Predictive Analysis of Corrosion Dynamics in Prestressed Concrete Exposed to Chloride Environments
Abstract
:1. Introduction
2. Background
3. Proposed Methods
4. Materials
4.1. Concrete Proportions
4.2. Specimen Details and Casting
4.3. Instrumentation
4.4. Digital Image Correlation (DIC)
4.5. Bending Test Procedure
4.6. Metallographic Characterization of the Wires
4.7. Optical Microscopy Analysis
4.8. Statistical and Machine Learning Analysis
Statistical Exploratory Data Analysis of Concrete Beam Data
Algorithm 1 Statistical Analysis of Concrete Beam Data |
1: Import pandas numpy seaborn matplotlib.pyplot 2: # Create a DataFrame with sample data 3: Initialize data with Beam ID, Concrete strength, etc. 4: Create DataFrame merged_df from data 5: # Descriptive Statistics 6: Print descriptive statistics of merged_df 7: # Distribution Analysis 8: Define numerical columns 9: Plot histograms for each numerical column in merged_df 10: # Correlation Analysis 11: Select numerical columns from merged_df 12: Calculate correlation matrix 13: Print correlation matrix 14: Plot heatmap of correlation matrix 15: # Outlier Detection 16: Plot boxplots for each numerical column 17: # Extract prestress level and corrosion status 18: Extract Prestress_Level from Beam_ID 19: Extract Corrosion_Status from Beam_ID 20: Print updated DataFrame 21: # Statistical Tests 22: Import ttest_ind, mannwhitneyu from scipy.stats 23: Separate ultimate moments based on corrosion status 24: Print mean values for non-corroded and corroded moments 25: Perform t-test and Mann-Whitney U test 26: Print p-values of the tests 27: # Data Visualization 28: Plot boxplots for bending moments based on corrosion status 29: Plot scatter plot for relationship between prestress level and ultimate bending moment |
Algorithm 2 Pseudocode for Ultimate Bending Moment Prediction with Linear and Lasso Regression |
1: IMPORT libraries 2: LOAD the CSV files into properties_df and ultimate_df 3: MERGE the dataframes on ‘Beam_ID’into merged_df 4: DEFINE new feature Q in merged_df 5: CALCULATE new features A, B, C, and D in merged_df 6: PREPARE the dataset for the model with features [‘A’,‘B’,‘C’,‘D’] and target ‘actual_ultimate_bending_moment(kN.m)’ 7: SCALE the features using StandardScaler 8: procedure TRAINLINEARREGRESSION(X,y) 9: Initialize LinearRegression model 10: Calculate cross-validation scores 11: Fit the model on X and y 12: Predict and calculate MSE and R2 13: Verify Linear Regression MSE, R2, and the equation 14: Verify Average MSE and Standard Deviation of MSE from cross-validation 15: end procedure 16: procedure TRAINLASSOREGRESSION(X,y) 17: Initialize Lasso model with a range of alphas 18: Perform GridSearchCV to find the best alpha 19: Fit the model with the best alpha on X and y 20: Predict and calculate MSE and R2 21: Verify Lasso Regression MSE, R2, and the equation 22: end procedure 23: MAIN 24: X← scaled features, y← target values 25: TRAINLINEARREGRESSION(X,y) 26: TRAINLASSOREGRESSION(X,y) 27: END |
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, Z.; Liu, Q.F.; Xia, J.; Cai, Y.; Zhu, X.; Zhou, Y.; Pel, L. Mechanical–Transport–Chemical Modeling of Electrochemical Repair Methods for Corrosion-Induced Cracking in Marine Concrete. Comput.-Aided Civ. Infrastruct. Eng. 2022, 37, 1854–1874. [Google Scholar] [CrossRef]
