The Effect of Access to Waterbodies and Parks on Walking and Cycling in Urban Areas
Abstract
:1. Introduction
2. Literature Review
2.1. The Association Between Active Mobility and Natural Environment
2.2. Subjective Evaluation in Active Mobility
3. Materials and Methods
3.1. Study Location and QGIS Analysis
3.1.1. Neighborhoods Classification—Access to Waterbodies
3.1.2. Neighborhoods Classification—Access to Parks
3.2. Survey
3.2.1. Survey Design
3.2.2. Sample
3.3. Statistical Analysis
4. Results
4.1. Active Mobility Frequency
4.2. Active Mobility Purposes
4.3. Infrastructure Satisfaction
4.4. Subjective Perception
5. Discussion
6. Limitations and Future Research
6.1. Limitations of the Work
6.2. Perspective of the Work
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Dependent Measure | Access to Waterbody | Access to Park | ||
---|---|---|---|---|
W Value | p Value | W Value | p Value | |
Frequency | 315.5 | 0.103 | 178 | 1 |
Subjective perception | ||||
1. My neighborhood influences which transport mode I choose for daily commuting | 381.5 | 0.815 | 176.5 | 0.97 |
2. I often walk because there is always something interesting to be discovered | 397 | 0.993 | 146 | 0.418 |
3. I feel safe and protected while walking around the city | 382 | 0.816 | 167.5 | 0.787 |
4. I prefer walking to car whenever possible | 290 | 0.031 * | 156.5 | 0.513 |
5. I walk because it is healthier | 245.5 | 0.775 | 159.5 | 0.632 |
Infrastructure satisfaction | ||||
1. Sidewalk width | 260.5 | 0.024 * | 157.5 | 0.609 |
2. Building facade attractiveness | 393.5 | 0.973 | 164.5 | 0.734 |
3. Separation of pedestrians from motorized vehicles | 379.5 | 789 | 174 | 0.921 |
4. Sidewalk surface is free from defects | 371 | 0.682 | 167.5 | 0.794 |
Dependent Measure | Access to Waterbody | Access to Park | ||
---|---|---|---|---|
W Value | p Value | W Value | p Value | |
Frequency | 161.5 | 0.035 * | 198.5 | 0.883 |
Subjective perception | ||||
1. My neighborhood influences which transport mode I choose for daily commuting | 221.5 | 0.419 | 160 | 0.274 |
2. I often cycle because there is always something interesting to be discovered | 172.5 | 0.056 | 192.5 | 0.764 |
3. I feel safe and protected while cycling around the city | 175 | 0.068 | 170.5 | 0.403 |
4. I prefer cycling to car whenever possible | 193.5 | 0.106 | 192.5 | 0.738 |
5. I cycle because it is healthier | 245.5 | 0.775 | 139 | 0.105 |
Infrastructure satisfaction | ||||
1. Cycle path width | 240 | 0.681 | 198 | 0.871 |
2. Building facade attractiveness | 223 | 0.432 | 164.5 | 0.32 |
3. Separation of cyclists from motorized vehicles | 209 | 0.282 | 171 | 0.413 |
4. Cycle path surface is free from defects | 251.5 | 0.878 | 180 | 0.546 |
Dependent Measure | W Value | p Value |
---|---|---|
Frequency | 404.5 | 0.000 * |
Subjective perception | ||
1. My neighborhood influences which transport mode I choose for daily commuting | 1402 | 0.629 |
2. I often walk/cycle because there is always something interesting to be discovered | 1291 | 0.230 |
3. I feel safe and protected while walking/cycling around the city | 911 | 0.000 * |
4. I prefer walking/cycling to car whenever possible | 1323 | 0.249 |
5. I walk/cycle because it is healthier | 1348 | 0.403 |
Infrastructure satisfaction | ||
1. Sidewalk/cycle path width | 1348 | 0.407 |
2. Building facade attractiveness | 1264 | 0.172 |
3. Separation of pedestrians/cyclists from motorized vehicles | 1309 | 0.286 |
