Lithium-Ion Batteries under the X-ray Lens: Resolving Challenges and Propelling Advancements
Abstract
:1. Introduction
1.1. X-ray Tomography (XRT)
1.2. X-ray Differaction (XRD)
1.3. X-ray Absorption Spectroscopy (XAS)
1.4. X-ray Photoemission or Photoelectron Spectroscopy (XPS)
1.5. Transmission X-ray Microscopy (TXM)
2. Discussion: Different Degradation Mechanisms of LIBs Observed by X-ray Spectroscopies
2.1. Solid Electrolyte Interphase (SEI) Formation
2.2. Lithium Dendrite Growth
2.3. Chemical and Structural Changes in Electrode Materials
2.4. Mechanical Degradation
2.5. Safety and Thermal Management
3. Conclusions
Funding
Conflicts of Interest
References
- Detka, K.; Górecki, K. Selected Technologies of Electrochemical Energy Storage—A Review. Energies 2023, 16, 5034. [Google Scholar] [CrossRef]
- Patel, D.; Robinson, J.B.; Ball, S.; Brett, D.J.L.; Shearing, P.R. Thermal Runaway of a Li-Ion Battery Studied by Combined ARC and Multi-Length Scale X-ray CT. J. Electrochem. Soc. 2020, 167, 090511. [Google Scholar] [CrossRef]
- Sharova, V. Enhancing the Performance of Lithium Batteries through the Development of Improved Electrolyte Formulation, Formation Protocol and Graphite Surface Modification. Ph.D. Thesis, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany, 2018. [Google Scholar]
- Han, S. Structure and Dynamics in the Lithium Solvation Shell of Nonaqueous Electrolytes. Sci. Rep. 2019, 9, 5555. [Google Scholar] [CrossRef]
- Lee, J.; Kim, Y.-J.; Jin, H.S.; Noh, H.; Kwack, H.; Chu, H.; Ye, F.; Lee, H.; Kim, H.-T. Tuning Two Interfaces with Fluoroethylene Carbonate Electrolytes for High-Performance Li/LCO Batteries. ACS Omega 2019, 4, 3220–3227. [Google Scholar] [CrossRef]
- Chen, Z.; Qin, Y.; Dong, Z.; Zheng, J.; Liu, Y. Numerical Study on the Heat Generation and Thermal Control of Lithium-Ion Battery. Appl. Therm. Eng. 2023, 221, 119852. [Google Scholar] [CrossRef]
- Ma, S.; Jiang, M.; Tao, P.; Song, C.; Wu, J.; Wang, J.; Deng, T.; Shang, W. Temperature Effect and Thermal Impact in Lithium-Ion Batteries: A Review. Prog. Nat. Sci. Mater. Int. 2018, 28, 653–666. [Google Scholar] [CrossRef]
- Diaconu, B.; Cruceru, M.; Anghelescu, L.; Racoceanu, C.; Popescu, C.; Ionescu, M.; Tudorache, A. Latent Heat Storage Systems for Thermal Management of Electric Vehicle Batteries: Thermal Performance Enhancement and Modulation of the Phase Transition Process Dynamics: A Literature Review. Energies 2023, 16, 2745. [Google Scholar] [CrossRef]
- Zhang, J.; Shao, D.; Jiang, L.; Zhang, G.; Wu, H.; Day, R.; Jiang, W. Advanced Thermal Management System Driven by Phase Change Materials for Power Lithium-Ion Batteries: A Review. Renew. Sustain. Energy Rev. 2022, 159, 112207. [Google Scholar] [CrossRef]
- Müller, M.; Schneider, L.; Bohn, N.; Binder, J.R.; Bauer, W. Effect of Nanostructured and Open-Porous Particle Morphology on Electrode Processing and Electrochemical Performance of Li-Ion Batteries. ACS Appl. Energy Mater. 2021, 4, 1993–2003. [Google Scholar] [CrossRef]