- Liu, Q.F.; Iqbal, M.F.; Yang, J.; Lu, X.Y.; Zhang, P.; Rauf, M. Prediction of Chloride Diffusivity in Concrete Using Artificial Neural Network: Modelling and Performance Evaluation. Constr. Build. Mater. 2021, 268, 121082. [Google Scholar] [CrossRef]
- Aljibori, H.S.; Alamiery, A.; Kadhum, A.A.H. Advances in Corrosion Protection Coatings: A Comprehensive Review. Int. J. Corros. Scale Inhib. 2023, 12, 1476–1520. [Google Scholar] [CrossRef]
- Cabrera, J. Deterioration of Concrete Due to Reinforcement Steel Corrosion. Cem. Concr. Compos. 1996, 18, 47–59. [Google Scholar] [CrossRef]
- Bertolini, L. Steel Corrosion and Service Life of Reinforced Concrete Structures. Struct. Infrastruct. Eng. 2008, 4, 123–137. [Google Scholar] [CrossRef]
- Jiang, T.; Kong, Q.; Peng, Z.; Wang, L.; Dai, L.; Feng, Q.; Huo, L.; Song, G. Monitoring of Corrosion-Induced Degradation in Prestressed Concrete Structure Using Embedded Piezoceramic-Based Transducers. IEEE Sens. J 2017, 17, 5823–5830. [Google Scholar] [CrossRef]
- McDonald, D.B. Corrosion Protection for Concrete Structures in Marine Environments. Coastal Engineering Practice. In Proceedings of the 2011 Conference on Coastal Engineering Practice, San Diego, CA, USA, 21–24 August 2011; pp. 78–88. [Google Scholar] [CrossRef]
- Bender, R.; Féron, D.; Mills, D.; Ritter, S. Corrosion Challenges towards a Sustainable Society. Mater. Corros. 2022, 73, 1730–1751. [Google Scholar] [CrossRef]
- Verma, C.; Ebenso, E.; Quraishi, M. Ionic Liquids as Green and Sustainable Corrosion Inhibitors for Metals and Alloys: An Overview. J. Mol. Liq. 2017, 233, 403–414. [Google Scholar] [CrossRef]
- Li, F.; Yuan, Y.; Li, C. Corrosion Propagation of Prestressing Steel Strands in Concrete Subject to Chloride Attack. Constr. Build. Mater. 2011, 25, 3878–3885. [Google Scholar] [CrossRef]
- Darmawan, M.S. Pitting Corrosion Model for Partial Prestressed Concrete (Pc) Structures in a Chloride Environment. IPTEK J. Technol. Sci. 2009, 20, 78–88. [Google Scholar] [CrossRef]
- Funahashi, M. Predicting Corrosion-Free Service Life of a Concrete Structure in a Chloride Environment. Materials 1990, 87, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.H.Y.; Tran, V.M.; Pansuk, W.; Cao, N.T.; Bui, V.H.L. Electrochemical Chloride Extraction on Reinforced Concrete Contaminated External Chloride: Efficiencies of Intermittent Applications and Impacts on Hydration Products. Cem. Concr. Compos. 2021, 121, 104076. [Google Scholar] [CrossRef]
- Kanagaraj, B.; Priyanka, R.; Anand, N.; Kiran, T.; Andrushia, A.D.; Lubloy, E. A Sustainable Solution for Mitigating Environmental Corrosion in the Construction Sector and Its Socio-Economic Concern. Case Stud. Constr. Mater. 2024, 20, e03089. [Google Scholar] [CrossRef]
- Lu, Z.H.; Zhou, Q.H.; Li, H.; Zhao, Y.G. A New Empirical Model for Residual Flexural Capacity of Corroded Post-Tensioned Prestressed Concrete Beams. Structures 2021, 34, 4308–4321. [Google Scholar] [CrossRef]
- Minh, H.; Mutsuyoshi, H.; Niitani, K. Influence of Grouting Condition on Crack and Load-Carrying Capacity of Post-Tensioned Concrete Beam Due to Chloride-Induced Corrosion. Constr. Build. Mater. 2007, 21, 1568–1575. [Google Scholar] [CrossRef]
