Neutron Sources at the Frank Laboratory of Neutron Physics of the Joint Institute for Nuclear Research
Abstract
:1. Introduction
2. IBR-2 Reactor
3. IREN Facility
- Studies of T-odd, P-odd and P-even effects in the (n, γ), (n, p), (n, α) reactions in the resonance neutron energy range;
- Studies of characteristics and correlations in the emission of neutrons, gamma quanta and light-charged particles in fission;
- Studies of total and partial neutron cross-sections, angular correlations, multiplicity fluctuations, yields of reaction products in neutron-nuclear interactions;
- Non-destructive analysis of elemental composition of objects using thermal, resonance and fast neutrons by neutron and gamma spectrometry;
- Development of experimental techniques.
Conflicts of Interest
References
- Belushkin, A.V. IBR-2—The fast pulsed reactor in Dubna. Neutron News 1991, 2, 14–18. [Google Scholar] [CrossRef]
- Ananiev, V.D.; Vinogradov, A.V.; Dolgikh, A.V.; Pepelyshev, Y.N. Physical and power start-up of the modernized IBR-2M research reactor. In Proceedings of the European Research Reactor Conference, Saint-Petersburg, Russia, 21–25 April 2013; pp. 4–10. [Google Scholar]
- Dragunov, Y.G.; Tretiyakov, I.T.; Lopatkin, A.V.; Romanova, N.V.; Lukasevich, I.B.; Ananyev, V.D.; Vinogradov, A.V.; Dolgikh, A.V.; Yedunov, L.V.; Pepelyshev, Y.N.; et al. Modernization of the IBR-2 pulsed research reactor. At. Energy 2012, 113, 29–38. [Google Scholar] [CrossRef]
- IBR-2 Reactor Parameters. Available online: http://flnph.jinr.ru/en/facilities/ibr-2/parameters (accessed on 20 April 2017).
- Ananiev, V.; Belyakov, A.; Bulavin, M.; Kulagin, E.; Kulikov, S.; Mukhin, K.; Petukhova, T.; Sirotin, A.; Shabalin, D.; Shabalin, E.; et al. The world’s first pelletized cold neutron moderator at a neutron scattering facility. Nucl. Instrum. Methods Phys. Res. 2014, 320, 70–74. [Google Scholar] [CrossRef]
- Aksenov, V.L.; Balagurov, A.M.; Kozlenko, D.P. Condensed matter research at the modernized IBR-2 reactor: From functional materials to nanobiotechnologies. Phys. Part. Nucl. Lett. 2016, 47, 627–646. [Google Scholar] [CrossRef]
- Balagurov, A.M. High resolution Fourier diffraction at the IBR-2 reactor. Neutron News 2005, 16, 8–12. [Google Scholar] [CrossRef]
- Balagurov, A.M.; Beskrovnyy, A.I.; Zhuravlev, V.V.; Mironova, G.M.; Bobrikov, I.A.; Neov, D.; Sheverev, S.G. Neutron Diffractometer for Real-Time Studies of Transient Processes at the IBR-2 Pulsed Reactor. X-ray Synchrotron Neutron Tech. 2016, 10, 467–479. [Google Scholar] [CrossRef]
- Neutron instrumentation at the IBR-2. Available online: http://flnph.jinr.ru/en/facilities/ibr-2/instruments (accessed on 20 April 2017).
- Frischbutter, A.; Neov, D.; Scheffzuk, C.; Vrana, M.; Walther, K. Lattice strain measurements on sandstones under load using neutron diffraction. J. Struct. Geol. 2000, 22, 1587–1600. [Google Scholar] [CrossRef]
- Ullemeyer, K.; Spalthoff, P.; Heinitz, J.; Isakov, N.N.; Nikitin, A.N.; Weber, K. The SKAT texture diffractometer at the pulsed reactor IBR-2 at Dubna: experimental layout and first measurements. Nucl. Instrum. Methods Phys. Res. 1998, 412, 80–88. [Google Scholar] [CrossRef]
- Bokuchava, G.D.; Balagurov, A.M.; Sumin, V.V.; Papushkin, I.V. Neutron Fourier diffractometer FSD for residual stress studies in materials and industrial components. X-ray Synchrotron Neutron Tech. 2010, 4, 879–890. [Google Scholar] [CrossRef]
- Aksenov, V.L.; Balagurov, A.M.; Glazkov, V.P.; Kozlenko, D.P.; Naumov, I.V.; Savenko, B.N.; Sheptyakov, D.V.; Somenkov, V.A.; Bulkinc, A.P.; Kudryashevc, V.A.; et al. DN-12 time of flight high pressure neutron spectrometer for investigation of microsamples. Physica B 1999, 265, 258–262. [Google Scholar] [CrossRef]
- Kuklin, A.I.; Ignat’eva, G.M.; Ozerina, L.A.; Islamov, A.K.; Mukhamedzyanov, R.I.; Shumilkina, N.A.; Myakushev, V.D.; Sharipov, E.Y.; Gordeliy, V.I.; Muzafarov, A.M.; et al. Complementarity of small-angle neutron and X-ray scattering methods for the quantitative structural and dynamical specification of dendritic macromolecules. Polym. Sci. A 2002, 44, 2124–2133. [Google Scholar] [CrossRef]