4. Sidewalk/cycle path surface is free from defects | 1405 | 0.642 |
References
- Bornioli, A.; Parkhurst, G.; Morgan, P.L. Psychological Wellbeing Benefits of Simulated Exposure to Five Urban Settings: An Experimental Study From the Pedestrian’s Perspective. J. Transp. Health 2018, 9, 105–116. [Google Scholar] [CrossRef]
- Pisoni, E.; Christidis, P.; Cawood, E.N. Active mobility versus motorized transport? User choices and benefits for the society. Sci. Total Environ. 2022, 806, 150627. [Google Scholar] [CrossRef] [PubMed]
- Cerin, E.; Nathan, A.; van Cauwenberg, J.; Barnett, D.W.; Barnett, A. The neighbourhood physical environment and active travel in older adults: A systematic review and meta-analysis. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 15. [Google Scholar] [CrossRef]
- Yang, F.; Yousefpour, R.; Zhang, Y.; Wang, H. The assessment of cooling capacity of blue-green spaces in rapidly developing cities: A case study of Tianjin’s central urban area. Sustain. Cities Soc. 2023, 99, 104918. [Google Scholar] [CrossRef]
- Ampatzidis, P.; Kershaw, T. A review of the impact of blue space on the urban microclimate. Sci. Total Environ. 2020, 730, 139068. [Google Scholar] [CrossRef] [PubMed]
- Sundling, C.; Jakobsson, M. How Do Urban Walking Environments Impact Pedestrians’ Experience and Psychological Health? A Systematic Review. Sustainability 2023, 15, 10817. [Google Scholar] [CrossRef]
- Brand, C.; Götschi, T.; Dons, E.; Gerike, R.; Anaya-Boig, E.; Avila-Palencia, I.; de Nazelle, A.; Gascon, M.; Gaupp-Berghausen, M.; Iacorossi, F.; et al. The climate change mitigation impacts of active travel: Evidence from a longitudinal panel study in seven European cities. Glob. Environ. Chang. 2021, 67, 102224. [Google Scholar] [CrossRef]
- Völker, S.; Kistemann, T. The impact of blue space on human health and well-being-Salutogenetic health effects of inland surface waters: A review. Int. J. Hyg. Environ. Health 2011, 214, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, S.; Ruiz, T.; Mars, L. A qualitative study on the role of the built environment for short walking trips. Transp. Res. Part F Traffic Psychol. Behav. 2015, 33, 141–160. [Google Scholar] [CrossRef]
- Harvey, C.; Aultman-Hall, L.; Hurley, S.E.; Troy, A. Effects of skeletal streetscape design on perceived safety. Landsc. Urban Plan. 2015, 142, 18–28. [Google Scholar] [CrossRef]
- Jin, Z.; Wang, J.; Liu, X. Attention and Emotion Recovery Effects of Urban Parks during COVID-19—Psychological Symptoms as Moderators. Forests 2022, 13, 2001. [Google Scholar] [CrossRef]
- Benton, J.S.; Cotterill, S.; Anderson, J.; Macintyre, V.G.; Gittins, M.; Dennis, M.; French, D.P. A natural experimental study of improvements along an urban canal: Impact on canal usage, physical activity and other wellbeing behaviours. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 19. [Google Scholar] [CrossRef] [PubMed]
- Belaroussi, R.; Issa, E.; Cameli, L.; Lantieri, C.; Adelé, S. Exploring Virtual Environments to Assess the Quality of Public Spaces. Algorithms 2024, 17, 124. [Google Scholar] [CrossRef]
- Etminani-Ghasrodashti, R.; Paydar, M.; Ardeshiri, A. Recreational cycling in a coastal city: Investigating lifestyle, attitudes and built environment in cycling behavior. Sustain. Cities Soc. 2018, 39, 241–251. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Zhang, R.; Gan, Y.; Li, D.; Rhodes, R.E. Predicting transport-related cycling in Chinese employees using an integration of perceived physical environment and social cognitive factors. Transp. Res. Part F Traffic Psychol. Behav. 2019, 64, 424–439. [Google Scholar] [CrossRef]