- Coronelli, D.; Castel, A.; Vu, N.A.; François, R. Corroded Post-Tensioned Beams with Bonded Tendons and Wire Failure. Eng. Struct. 2009, 31, 1687–1697. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Zhang, J.; Ma, Y.; Liu, Y. Flexural Behavior of Bonded Post-Tensioned Concrete Beams under Strand Corrosion. Nucl. Eng. Des. 2017, 313, 414–424. [Google Scholar] [CrossRef]
- Hussain, R. Modeling of Corrosion; Steel, Concrete and Environment. J. Civ. Environ. Eng. 2014, 4, 1–5. [Google Scholar] [CrossRef]
- Shafei, B.; Alipour, A.; Shinozuka, M. Prediction of Corrosion Initiation in Reinforced Concrete Members Subjected to Environmental Stressors: A Finite-element Framework. Cem. Concr. Res. 2012, 42, 365–376. [Google Scholar] [CrossRef]
- Taffese, W.Z.; Sistonen, E. Machine Learning for Durability and Service-Life Assessment of Reinforced Concrete Structures: Recent Advances and Future Directions. Autom. Constr. 2017, 77, 1–14. [Google Scholar] [CrossRef]
- Elfergani, H.A.; Pullin, R.; Holford, K.M. Damage Assessment of Corrosion in Prestressed Concrete by Acoustic Emission. Constr. Build. Mater. 2013, 40, 925–933. [Google Scholar] [CrossRef]
- Shevtsov, D.; Cao, N.L.; Nguyen, V.C.; Nong, Q.Q.; Le, H.Q.; Nguyen, D.A.; Zartsyn, I.; Kozaderov, O. Progress in Sensors for Monitoring Reinforcement Corrosion in Reinforced Concrete Structures—A Review. Sensors 2022, 22, 3421. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Pan, Z.; Zhao, C.; Zeng, B. Long-Term Behavior of Prestressed Concrete Industrial Buildings in Chloride-Based Industrial Environments. J. Build. Eng. 2023, 76, 107344. [Google Scholar] [CrossRef]
- Robles, K.P.V.; Gucunski, N.; Kee, S.H. Evaluation of Steel Corrosion-Induced Concrete Damage Using Electrical Resistivity Measurements. Constr. Build. Mater. 2024, 411, 134512. [Google Scholar] [CrossRef]
- Angst, U. Challenges and Opportunities in Corrosion of Steel in Concrete. Mater. Struct. 2018, 51, 4. [Google Scholar] [CrossRef]
- Apostolopoulos, C. The Consequences of Chloride-Induced Corrosion on Steel Bar and Reinforced Concrete Structures. J. Appl. Mech. Eng. 2012, 1, e109. [Google Scholar] [CrossRef]
- Pavlakovic, B.; Lowe, M.; Cawley, P. Guided Ultrasonic Waves for the Inspection of Post-Tensioned Bridges. In Review of Progress in Quantitative Nondestructive Evaluation; Springer: New York, NY, USA, 1998; pp. 1557–1564. [Google Scholar] [CrossRef]
- Dai, L.; Wang, L.; Zhang, J.; Zhang, X. A Global Model for Corrosion-Induced Cracking in Prestressed Concrete Structures. Eng. Fail Anal. 2016, 62, 263–275. [Google Scholar] [CrossRef]
- Lee, B.; Koh, K.-T.; Ismail, M.; Ryu, H.-S.; Kwon, S.-J. Corrosion and Strength Behaviors in Prestressed Tendon under Various Tensile Stress and Impressed Current Conditions. Adv. Mater. Sci. Eng. 2017, 2017, 1–7. [Google Scholar] [CrossRef]
- Lu, Z.-H.; Wang, H.; Qu, F.; Zhao, Y.-G.; Li, P.; Li, W. Novel Empirical Model for Predicting Residual Flexural Capacity of Corroded Steel Reinforced Concrete Beam. Front. Struct. Civ. Eng. 2020, 14, 888–906. [Google Scholar] [CrossRef]