- Huang, X.; Li, Y.; Acharya, A.B.; Sui, X.; Meng, J.; Teodorescu, R.; Stroe, D.-I. A Review of Pulsed Current Technique for Lithium-Ion Batteries. Energies 2020, 13, 2458. [Google Scholar] [CrossRef]
- Hou, P.; Chu, G.; Jian, G.; Zhang, Y.; Zhang, L. Li-Ion Batteries: Phase Transition. Chin. Phys. B 2015, 25, 016104. [Google Scholar] [CrossRef]
- Finegan, D.P.; Scheel, M.; Robinson, J.B.; Tjaden, B.; Michiel, M.D.; Hinds, G.; Brett, D.J.L.; Shearing, P.R. Investigating Lithium-Ion Battery Materials during Overcharge-Induced Thermal Runaway: An Operando and Multi-Scale X-ray CT Study. Phys. Chem. Chem. Phys. 2016, 18, 30912–30919. [Google Scholar] [CrossRef]
- Lou, S.; Sun, N.; Zhang, F.; Liu, Q.; Wang, J. Tracking Battery Dynamics by Operando Synchrotron X-ray Imaging: Operation from Liquid Electrolytes to Solid-State Electrolytes. Acc. Mater. Res. 2021, 2, 1177–1189. [Google Scholar] [CrossRef]
- Wang, J.; Chen-Wiegart, Y.K.; Wang, J. In Operando Tracking Phase Transformation Evolution of Lithium Iron Phosphate with Hard X-ray Microscopy. Nat. Commun. 2014, 5, 4570. [Google Scholar] [CrossRef]
- Adam, R.; Lepple, M.; Mayer, N.A.; Cupid, D.M.; Qian, Y.; Niehoff, P.; Schappacher, F.M.; Wadewitz, D.; Balachandran, G.; Bhaskar, A.; et al. Coexistence of Conversion and Intercalation Mechanisms in Lithium Ion Batteries: Consequences for Microstructure and Interaction between the Active Material and Electrolyte. Int. J. Mater. Res. 2017, 108, 971–983. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-Ion Battery Materials: Present and Future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Vijayan, B.L.; Yasin, A.; Misnon, I.I.; Karuppiah, C.; Yang, C.-C.; Jose, R. Lithium-Ion Adsorption on Surface Modified Porous Carbon. J. Energy Storage 2023, 71, 108221. [Google Scholar] [CrossRef]
- Hagen, M.; Yan, J.; Cao, W.J.; Chen, X.J.; Shellikeri, A.; Du, T.; Read, J.A.; Jow, T.R.; Zheng, J.P. Hybrid Lithium-Ion Battery-Capacitor Energy Storage Device with Hybrid Composite Cathode Based on Activated Carbon / LiNi0.5Co0.2Mn0.3O2. J. Power Sources 2019, 433, 126689. [Google Scholar] [CrossRef]
- Zhao, S.; Yan, K.; Zhang, J.; Sun, B.; Wang, G. Reaction Mechanisms of Layered Lithium-Rich Cathode Materials for High-Energy Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2021, 60, 2208–2220. [Google Scholar] [CrossRef]
- Anitha Sukkurji, P. Advanced Anode and Cathode Materials for Li-Ion Batteries: Application to Printing Methodology. Ph.D. Thesis, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany, 2021. [Google Scholar]
- Baig, N. Two-Dimensional Nanomaterials: A Critical Review of Recent Progress, Properties, Applications, and Future Directions. Compos. Part Appl. Sci. Manuf. 2023, 165, 107362. [Google Scholar] [CrossRef]
