Characterizing Bridge Thermal Response for Bridge Load Rating and Condition Assessment: A Parametric Study
Abstract
:1. Introduction
2. Methodology
3. The UT Campus Bridge
4. Parametric Study
4.1. Modelling the Bridge
4.2. Model Calibration
4.3. Load Test Scenarios
4.4. Temperature Distributions
4.5. Bridge Response
4.6. Damage
5. Results and Discussion
5.1. Bridge Response
5.2. Damage Detection
5.3. Discussion
6. Conclusions
- The bridge response to the static load and damage can either increase or decrease depending on temperature distribution when its response is neglected, leading to inaccurate conclusions about the structure’s conditions.
- Simplistic assumptions such as neglecting temperature-induced response can lead to errors of up to 8% under extreme temperature distributions.
- When an unsymmetrical load is present and results in torsion (of a bridge), the thermal response can increase as much as twice at the unloaded side.
- Changes in deformation areas can be small (~0.77%), but when correctly accounted for, their cumulative summation may reveal areas of damage.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brownjohn, J.M.W. Structural Health Monitoring of Civil Infrastructure. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 589–622. [Google Scholar] [CrossRef]
- Kromanis, R.; Kripakaran, P.; Harvey, B. Long-Term Structural Health Monitoring of the Cleddau Bridge: Evaluation of Quasi-Static Temperature Effects on Bearing Movements. Struct. Infrastruct. Eng. 2016, 12, 1342–1355. [Google Scholar] [CrossRef]
- Sohn, H. Effects of Environmental and Operational Variability on Structural Health Monitoring. Philos. Trans. A Math. Phys. Eng. Sci. 2007, 365, 539–560. [Google Scholar] [CrossRef] [PubMed]
- Catbas, F.N.; Kijewski-Correa, T.; Aktan, A.E. Structural Identification of Constructed Systems: Approaches, Methods, and Technologies for Effective Practice of St-Id; American Society of Civil Engineers (ASCE) Structural Engineering Institute (SEI): Reston, VA, USA, 2011. [Google Scholar]
- Bud, M.A.; Moldovan, I.; Radu, L.; Nedelcu, M.; Figueiredo, E. Reliability of Probabilistic Numerical Data for Training Machine Learning Algorithms to Detect Damage in Bridges. Struct. Control Health Monit. 2022, 29, e2950. [Google Scholar] [CrossRef]
- Li, L.; Chen, B.; Zhou, L.; Xia, Q.; Zhou, Y.; Zhou, X.; Xia, Y. Thermal Behaviors of Bridges—A Literature Review. Adv. Struct. Eng. 2023, 26, 985–1010. [Google Scholar] [CrossRef]
- Catbas, F.N.; Susoy, M.; Frangopol, D.M. Structural Health Monitoring and Reliability Estimation: Long Span Truss Bridge Application with Environmental Monitoring Data. Eng. Struct. 2008, 30, 2347–2359. [Google Scholar] [CrossRef]
- Xiao, F.; Hulsey, J.L.; Balasubramanian, R. Fiber Optic Health Monitoring and Temperature Behavior of Bridge in Cold Region. Struct. Control Health Monit. 2017, 24, e2020. [Google Scholar] [CrossRef]
- Han, Q.; Ma, Q.; Xu, J.; Liu, M. Structural Health Monitoring Research under Varying Temperature Condition: A Review. J. Civ. Struct. Health Monit. 2021, 11, 149–173. [Google Scholar] [CrossRef]
- Goulet, J.A.; Kripakaran, P.; Smith, I.F.C. Multimodel Structural Performance Monitoring. J. Struct. Eng. 2010, 136, 1309–1318. [Google Scholar] [CrossRef]
- Brownjohn, J.M.W.; De Stefano, A.; Xu, Y.-L.; Wenzel, H.; Aktan, A.E. Vibration-Based Monitoring of Civil Infrastructure: Challenges and Successes. J. Civ. Struct. Health Monit. 2011, 1, 79–95. [Google Scholar] [CrossRef]
- Xia, Y.; Chen, B.; Weng, S.; Ni, Y.Q.; Xu, Y.L. Temperature Effect on Vibration Properties of Civil Structures: A Literature Review and Case Studies. J. Civ. Struct. Health Monit. 2012, 2, 29–46. [Google Scholar] [CrossRef]
- Peeters, B.; De Roeck, G. One-Year Monitoring of the Z 24-Bridge: Environmental Effects versus Damage Events. Earthq. Eng. Struct. Dyn. 2001, 30, 149–171. [Google Scholar] [CrossRef]
- Farrar, C.R.; Baker, W.E.; Bell, T.M.; Cone, K.M.; Darling, T.W.; Duffey, T.A.; Eklund, A.; Migliori, A. Dynamic Characterization and Damage Detection in the I-40 Bridge over the Rio Grande; No. LA-12767-MS; Los Alamos National Laboratory: Los Alamos, NM, USA, 1994.
