J. Sched. 2004, 7, 441–499. [Google Scholar] [CrossRef]
- Qu, X.; Peng, Y.; Kong, N.; Shi, J. A two-phase approach to scheduling multi-category outpatient appointments–a case study of a women’s clinic. Health Care Manag. Sci. 2013, 16, 197–216. [Google Scholar] [CrossRef] [PubMed]
- Huggins, A.; Claudio, D. A mental workload based patient scheduling model for a Cancer Clinic. Oper. Res. Health Care 2019, 20, 56–65. [Google Scholar] [CrossRef]
- Adams, T.; O’Sullivan, M.; Walker, C. Physician rostering for workload balance. Oper. Res. Health Care 2019, 20, 1–10. [Google Scholar] [CrossRef]
- Levit, L.; Smith, A.P.; Benz, E.J., Jr.; Ferrell, B. Ensuring quality cancer care through the oncology workforce. J. Oncol. Pract. 2010, 6, 7. [Google Scholar] [CrossRef]
- Franz, L.S.; Rakes, T.R.; Wynne, A.J. A chance-constrained multiobjective model for mental health services planning. Socio-Econ. Plan. Sci. 1984, 18, 89–95. [Google Scholar] [CrossRef]
- Beraldi, P.; Bruni, M.E.; Conforti, D. Designing robust emergency medical service via stochastic programming. Eur. J. Oper. Res. 2004, 158, 183–193. [Google Scholar] [CrossRef]
- Khodaparasti, S.; Bruni, M.E.; Beraldi, P.; Maleki, H.R.; Jahedi, S. A multi-period location-allocation model for nursing home network planning under uncertainty. Oper. Res. Health Care 2018, 18, 4–15. [Google Scholar] [CrossRef]
- Birge, J.R.; Louveaux, F. Introduction to Stochastic Programming; Springer Science Business Media: Berlin, Germany, 2011. [Google Scholar]
- Kirkwood, M.K.; Hanley, A.; Bruinooge, S.S.; Garrett-Mayer, E.; Levit, L.A.; Schenkel, C.; Seid, J.E.; Polite, B.N.; Schilsky, R.L. The state of oncology practice in America, 2018: Results of the ASCO practice census survey. J. Oncol. Pract. 2018, 14, e412–e420. [Google Scholar] [CrossRef]
Cancer | New Patients | Returning Patients |
---|---|---|
Benign hematology | Poisson (9.45) | Binomial (40, 0.82) |
Blood | Poisson (2.31) | Binomial (36, 0.84) |
Breast | Poisson (2.58) | Binomial (28, 0.81) |
Colon | Poisson (3.58) | Binomial (28, 0.75) |
Genitourinary | Poisson (0.80) | Binomial (25, 0.82) |
Head and neck | Poisson (1.61) | Binomial (17, 0.75) |
Lung | Poisson (1.26) | Binomial (25, 0.80) |
Skin | Poisson (0.28) | Poisson (0.81) |
Oncologist | Specialization Mix |
---|---|
1 | Benign hematology, blood, breast, colon, genitourinary, lung, skin |
2 | Benign hematology, blood |
3 | Benign hematology, blood, colon |
4 | Breast, colon |
5 | Benign hematology, genitourinary, lung |
6 | Benign hematology, genitourinary, head and neck, lung, skin |
7 | Breast, colon |
Clinic | Mon AM | Mon PM | Tue AM | Tue PM | Wed AM | Wed PM | Thu AM | Thu PM | Fri AM | |
---|---|---|---|---|---|---|---|---|---|---|
Oncologist | ||||||||||
1 | No Clinic | 7 | 8 | 7 | No Clinic | 8 | 8 | No Clinic | 7 | |
2 | No Clinic | No Clinic | No Clinic | 13 | No Clinic | No Clinic | 13 | 13 | No Clinic | |
3 | 13 | 13 | No Clinic | No Clinic | 13 | No Clinic | No Clinic | No Clinic | No Clinic | |
4 | No Clinic | No Clinic | No Clinic | 12 | 13 | No Clinic | No Clinic | 12 | No Clinic | |
5 | No Clinic | 13 | No Clinic | No Clinic | 13 | No Clinic | No Clinic | 13 | No Clinic | |
6 | 13 | No Clinic | 13 | No Clinic | No Clinic | 13 | No Clinic | No Clinic | 13 | |
7 | No Clinic | No Clinic | 12 | No Clinic | No Clinic | No Clinic | 12 | No Clinic | 12 |
Oncologist | ||
---|---|---|
1 | 1 | 3 |
2 | 2 | 2 |
3 | 3 | 3 |
4 | 2 | 2 |
5 | 3 | 3 |
6 | 1 | 3 |
7 | 2 | 2 |
Cancer | New Patients | Returning Patients | ||
---|---|---|---|---|
Num. of Unserved Patients | Num. of Unserved Patients | |||
Benign hematology | 4 | 0.286 | 1 | 0.027 |
Blood | 1 | 0.200 | 1 | 0.029 |
Breast | 1 | 0.200 | 1 | 0.038 |
Colon | 2 | 0.286 | 1 | 0.040 |
Genitourinary | 1 | 0.333 | 1 | 0.043 |
Head and neck | 1 | 0.250 | 0 | 0.000 |
Lung | 1 | 0.333 | 1 | 0.043 |
Skin | 0 | 0.000 | 0 | 0.000 |