- Li, Q.; Chen, D.; Tan, H.; Zhang, X.; Rui, X.; Yu, Y. 3D Porous V2O5 Architectures for High-Rate Lithium Storage. J. Energy Chem. 2020, 40, 15–21. [Google Scholar] [CrossRef]
- Paras; Yadav, K.; Kumar, P.; Teja, D.R.; Chakraborty, S.; Chakraborty, M.; Mohapatra, S.S.; Sahoo, A.; Chou, M.M.C.; Liang, C.-T.; et al. A Review on Low-Dimensional Nanomaterials: Nanofabrication, Characterization and Applications. Nanomaterials 2023, 13, 160. [Google Scholar] [CrossRef]
- Zhu, P.; Slater, P.R.; Kendrick, E. Insights into Architecture, Design and Manufacture of Electrodes for Lithium-Ion Batteries. Mater. Des. 2022, 223, 111208. [Google Scholar] [CrossRef]
- Etacheri, V. Sol-Gel Processed Cathode Materials for Lithium-Ion Batteries. In Sol-Gel Materials for Energy, Environment and Electronic Applications; Pillai, S.C., Hehir, S., Eds.; Advances in Sol-Gel Derived Materials and Technologies; Springer International Publishing: Cham, Switzerland, 2017; pp. 155–195. ISBN 978-3-319-50144-4. [Google Scholar]
- Vertruyen, B.; Eshraghi, N.; Piffet, C.; Bodart, J.; Mahmoud, A.; Boschini, F. Spray-Drying of Electrode Materials for Lithium- and Sodium-Ion Batteries. Materials 2018, 11, 1076. [Google Scholar] [CrossRef]
- Satyavani, T.V.S.L.; Srinivas Kumar, A.; Subba Rao, P.S.V. Methods of Synthesis and Performance Improvement of Lithium Iron Phosphate for High Rate Li-Ion Batteries: A Review. Eng. Sci. Technol. Int. J. 2016, 19, 178–188. [Google Scholar] [CrossRef]
- Lobe, S.; Bauer, A.; Uhlenbruck, S.; Fattakhova-Rohlfing, D. Physical Vapor Deposition in Solid-State Battery Development: From Materials to Devices. Adv. Sci. 2021, 8, 2002044. [Google Scholar] [CrossRef]
- Zhang, D.; Cai, R.; Zhou, Y.; Shao, Z.; Liao, X.-Z.; Ma, Z.-F. Effect of Milling Method and Time on the Properties and Electrochemical Performance of LiFePO4/C Composites Prepared by Ball Milling and Thermal Treatment. Electrochim. Acta 2010, 55, 2653–2661. [Google Scholar] [CrossRef]
- Luo, S.; Hu, D.; Liu, H.; Li, J.; Yi, T.-F. Hydrothermal Synthesis and Characterization of α-Fe2O3/C Using Acid-Pickled Iron Oxide Red for Li-Ion Batteries. J. Hazard. Mater. 2019, 368, 714–721. [Google Scholar] [CrossRef]
- Choi, B.N.; Seo, J.Y.; Kim, B.; Kim, Y.S.; Chung, C.-H. Electro-Deposition of the Lithium Metal Anode on Dendritic Copper Current Collectors for Lithium Battery Application. Appl. Surf. Sci. 2020, 506, 144884. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, T.; Yu, A. Synthesis and Effect of Electrode Heat-Treatment on the Superior Lithium Storage Performance of Co3O4 Nanoparticles. J. Power Sources 2015, 273, 894–903. [Google Scholar] [CrossRef]
- Ling, J.; Karuppiah, C.; Krishnan, S.G.; Reddy, M.V.; Misnon, I.I.; Ab Rahim, M.H.; Yang, C.-C.; Jose, R. Phosphate Polyanion Materials as High-Voltage Lithium-Ion Battery Cathode: A Review. Energy Fuels 2021, 35, 10428–10450. [Google Scholar] [CrossRef]