- Moorty, S.; Roeder, C.W. Temperature Dependent Bridge Movements. J. Struct. Eng. 1992, 118, 1090–1105. [Google Scholar] [CrossRef]
- Doebling, S.W.; Farrar, C.R. Using Statistical Analysis to Enhance Modal-Based Damage Identification. In Proceedings of the DAMAS, Sheffield, UK, 30 June–2 July 1997; Volume 97, pp. 199–210. [Google Scholar]
- Askegaard, V.; Mossing, P. Long Term Observation of Rc-Bridge Using Changes in Natural Frequency. Nordic Concrete Research. Publication No 7. Publ. Nord. Concr. Fed. 1988. [Google Scholar]
- De Battista, N.; Brownjohn, J.M.W.; Tan, H.P.; Koo, K.-Y. Measuring and Modelling the Thermal Performance of the Tamar Suspension Bridge Using a Wireless Sensor Network. Struct. Infrastruct. Eng. 2015, 11, 176–193. [Google Scholar] [CrossRef]
- Kim, C.; Kim, N.S.; Yoon, J.G.; Jung, D.S. Effect of Vehicle Mass on the Measured Dynamic Characteristics of Bridges from Traffic-Induced Vibration Test; SPIE—The International Society for Optical Engineering: Bellingham, WA, USA, 2001; Volume 2, pp. 1106–1111. [Google Scholar]
- Máca, J.; Štěpánek, J. Pedestrian Load Models of Footbridges. MATEC Web Conf. 2017, 107, 00009. [Google Scholar] [CrossRef]
- Tadeu, A.; Romero, A.; Bandeira, F.; Pedro, F.; Dias, S.; Serra, M.; Brett, M.; Galvín, P. Theoretical and Experimental Analysis of the Quasi-Static and Dynamic Behaviour of the World’s Longest Suspension Footbridge in 2020. Eng. Struct. 2022, 253, 113830. [Google Scholar] [CrossRef]
- Gheitasi, A.; Ozbulut, O.E.; Usmani, S.; Alipour, M.; Harris, D.K. Experimental and Analytical Vibration Serviceability Assessment of an In-Service Footbridge. Case Stud. Nondestruct. Test. Eval. 2016, 6, 79–88. [Google Scholar] [CrossRef]
- Živanović, S.; Pavic, A.; Reynolds, P. Vibration Serviceability of Footbridges under Human-Induced Excitation: A Literature Review. J. Sound Vib. 2005, 279, 1–74. [Google Scholar] [CrossRef]
- Ji, T. Structural Design against Deflection; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Ge, L.; Koo, K.Y.; Wang, M.; Brownjohn, J.; Dan, D. Bridge Damage Detection Using Precise Vision-Based Displacement Influence Lines and Weigh-in-Motion Devices: Experimental Validation. Eng. Struct. 2023, 288, 116185. [Google Scholar] [CrossRef]
- Zaurin, R.; Necati Catbas, F. Structural Health Monitoring Using Video Stream, Influence Lines, and Statistical Analysis. Struct. Health Monit. 2010, 10, 309–332. [Google Scholar] [CrossRef]
- Lydon, D.; Lydon, M.; Kromanis, R.; Dong, C.Z.; Catbas, N.; Taylor, S. Bridge Damage Detection Approach Using a Roving Camera Technique. Sensors 2021, 21, 1246. [Google Scholar] [CrossRef] [PubMed]
- EN 1993-1-1:2005; Eurocode 3: Design of Steel Structures—Part 1-1: General Rules and Rules for Buildings. European Committee for Standardization (CEN): Brussels, Belgium, 2005.
- EN 1993-2:2006; Eurocode 3: Design of Steel Structures—Part 2: Steel Bridges. European Committee for Standardization (CEN): Brussels, Belgium, 2006.
- EN 1990:2002+A1 2005; Eurocode: Basis of Structural Design. British Standards Institution: London, UK, 2005; Volume 1990.