Oncologist | Specialization Mix |
---|---|
1 | Blood, genitourinary, lung |
2 | Benign hematology, blood |
3 | Benign hematology, blood, colon |
4 | Breast, colon |
5 | Benign hematology, genitourinary |
6 | Benign hematology, head and neck, lung, skin |
7 | Breast, colon |
Clinic | Mon AM | Mon PM | Tue AM | Tue PM | Wed AM | Wed PM | Thu AM | Thu PM | Fri AM | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Oncologist | |||||||||||
1 | 0.857 | 0.857 | 0.857 | 0.857 | 0.857 | 0.857 | 0.857 | ||||
2 | 0.846 | 0.917 | 0.923 | 0.895 | |||||||
3 | 0.846 | 0.923 | 0.923 | 0.897 | |||||||
4 | 0.917 | 0.833 | 0.909 | 0.886 | |||||||
5 | 0.917 | 0.917 | 0.846 | 0.892 | |||||||
6 | 0.917 | 0.833 | 0.917 | 0.917 | 0.896 | ||||||
7 | 0.909 | 0.909 | 0.818 | 0.879 |
Case | [L, U] | Specialization Mix |
---|---|---|
1 | [1, 2] | Blood, breast |
2 | [1, 3] | Blood, breast, skin |
3 | [1, 8] | Blood, breast, skin |
4 | [2, 3] | Blood, genitourinary, skin |
5 | [2, 4] | Blood, genitourinary, skin |
Cancer | ||||||||
---|---|---|---|---|---|---|---|---|
Benign Hematology | 0.786 | 0.622 | 0.286 | 0.000 | 0.286 | 0.000 | 0.286 | 0.000 |
Blood | 0.800 | 0.618 | 0.400 | 0.088 | 0.200 | 0.000 | 0.200 | 0.000 |
Breast | 0.800 | 0.615 | 0.400 | 0.000 | 0.200 | 0.000 | 0.200 | 0.000 |
Colon | 0.714 | 0.480 | 0.286 | 0.000 | 0.286 | 0.000 | 0.143 | 0.000 |
Genitourinary | 0.667 | 0.565 | 0.333 | 0.130 | 0.333 | 0.000 | 0.333 | 0.000 |
Head and Neck | 0.750 | 0.600 | 0.250 | 0.000 | 0.250 | 0.000 | 0.250 | 0.000 |
Lung | 0.667 | 0.522 | 0.333 | 0.000 | 0.333 | 0.000 | 0.333 | 0.000 |
Skin | 0.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Flexibility Level | Description |
---|---|
1 | Oncologists can see at least one cancer type |
2 | Oncologists can see at most two cancer types |
3 | Oncologists can see at most three cancer types |
4 | Oncologists can see two to three cancer types |
5 | Oncologists can see two to four cancer types |
6 | Current specialization flexibility |
7 | Fully flexible specialization mix |
Cancer | Level 1 | Level 2 | Level 3 | Level 4 | ||||
Benign hematology | 0.500 | 0.000 | 0.357 | 0.000 | 0.500 | 0.189 | 0.500 | 0.081 |
Blood | 0.400 | 0.265 | 0.400 | 0.118 | 0.400 | 0.176 | 0.400 | 0.088 |
Breast | 0.400 | 0.231 | 0.600 | 0.154 | 0.400 | 0.077 | 0.400 | 0.077 |
Colon | 0.429 | 0.320 | 0.429 | 0.240 | 0.286 | 0.000 | 0.429 | 0.080 |
Genitourinary | 0.667 | 0.304 | 0.667 | 0.261 | 0.333 | 0.174 | 0.333 | 0.087 |
Head andneck | 0.500 | 0.333 | 0.500 | 0.200 | 0.500 | 0.200 | 0.500 | 0.067 |
Lung | 0.333 | 0.000 | 0.333 | 0.000 | 0.333 | 0.000 | 0.333 | 0.000 |
Skin | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Cancer | Level 5 | Level 6 | Level 7 | |||||
Benign hematology | 0.500 | 0.027 | 0.286 | 0.000 | 0.286 | 0.000 | ||
Blood | 0.400 | 0.059 | 0.200 | 0.000 | 0.200 | 0.000 | ||
Breast | 0.400 | 0.000 | 0.200 | 0.000 | 0.200 | 0.000 | ||
Colon | 0.429 | 0.000 | 0.143 | 0.000 | 0.143 | 0.000 | ||
Genitourinary | 0.333 | 0.000 | 0.333 | 0.000 | 0.333 | 0.000 | ||
Head and neck | 0.500 | 0.067 | 0.250 | 0.000 | 0.250 | 0.000 | ||
Lung | 0.333 | 0.043 | 0.333 | 0.000 | 0.333 | 0.000 | ||
Skin | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keshtzari, M.; Norman, B.A. Capacity Allocation in Cancer Centers Considering Demand Uncertainty. Sci 2024, 6, 22. https://doi.org/10.3390/sci6020022
Keshtzari M, Norman BA. Capacity Allocation in Cancer Centers Considering Demand Uncertainty. Sci. 2024; 6(2):22. https://doi.org/10.3390/sci6020022
Chicago/Turabian StyleKeshtzari, Maryam, and Bryan A. Norman. 2024. "Capacity Allocation in Cancer Centers Considering Demand Uncertainty" Sci 6, no. 2: 22. https://doi.org/10.3390/sci6020022
APA StyleKeshtzari, M., & Norman, B. A. (2024). Capacity Allocation in Cancer Centers Considering Demand Uncertainty. Sci, 6(2), 22. https://doi.org/10.3390/sci6020022