- Kim, D.-H.; Kim, J. Synthesis of LiFePO4 Nanoparticles in Polyol Medium and Their Electrochemical Properties. Electrochem. Solid State Lett. 2006, 9, A439. [Google Scholar] [CrossRef]
- Lai, S.Y.; Knudsen, K.D.; Sejersted, B.T.; Ulvestad, A.; Mæhlen, J.P.; Koposov, A.Y. Silicon Nanoparticle Ensembles for Lithium-Ion Batteries Elucidated by Small-Angle Neutron Scattering. ACS Appl. Energy Mater. 2019, 2, 3220–3227. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, N.; Zhang, L.; Shao, H.; Wang, J.; Zhang, J.; Cao, C. Co3O4-Coated TiO2 Nanotube Composites Synthesized through Photo-Deposition Strategy with Enhanced Performance for Lithium-Ion Batteries. Electrochim. Acta 2013, 94, 285–293. [Google Scholar] [CrossRef]
- Li, X.; Tian, X.; Yang, T.; Song, Y.; Liu, Y.; Guo, Q.; Liu, Z. Two-Pot Synthesis of One-Dimensional Hierarchically Porous Co3O4 Nanorods as Anode for Lithium-Ion Battery. J. Alloys Compd. 2018, 735, 2446–2452. [Google Scholar] [CrossRef]
- Yin, H.; Liu, Y.; Yu, N.; Qu, H.-Q.; Liu, Z.; Jiang, R.; Li, C.; Zhu, M.-Q. Graphene-like MoS2 Nanosheets on Carbon Fabrics as High-Performance Binder-Free Electrodes for Supercapacitors and Li-Ion Batteries. ACS Omega 2018, 3, 17466–17473. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J.; Chao, D.; Baikie, T.; Bai, L.; Chen, S.; Zhao, Y.; Sum, T.C.; Lin, J.; Shen, Z. Hierarchical Porous LiNi1/3Co1/3Mn1/3O2 Nano-/Micro Spherical Cathode Material: Minimized Cation Mixing and Improved Li+ Mobility for Enhanced Electrochemical Performance. Sci. Rep. 2016, 6, 25771. [Google Scholar] [CrossRef]
- Fu, W.; Wang, Y.; Kong, K.; Kim, D.; Wang, F.; Yushin, G. Materials and Processing of Lithium-Ion Battery Cathodes. Nanoenergy Adv. 2023, 3, 138–154. [Google Scholar] [CrossRef]
- Jang, W.Y.; Reddy, C.V.; Wang, R.; Choi, J.; Son, J.; Kakarla, R.R.; Aminabhavi, T.M.; Shim, J. Synthesis of 1D/2D VO2 (B) Nanowire/g-C3N4 Hybrid Architectures as Cathode Materials for High-Performance Li-Ion Batteries. Chem. Eng. J. 2023, 476, 146786. [Google Scholar] [CrossRef]
- Bak, S.-M.; Shadike, Z.; Lin, R.; Yu, X.; Yang, X.-Q. In Situ/Operando Synchrotron-Based X-ray Techniques for Lithium-Ion Battery Research. NPG Asia Mater. 2018, 10, 563–580. [Google Scholar] [CrossRef]
- Le Houx, J.; Kramer, D. X-ray Tomography for Lithium Ion Battery Electrode Characterisation—A Review. Energy Rep. 2021, 7, 9–14. [Google Scholar] [CrossRef]
- Yang, M.; Bi, R.; Wang, J.; Yu, R.; Wang, D. Decoding Lithium Batteries through Advanced in Situ Characterization Techniques. Int. J. Miner. Metall. Mater. 2022, 29, 965–989. [Google Scholar] [CrossRef]
- Pietsch, P.; Wood, V. X-ray Tomography for Lithium Ion Battery Research: A Practical Guide. Annu. Rev. Mater. Res. 2017, 47, 451–479. [Google Scholar] [CrossRef]
- Dayani, S.; Markötter, H.; Schmidt, A.; Widjaja, M.P.; Bruno, G. Multi-Level X-ray Computed Tomography (XCT) Investigations of Commercial Lithium-Ion Batteries from Cell to Particle Level. J. Energy Storage 2023, 66, 107453. [Google Scholar] [CrossRef]