- Smith, R. Deflection Limits in Tall Buildings—Are They Useful? In Proceedings of the Structures Congress, Las Vegas, NV, USA, 14–16 April 2011; American Society of Civil Engineers: Reston, VA, USA, 2011; pp. 515–527. [Google Scholar]
- Kromanis, R.; Kripakaran, P. Predicting Thermal Response of Bridges Using Regression Models Derived from Measurement Histories. Comput. Struct. 2014, 136, 64–77. [Google Scholar] [CrossRef]
- Erdenebat, D.; Waldmann, D.; Scherbaum, F.; Teferle, N. The Deformation Area Difference (DAD) Method for Condition Assessment of Reinforced Structures. Eng. Struct. 2018, 155, 315–329. [Google Scholar] [CrossRef]
- Erdenebat, D.; Waldmann, D. Application of the DAD Method for Damage Localisation on an Existing Bridge Structure Using Close-Range UAV Photogrammetry. Eng. Struct. 2020, 218, 110727. [Google Scholar] [CrossRef]
- Hester, D.; Brownjohn, J.; Bocian, M.; Xu, Y. Low Cost Bridge Load Test: Calculating Bridge Displacement from Acceleration for Load Assessment Calculations. Eng. Struct. 2017, 143, 358–374. [Google Scholar] [CrossRef]
- Zhu, Q.X.; Wang, H.; Mao, J.X.; Wan, H.P.; Zheng, W.Z.; Zhang, Y.M. Investigation of Temperature Effects on Steel-Truss Bridge Based on Long-Term Monitoring Data: Case Study. J. Bridge Eng. 2020, 25, 05020007. [Google Scholar] [CrossRef]
- ANSYS ANSYS®. Academic Research, Release 13.0, Help System, Mechanical APDL, Element Reference; ANSYS, Inc.: Canonsburg, PA, USA, 2011. [Google Scholar]
- Brownjohn, J.M.W.; Moyo, P.; Omenzetter, P.; Lu, Y. Assessment of Highway Bridge Upgrading by Dynamic Testing and Finite-Element Model Updating. J. Bridge Eng. 2003, 8, 162–172. [Google Scholar] [CrossRef]
- EN 1991-2:2003; Eurocode 1: Actions on Structures—Part 2: Traffic Loads on Bridges. European Committee for Standardization (CEN): Brussels, Belgium, 2003.
- Kromanis, R.; Kripakaran, P. Data-Driven Approaches for Measurement Interpretation: Analysing Integrated Thermal and Vehicular Response in Bridge Structural Health Monitoring. Adv. Eng. Inform. 2017, 34, 46–59. [Google Scholar] [CrossRef]
- Mobaraki, B.; Castilla Pascual, F.J.; García, A.M.; Mellado Mascaraque, M.Á.; Vázquez, B.F.; Alonso, C. Studying the Impacts of Test Condition and Nonoptimal Positioning of the Sensors on the Accuracy of the In-Situ U-Value Measurement. Heliyon 2023, 9, e17282. [Google Scholar] [CrossRef]
- Görtz, J.; Jürgensen, J.; Stolz, D.; Wieprecht, S.; Terheiden, K. Energy Load Prediction on Structures and Buildings-Effect of Numerical Model Complexity on Simulation of Heat Fluxes across the Structure/Environment Interface. Appl. Energy 2022, 326, 119981. [Google Scholar] [CrossRef]
- Brownjohn, J.M.W.; Xu, Y.; Hester, D. Vision-Based Bridge Deformation Monitoring. Front. Built Environ. 2017, 3, 23. [Google Scholar] [CrossRef]
- Soriano, R.P.; Mobaraki, B.; Lozano-Galant, J.A.; Sanchez-Cambronero, S.; Muñoz, F.P.; Gutierrez, J.J. New Image Recognition Technique for Intuitive Understanding in Class of the Dynamic Response of High-Rise Buildings. Sustainability 2021, 13, 3695. [Google Scholar] [CrossRef]
- Levings, J.; Sritharan, S. Effects of Cold Temperature and Strain Rate on the Stress-Strain Behavior of ASTM A706 Grade 420(60) Steel Reinforcement. J. Mater. Civ. Eng. 2012, 24, 1441–1449. [Google Scholar] [CrossRef]
- Follen, C.; Sanayei, M.; Brenner, B.; Vogel, R. Statistical Bridge Signatures. J. Bridge Eng. 2014, 19, 04014022. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchenko, A.; Kromanis, R.; Dorée, A.G. Characterizing Bridge Thermal Response for Bridge Load Rating and Condition Assessment: A Parametric Study. Infrastructures 2024, 9, 20. https://doi.org/10.3390/infrastructures9020020
Marchenko A, Kromanis R, Dorée AG. Characterizing Bridge Thermal Response for Bridge Load Rating and Condition Assessment: A Parametric Study. Infrastructures. 2024; 9(2):20. https://doi.org/10.3390/infrastructures9020020
Chicago/Turabian StyleMarchenko, Artem, Rolands Kromanis, and André G. Dorée. 2024. "Characterizing Bridge Thermal Response for Bridge Load Rating and Condition Assessment: A Parametric Study" Infrastructures 9, no. 2: 20. https://doi.org/10.3390/infrastructures9020020
APA StyleMarchenko, A., Kromanis, R., & Dorée, A. G. (2024). Characterizing Bridge Thermal Response for Bridge Load Rating and Condition Assessment: A Parametric Study. Infrastructures, 9(2), 20. https://doi.org/10.3390/infrastructures9020020