- Jia, H.; Qiao, G.; Han, P. Machine Learning Algorithms in the Environmental Corrosion Evaluation of Reinforced Concrete Structures—A Review. Cem. Concr. Compos. 2022, 133, 104725. [Google Scholar] [CrossRef]
Materials | 32 MPa (kg/m3) | 68 MPa (kg/m3) |
---|---|---|
Portland cement | 329 | 550 |
Sand | 740 | 520 |
Gravel | 1069 | 1043 |
Water | 191 | 154 |
Silica fume | - | 55 |
Superplasticizer | - | 2.78 |
NaCl | 6.58 | 11 |
Samples | Compressive Strength (MPa) | Stress Level | Cl-Concentration | Pre-Tension (MPa) | Replica |
---|---|---|---|---|---|
V32-0-Z. | 32 | 0% fptk | 2 | 0 | 2 |
V32-0.5-Z | 50% fptk | 2 | 930 | 2 | |
V32-0.7-Z | 70% fptk | 2 | 1302 | 2 | |
V32-0.95-Z | 95% fptk | 2 | 1767 | 2 | |
V68-0-Z | 68 | 0% fptk | 2 | 0 | 2 |
V68-0.5-Z | 50% fptk | 2 | 930 | 2 | |
V68-0.7-Z | 70% fptk | 2 | 1302 | 2 | |
V68-0.95-Z | 95% fptk | 2 | 1767 | 2 |
Samples | Oxide Layer on the Surface of the Corroded Wire (μm) |
---|---|
V32-0-CB | 67.169 |
V32-0.5-CB | 104.402 |
V32-0.7-CB | 119.115 |
V32-0.95-CB | 154.919 |
Samples | Attack Time (hours) | Mass Loss (%) | Corrosion Rate (mm/year) |
---|---|---|---|
V32-0-CB | 168 | 4.63 | 0.37 |
V32-0.5-CB | 5.75 | 0.46 | |
V32-0.7-CB | 6.98 | 0.55 | |
V32-0.95-CB | 8.01 | 0.64 | |
V68-0-CB | 2.56 | 0.20 | |
V68-0.5-CB | 3.15 | 0.25 | |
V68-0.7-CB | 4.32 | 0.35 | |
V68-0.95-CB | 5.32 | 0.42 |
Beam | Corroded | Non-Corroded | ||
---|---|---|---|---|
Pfiss (kN) | Pult (kN) | Pfiss (kN) | Pult (kN) | |
V32-0 | 32.76 | 42.99 | 31.03 | 34.86 |
V32-0.5 | 36.56 | 50.16 | 34.71 | 38.21 |
V32-0.7 | 38.20 | 51.59 | 35.48 | 39.08 |
V32-0.95 | 40.78 | 54.21 | 31.50 | 35.76 |
V68-0 | 33.87 | - | 32.53 | - |
V68-0.5 | 41.00 | 52.29 | 40.50 | 43.83 |
V68-0.7 | 45.26 | 52.96 | 44.06 | 47.91 |
V68-0.95 | 54.86 | - | 51.36 | - |
Beam | Deformation (ε) (‰) |
---|---|
V32-0-NCB | 3.75 |
V32-0.5-NCB | 3.5 |
V32-0.7-NCB | 3.2 |
V32-0.95-NCB | 2.9 |
V32-0-CB | 3.4 |
V32-0.5-CB | 3.15 |
V32-0.7-CB | 2.8 |
V32-0.95-CB | 2.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pierott, R.M.R.; Garcia, S.; Kropf, D.; Figueiredo, K.; da Costa, B.B.F.; Amario, M.; Najjar, M.K.; Haddad, A. Predictive Analysis of Corrosion Dynamics in Prestressed Concrete Exposed to Chloride Environments. Infrastructures 2024, 9, 133. https://doi.org/10.3390/infrastructures9080133
Pierott RMR, Garcia S, Kropf D, Figueiredo K, da Costa BBF, Amario M, Najjar MK, Haddad A. Predictive Analysis of Corrosion Dynamics in Prestressed Concrete Exposed to Chloride Environments. Infrastructures. 2024; 9(8):133. https://doi.org/10.3390/infrastructures9080133
Chicago/Turabian StylePierott, Rodrigo Moulin Ribeiro, Sergio Garcia, Diogo Kropf, Karoline Figueiredo, Bruno Barzellay Ferreira da Costa, Mayara Amario, Mohammad K. Najjar, and Assed Haddad. 2024. "Predictive Analysis of Corrosion Dynamics in Prestressed Concrete Exposed to Chloride Environments" Infrastructures 9, no. 8: 133. https://doi.org/10.3390/infrastructures9080133
APA StylePierott, R. M. R., Garcia, S., Kropf, D., Figueiredo, K., da Costa, B. B. F., Amario, M., Najjar, M. K., & Haddad, A. (2024). Predictive Analysis of Corrosion Dynamics in Prestressed Concrete Exposed to Chloride Environments. Infrastructures, 9(8), 133. https://doi.org/10.3390/infrastructures9080133