- Dugas, R.; Forero-Saboya, J.D.; Ponrouch, A. Methods and Protocols for Reliable Electrochemical Testing in Post-Li Batteries (Na, K, Mg, and Ca). Chem. Mater. 2019, 31, 8613–8628. [Google Scholar] [CrossRef]
- Rowden, B.; Garcia-Araez, N. Estimating Lithium-Ion Battery Behavior from Half-Cell Data. Energy Rep. 2021, 7, 97–103. [Google Scholar] [CrossRef]
- Raccichini, R.; Amores, M.; Hinds, G. Critical Review of the Use of Reference Electrodes in Li-Ion Batteries: A Diagnostic Perspective. Batteries 2019, 5, 12. [Google Scholar] [CrossRef]
- Minter, R.D.; Juarez-Robles, D.; Fear, C.; Barsukov, Y.; Mukherjee, P.P. Three-Electrode Coin Cell Preparation and Electrodeposition Analytics for Lithium-Ion Batteries. J. Vis. Exp. JoVE 2018, 135, 57735. [Google Scholar] [CrossRef]
- Kodama, M.; Ohashi, A.; Adachi, H.; Miyuki, T.; Takeuchi, A.; Yasutake, M.; Uesugi, K.; Kaburagi, T.; Hirai, S. Three-Dimensional Structural Measurement and Material Identification of an All-Solid-State Lithium-Ion Battery by X-ray Nanotomography and Deep Learning. J. Power Sources Adv. 2021, 8, 100048. [Google Scholar] [CrossRef]
- Llewellyn, A.V.; Matruglio, A.; Brett, D.J.L.; Jervis, R.; Shearing, P.R. Using In-Situ Laboratory and Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries Characterization: A Review on Recent Developments. Condens. Matter 2020, 5, 75. [Google Scholar] [CrossRef]
- Wilson, G.; Zilinskaite, S.; Unka, S.; Boston, R.; Reeves-McLaren, N. Establishing Operando Diffraction Capability through the Study of Li-Ion (de) Intercalation in LiFePO4. Energy Rep. 2020, 6, 174–179. [Google Scholar] [CrossRef]
- Giorgetti, M.; Stievano, L.; Giorgetti, M.; Stievano, L. X-ray Absorption Spectroscopy Study of Battery Materials. In X-ray Characterization of Nanostructured Energy Materials by Synchrotron Radiation; IntechOpen: London, UK, 2017; ISBN 978-953-51-3014-7. [Google Scholar]
- Giorgetti, M. A Review on the Structural Studies of Batteries and Host Materials by X-ray Absorption Spectroscopy. ISRN Mater. Sci. 2013, 2013, 938625. [Google Scholar] [CrossRef]
- An, S.J.; Li, J.; Daniel, C.; Mohanty, D.; Nagpure, S.; Wood, D.L., III. The State of Understanding of the Lithium-Ion-Battery Graphite Solid Electrolyte Interphase (SEI) and Its Relationship to Formation Cycling. Carbon 2016, 105, 52–76. [Google Scholar] [CrossRef]
- Shutthanandan, V.; Nandasiri, M.; Zheng, J.; Engelhard, M.H.; Xu, W.; Thevuthasan, S.; Murugesan, V. Applications of XPS in the Characterization of Battery Materials. J. Electron Spectrosc. Relat. Phenom. 2018, 231, 2–10. [Google Scholar] [CrossRef]
- In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries|Chemistry of Materials. Available online: https://pubs.acs.org/doi/10.1021/acs.chemmater.7b00374 (accessed on 27 December 2023).