- Aksenov, V.L.; Jernenkov, K.N.; Kozhevnikov, S.V.; Lauter, H.; Lauter-Pasyuk, V.; Nikitenko, Y.V.; Petrenko, A.V. The polarized neutron spectrometer REMUR at the pulsed reactor IBR-2. Jt. Inst. Nucl. Res. Comm. 2004, D13-2004-47. [Google Scholar]
- Kalinin, I.V.; Morozov, V.M.; Novikov, A.G.; Puchkov, A.V.; Savostin, V.V.; Sudarev, V.V.; Bulkin, A.P.; Kalinin, S.I.; Pusenkov, V.M.; Ul’yanov, V.A. Characteristics of the DIN2PI Spectrometer with a Neutron Concentrator. Tech. Phys. 2014, 59, 307–310. [Google Scholar] [CrossRef]
- Natkaniec, I.; Chudoba, D.; Hetmańczyk, Ł.; Kazimirov, V.Y.; Krawczyk, J.; Sashin, I.L.; Zalewski, S. Parameters of the NERA spectrometer for cold and thermal moderators of the IBR-2 pulsed reactor. J. Phys. Conf. Ser. 2014, 554, 012002. [Google Scholar] [CrossRef]
- Kozlenko, D.P.; Kichanov, S.E.; Lukin, E.V.; Rutkauskas, A.V.; Belushkin, A.V.; Bokuchava, G.D.; Savenko, B.N. Neutron radiography and tomography facility at IBR-2 reactor. Phys. Part. Nucl. Lett. 2016, 13, 346–351. [Google Scholar] [CrossRef]
- Frontasyeva, M.V. Analytical Investigations at the IBR-2 Reactor in Dubna. Neutron New. 2005, 16, 24–27. [Google Scholar] [CrossRef]
- Ovsyannikov, S.V.; Bykov, M.; Bykova, E.; Kozlenko, D.P.; Tsirlin, A.A.; Karkin, A.E.; Shchennikov, V.V.; Kichanov, S.E.; Gou, H.; Abakumov, A.M.; et al. Charge ordering transition in iron oxide Fe4O5, involving competing dimer and trimer formation. Nat. Chem. 2016, 8, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Avdeev, M.V.; Rulev, A.A.; Bodnarchuk, V.I.; Ushakova, E.E.; Petrenko, V.I.; Gapon, I.V.; Tomchuk, O.V.; Matveev, V.A.; Pleshanov, N.K.; Kataev, E.Y.; et al. Monitoring of lithium plating by neutron reflectometry. Appl. Sur. Sci. 2017, in press. [Google Scholar] [CrossRef]
- Boettcher, J.; Golubkov, E.A.; Egorov, V.A.; Zaytseva, Y.K.; Zamrij, V.N.; Kayukov, A.S.; Kobets, V.V.; Korokin, A.Z.; Minashkin, V.F.; Pyataev, V.G.; et al. LUE-200 Accelerator of IREN Facility: Current Status and Development. Phys. Part. Nucl. Lett. 2014, 11, 665–671. [Google Scholar] [CrossRef]
Parameter | Before Modernization | After Modernization |
---|---|---|
Average power(MW) | 2 | 2 |
Fuel | PuO2 | PuO2 |
Number of fuel assemblies | 78 | 69 |
Maximum burnup (%) | 6.5 | 9 |
Pulse repetition rate, Hz | 5, 25 | 5, 10 |
Pulse half-width, µs: | ||
fast neutrons | 215 | 245 |
thermal neutrons | 320 | 340 |
Rotation rate (rev/min): | ||
main reflector | 1500 | 600 |
auxiliary reflector | 300 | 300 |
Coolant | Sodium | Sodium |
Thermal neutron flux density from moderator surface (n/cm2·s): | ||
time average | ~1013 | ~1013 |
burst maximum | ~1016 | ~1016 |
№ | Name | Type | Domain of research | Reference |
---|---|---|---|---|
1. | HRFD | High Resolution Fourier Diffractometer | Determination of structural parameters of crystalline materials with high precision | [7] |
2. | RTD (DN-2) | Real-Time Neutron Diffractometer | Determination of structural parameters of crystalline materials and nanosystems (lipid membranes, etc.), real-time studies of chemical and physical processes | [8] |
3. | DN-6 | Neutron diffractometer for investigations of micro-samples at high pressure | Determination of parameters of crystal and magnetic structure of materials as function of external pressures | [9] |
4. | EPSILON-MDS | The strain/stress diffractometer | In situ studies of macro- and microstresses in rocks | [10] |
5. | SKAT | The high-resolution texture diffractometer | Studies of texture of geological samples (rocks, minerals) | [11] |
6. | FSD | High resolution Fourier Stress Diffractometer | Determination of residual stresses in bulk industrial components and new advanced materials | [12] |
7. | DN-12 | Neutron Diffractometer for Investigations of Micro-Samples at High Pressure | Determination of parameters of crystal and magnetic structure of materials as function of external pressures | [13] |
8. | FSS | Fourier stress spectrometer (Diffractometer) | ||
9. | YuMO | Small-Angle Scattering | Determination of structural characteristics (size and shape of particles, agglomerates, pores, fractals) of nanostructured materials and nanosystems, including polymers, lipid membranes, proteins, solvents, etc. | [14] |