- Greczynski, G.; Hultman, L. X-ray Photoelectron Spectroscopy: Towards Reliable Binding Energy Referencing. Prog. Mater. Sci. 2020, 107, 100591. [Google Scholar] [CrossRef]
- Spence, S.; Lee, W.-K.; Lin, F.; Xiao, X. Transmission X-ray Microscopy and Its Applications in Battery Material Research—A Short Review. Nanotechnology 2021, 32, 442003. [Google Scholar] [CrossRef]
- Choi, P.; Parimalam, B.; Li, Y.; Litster, S. Operando Ultra-High-Resolution X-ray Microscopy of Lithium Anodes with Separator Interactions. J. Power Sources 2023, 581, 233468. [Google Scholar] [CrossRef]
- Xu, L.; Tang, S.; Cheng, Y.; Wang, K.; Liang, J.; Liu, C.; Cao, Y.-C.; Wei, F.; Mai, L. Interfaces in Solid-State Lithium Batteries. Joule 2018, 2, 1991–2015. [Google Scholar] [CrossRef]
- McBrayer, J.D.; Apblett, C.A.; Harrison, K.L.; Fenton, K.R.; Minteer, S.D. Mechanical Studies of the Solid Electrolyte Interphase on Anodes in Lithium and Lithium Ion Batteries. Nanotechnology 2021, 32, 502005. [Google Scholar] [CrossRef]
- Swallow, J.E.N.; Fraser, M.W.; Kneusels, N.-J.H.; Charlton, J.F.; Sole, C.G.; Phelan, C.M.E.; Björklund, E.; Bencok, P.; Escudero, C.; Pérez-Dieste, V.; et al. Revealing Solid Electrolyte Interphase Formation through Interface-Sensitive Operando X-ray Absorption Spectroscopy. Nat. Commun. 2022, 13, 6070. [Google Scholar] [CrossRef]
- Narayanan, S.; Ulissi, U.; Gibson, J.S.; Chart, Y.A.; Weatherup, R.S.; Pasta, M. Effect of Current Density on the Solid Electrolyte Interphase Formation at the lithium∣Li6PS5Cl Interface. Nat. Commun. 2022, 13, 7237. [Google Scholar] [CrossRef]
- Shadike, Z.; Lee, H.; Borodin, O.; Cao, X.; Fan, X.; Wang, X.; Lin, R.; Bak, S.-M.; Ghose, S.; Xu, K.; et al. Identification of LiH and Nanocrystalline LiF in the Solid–Electrolyte Interphase of Lithium Metal Anodes. Nat. Nanotechnol. 2021, 16, 549–554. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, S.; He, Y.-B.; Kang, F.; Chen, L.; Li, H.; Yang, Q.-H. Solid-State Lithium Batteries: Safety and Prospects. eScience 2022, 2, 138–163. [Google Scholar] [CrossRef]
- Lin, D.; Liu, Y.; Cui, Y. Reviving the Lithium Metal Anode for High-Energy Batteries. Nat. Nanotechnol. 2017, 12, 194–206. [Google Scholar] [CrossRef]
- Steiger, J.; Kramer, D.; Mönig, R. Mechanisms of Dendritic Growth Investigated by in Situ Light Microscopy during Electrodeposition and Dissolution of Lithium. J. Power Sources 2014, 261, 112–119. [Google Scholar] [CrossRef]
- Wood, K.N.; Kazyak, E.; Chadwick, A.F.; Chen, K.-H.; Zhang, J.-G.; Thornton, K.; Dasgupta, N.P. Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy. ACS Cent. Sci. 2016, 2, 790–801. [Google Scholar] [CrossRef]
- Bai, P.; Li, J.; Brushett, F.R.; Bazant, M.Z. Transition of Lithium Growth Mechanisms in Liquid Electrolytes. Energy Environ. Sci. 2016, 9, 3221–3229. [Google Scholar] [CrossRef]
- Wood, K.N.; Noked, M.; Dasgupta, N.P. Lithium Metal Anodes: Toward an Improved Understanding of Coupled Morphological, Electrochemical, and Mechanical Behavior. ACS Energy Lett. 2017, 2, 664–672. [Google Scholar] [CrossRef]
- Yu, S.-H.; Huang, X.; Brock, J.D.; Abruña, H.D. Regulating Key Variables and Visualizing Lithium Dendrite Growth: An Operando X-ray Study. J. Am. Chem. Soc. 2019, 141, 8441–8449. [Google Scholar] [CrossRef]
- Harry, K.J.; Hallinan, D.T.; Parkinson, D.Y.; MacDowell, A.A.; Balsara, N.P. Detection of Subsurface Structures underneath Dendrites Formed on Cycled Lithium Metal Electrodes. Nat. Mater. 2014, 13, 69–73. [Google Scholar] [CrossRef]
- Cao, D.; Sun, X.; Li, Q.; Natan, A.; Xiang, P.; Zhu, H. Lithium Dendrite in All-Solid-State Batteries: Growth Mechanisms, Suppression Strategies, and Characterizations. Matter 2020, 3, 57–94. [Google Scholar] [CrossRef]
- Chen, Y.; Yuan, X.; He, C.; Gou, Q.; Yang, N.; Xie, G.; Zhang, K.; Yao, Y.; Hou, Y. Mechanistic Exploration of Dendrite Growth and Inhibition for Lithium Metal Batteries. Energies 2023, 16, 3745. [Google Scholar] [CrossRef]
- Lou, S.; Liu, Q.; Zhang, F.; Liu, Q.; Yu, Z.; Mu, T.; Zhao, Y.; Borovilas, J.; Chen, Y.; Ge, M.; et al. Insights into Interfacial Effect and Local Lithium-Ion Transport in Polycrystalline Cathodes of Solid-State Batteries. Nat. Commun. 2020, 11, 5700. [Google Scholar] [CrossRef]
- Abharana, N.; Nayak, C.; Halankar, K.K.; Jha, S.N.; Bhattacharyya, D. First Results of In-Situ X-ray Absorption Spectroscopy Study on Charging-Discharging Cycles of Lithium Ion Battery at Indus-2 SRS. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2020, 972, 164032. [Google Scholar] [CrossRef]
- Kavčič, M.; Petric, M.; Rajh, A.; Isaković, K.; Vizintin, A.; Talian, S.D.; Dominko, R. Characterization of Li–S Batteries Using Laboratory Sulfur X-ray Emission Spectroscopy. ACS Appl. Energy Mater. 2021, 4, 2357–2364. [Google Scholar] [CrossRef]
- Rahe, C.; Kelly, S.T.; Rad, M.N.; Sauer, D.U.; Mayer, J.; Figgemeier, E. Nanoscale X-ray Imaging of Ageing in Automotive Lithium Ion Battery Cells. J. Power Sources 2019, 433, 126631. [Google Scholar] [CrossRef]
- Yao, K.P.C.; Okasinski, J.S.; Kalaga, K.; Shkrob, I.A.; Abraham, D.P. Quantifying Lithium Concentration Gradients in the Graphite Electrode of Li-Ion Cells Using Operando Energy Dispersive X-ray Diffraction. Energy Environ. Sci. 2019, 12, 656–665. [Google Scholar] [CrossRef]
- Shi, T.; Zhang, Y.-Q.; Tu, Q.; Wang, Y.; Scott, M.C.; Ceder, G. Characterization of Mechanical Degradation in an All-Solid-State Battery Cathode. J. Mater. Chem. A 2020, 8, 17399–17404. [Google Scholar] [CrossRef]
- Sun, N.; Liu, Q.; Cao, Y.; Lou, S.; Ge, M.; Xiao, X.; Lee, W.-K.; Gao, Y.; Yin, G.; Wang, J.; et al. Anisotropically Electrochemical–Mechanical Evolution in Solid-State Batteries and Interfacial Tailored Strategy. Angew. Chem. Int. Ed. 2019, 58, 18647–18653. [Google Scholar] [CrossRef]
- Ebner, M.; Marone, F.; Stampanoni, M.; Wood, V. Visualization and Quantification of Electrochemical and Mechanical Degradation in Li Ion Batteries. Science 2013, 342, 716–720. [Google Scholar] [CrossRef]
- Ziesche, R.F.; Arlt, T.; Finegan, D.P.; Heenan, T.M.M.; Tengattini, A.; Baum, D.; Kardjilov, N.; Markötter, H.; Manke, I.; Kockelmann, W.; et al. 4D Imaging of Lithium-Batteries Using Correlative Neutron and X-ray Tomography with a Virtual Unrolling Technique. Nat. Commun. 2020, 11, 777. [Google Scholar] [CrossRef]
- Pham, M.T.M.; Darst, J.J.; Walker, W.Q.; Heenan, T.M.M.; Patel, D.; Iacoviello, F.; Rack, A.; Olbinado, M.P.; Hinds, G.; Brett, D.J.L.; et al. Prevention of Lithium-Ion Battery Thermal Runaway Using Polymer-Substrate Current Collectors. Cell Rep. Phys. Sci. 2021, 2, 100360. [Google Scholar] [CrossRef]