10. | REMUR | Polarized-neutron spectrometer | Determination of magnetization profile of layered magnetic nanostructures, studies of proximity effects in nanosystems | [15] |
11. | REFLEX | Polarized-neutron reflectometer | Determination of structural characteristics of thin films and layered nanostructures | [9] |
12. | GRAINS | Multifunctional neutron reflectometer with horizontal sample plane | Studies of surface and interface phenomena in soft and liquid nanosystems (magnetic fluids, polymers, lipid membranes) | [9] |
13. | DIN-2PI | Inelastic scattering | A study of lattice dynamics of crystalline, amorphous materials and liquids | [16] |
14. | NERA | Inelastic scattering | A study of lattice dynamics and structural parameters of molecular crystals, crystals with molecular ions, especially exhibiting polymorphism | [17] |
15. | NRT | Neutron radiography and tomography | Material research and studies of products for nuclear technologies, paleontological and geophysical objects, and objects of cultural heritage | [18] |
16. | REGATA | Radioanalytical complex | Determination of elemental composition of biological and geological objects | [19] |
17. | KOLKHIDA | Nuclear physics facility | Investigation of nuclear neutron precession and magnetic structure. | [9] |
18. | IZOMER | Nuclear physics facility | Determination of yields and decay constants of delayed neutron groups in minor actinide fission |
Parameter | Project | I Stage | II Stage |
---|---|---|---|
Peak current (A) | 1.5 | 1.5–2.5 | 1.5–2.5 |
Repetition rate (Hz) | 150 | 25 | 50 |
Electron pulse duration (ns) | 250 | 100 | 100 |
Electron energy (MeV) | 212 | 32–42 | 45–65 |
Beam power (kW) | 12 | 0.1–0.4 | 0.3–1.2 |
Neutron intensity (n/s) | 2 × 1013 | 3 × 1011 | 6 × 1011 |
№ | Name | Type | Main Feature | Domain of Research |
---|---|---|---|---|
1 | ROMASHKA-1 | 12 NaI crystal system | Detection of γ-quanta | Determination of concentration of radioactive elements in the environment, study of radioactive neutron capture in the resonance neutron energy range |
2 | ROMASHKA-2 | 24 NaI crystal system | Detection of γ-quanta; movable, easy-adjustable | Study of radioactive neutron capture, γ-quanta multiplicity in resonances |
3 | Large multi-sectional liquid scintillator detector | Detection of γ-quanta and neutrons; six sections, 210 l of scintillator | Nondestructive elemental/isotopic analysis by neutron resonance capture and neutron resonance transmission | |
4 | Ionization chambers | Different kinds: large target area; multi-sectional, solid and gaseous targets | Study of (n, p), (n, α) reactions in the resonance neutron energy range | |
5 | Double section fission chamber with Frisch grid supplied with fast neutron scintillator detectors and γ-detectors | Measurements of the kinetic energy and masses of fission fragments, prompt fission neutrons, γ-rays from fission fragments | Study of fission in the resonance neutron energy range | |
6 | REGATA-2 (in development) | Radioanalytical complex: irradiation channels, pneumatic transport setup, hpGe-detector, sample changer, equipment for sample preparation | Neutron and γ-activation analysis | Determination of elemental composition of biological and geological objects |
7 | Neutron polarization setup (planned)) | Study of the P-odd, P-even, T-odd effects in resonances |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shvetsov, V.N. Neutron Sources at the Frank Laboratory of Neutron Physics of the Joint Institute for Nuclear Research. Quantum Beam Sci. 2017, 1, 6. https://doi.org/10.3390/qubs1010006
Shvetsov VN. Neutron Sources at the Frank Laboratory of Neutron Physics of the Joint Institute for Nuclear Research. Quantum Beam Science. 2017; 1(1):6. https://doi.org/10.3390/qubs1010006
Chicago/Turabian StyleShvetsov, Valery N. 2017. "Neutron Sources at the Frank Laboratory of Neutron Physics of the Joint Institute for Nuclear Research" Quantum Beam Science 1, no. 1: 6. https://doi.org/10.3390/qubs1010006
APA StyleShvetsov, V. N. (2017). Neutron Sources at the Frank Laboratory of Neutron Physics of the Joint Institute for Nuclear Research. Quantum Beam Science, 1(1), 6. https://doi.org/10.3390/qubs1010006