- Aiello, L.; Gstrein, G.; Erker, S.; Kaltenegger, B.; Ellersdorfer, C.; Sinz, W. Optimized Nail for Penetration Test on Lithium-Ion Cells and Its Utilization for the Validation of a Multilayer Electro-Thermal Model. Batteries 2022, 8, 32. [Google Scholar] [CrossRef]
- Magnier, L.; Lecarme, L.; Alloin, F.; Maire, E.; King, A.; Bouchet, R.; Tengattini, A.; Devaux, D. Tomography Imaging of Lithium Electrodeposits Using Neutron, Synchrotron X-ray, and Laboratory X-ray Sources: A Comparison. Front. Energy Res. 2021, 9, 657712. [Google Scholar] [CrossRef]
Phenomena | XRD | XRT | TXM | XPS | XAS (EXAFS) | XAS (XANES) | |
---|---|---|---|---|---|---|---|
Structural Analysis and Morphology | Tracking phase transformations | [82] | [84] | - | - | [78] | [78] |
Delamination, pulverization, and structural separation | - | [2] | - | - | - | - | |
Electrode morphology | - | [81,86] | [84] | - | - | - | |
Internal Structures in Bulk Materials | - | - | [61] | - | - | - | |
Chemical and Structural Changes in Electrode Materials | - | [81] | - | - | [79] | - | |
Crack Detection | - | [81,85,86] | - | - | - | - | |
3D material distribution in All-Solid-State Batteries | - | [52] | - | - | - | - | |
Dual-phase solid solution behavior | [54,67] | - | - | - | - | - | |
Studying LIBs at various scales (cell level, electrode microstructures) | - | [2] | - | - | - | - | |
Thermal Behavior and Safety | Thermal runaway/Thermal failure | - | [2,87] | - | - | - | - |
Chemical Characterization | Effective Charge | - | - | - | - | - | [55,78] |
Element Identification | - | - | - | - | - | [84] | |
Chemical Bonding Type Determination | - | - | - | [60] | [78] | - | |
Coordination Number Determination | - | - | - | - | [55] | - | |
Chemical Bounding Length | - | - | - | - | [79] | - | |
Lithium Intercalation and Electrode Degradation | - | [86] | - | - | - | - | |
SEI Composition in Lithium Metal Anodes | [67] | - | - | [66] | - | - | |
Lithium Metal Electrodeposition | - | - | [62] | - | - | - | |
Interface and Dendrite Dynamics | SEI Layer Formation | - | - | - | [58,77] | - | - |
Evolution of SEI at Li Metal Electrode Interface | - | - | - | [66] | - | - | |
Lithium Dendrite Growth Dynamics | - | [75] | - | - | - | - | |
Inhomogeneities during Delithiation/Lithiation | [82] | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samimi, M.; Saadabadi, M.; Hosseinlaghab, H. Lithium-Ion Batteries under the X-ray Lens: Resolving Challenges and Propelling Advancements. Quantum Beam Sci. 2024, 8, 10. https://doi.org/10.3390/qubs8020010
Samimi M, Saadabadi M, Hosseinlaghab H. Lithium-Ion Batteries under the X-ray Lens: Resolving Challenges and Propelling Advancements. Quantum Beam Science. 2024; 8(2):10. https://doi.org/10.3390/qubs8020010
Chicago/Turabian StyleSamimi, Mahdieh, Mehran Saadabadi, and Hassan Hosseinlaghab. 2024. "Lithium-Ion Batteries under the X-ray Lens: Resolving Challenges and Propelling Advancements" Quantum Beam Science 8, no. 2: 10. https://doi.org/10.3390/qubs8020010
APA StyleSamimi, M., Saadabadi, M., & Hosseinlaghab, H. (2024). Lithium-Ion Batteries under the X-ray Lens: Resolving Challenges and Propelling Advancements. Quantum Beam Science, 8(2), 10. https://doi.org/10.3390/qubs8020010