- Alattar, M.A.; Cottrill, C.; Beecroft, M. Sources and Applications of Emerging Active Travel Data: A Review of the Literature. Sustainability 2021, 13, 7006. [Google Scholar] [CrossRef]
- Wysling, L.; Purves, R.S. Where to improve cycling infrastructure? Assessing bicycle suitability and bikeability with open data in the city of Paris. Transp. Res. Interdiscip. Perspect. 2022, 15, 100648. [Google Scholar] [CrossRef]
- Karatas, P.; Tuydes-Yaman, H. Variability in sidewalk pedestrian level of service measures and rating. J. Urban Plan. Dev. 2018, 144, 04018042. [Google Scholar] [CrossRef]
- Ayad, L.; Imine, H.; Lantieri, C.; De Crescenzio, F. Pedal towards Safety: The Development and Evaluation of a Risk Index for Cyclists. Infrastructures 2024, 9, 14. [Google Scholar] [CrossRef]
- Delhoum, Y.; Belaroussi, R.; Dupin, F.; Zargayouna, M. Analysis of MATSim Modeling of Road Infrastructure in Cyclists’ Choices in the Case of a Hilly Relief. Infrastructures 2022, 7, 108. [Google Scholar] [CrossRef]
- Chen, L.H. Pedaling beyond ratings: A data-driven quest to Unravel the determinants of guided bicycle-tour satisfaction. Tour. Manag. 2024, 103, 104906. [Google Scholar] [CrossRef]
- Sugiyama, T.; Cerin, E.; Owen, N.; Oyeyemi, A.L.; Conway, T.L.; Dyck, D.V.; Schipperijn, J.; Macfarlane, D.J.; Salvo, D.; Reis, R.S.; et al. Perceived neighbourhood environmental attributes associated with adults’ recreational walking: IPEN Adult study in 12 countries. Health Place 2014, 28, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Rejeb, R.; Bouscasse, H.; Chalabaev, A.; Mathy, S. What is the role of active mobility habits in the relationship between self-determination and modal shift intentions? A mediation analysis. Transp. Res. Part F Traffic Psychol. Behav. 2023, 99, 289–305. [Google Scholar] [CrossRef]
- Gascon, M.; Zijlema, W.; Vert, C.; White, M.P.; Nieuwenhuijsen, M.J. Outdoor blue spaces, human health and well-being: A systematic review of quantitative studies. Int. J. Hyg. Environ. Health 2017, 220, 1207–1221. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Yu, Y.; Lyu, M.; Sun, D.; Zeng, Q.; Bart, D. Using google street view panoramas to investigate the influence of urban coastal street environment on visual walkability. Environ. Res. Commun. 2023, 5, 065017. [Google Scholar] [CrossRef]
- Ramirez Juarez, R.N.; Grigolon, A.B.; Madureira, A.M. Cyclists’ perception of streetscape and its influence on route choice: A pilot study with a mixed-methods approach. Transp. Res. Part F Traffic Psychol. Behav. 2023, 99, 374–388. [Google Scholar] [CrossRef]
- Laatikainen, T.E.; Piiroinen, R.; Lehtinen, E.; Kyttä, M. PPGIS approach for defining multimodal travel thresholds: Accessibility of popular recreation environments by the water. Appl. Geogr. 2017, 79, 93–102. [Google Scholar] [CrossRef]
- Jansen, F.; Ettema, D.; Kamphuis, C.; Pierik, F.; Dijst, M. How do type and size of natural environments relate to physical activity behavior? Health Place 2017, 46, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Winters, M.; Brauer, M.; Setton, E.M.; Teschke, K. Built Environment Influences on Healthy Transportation Choices: Bicycling versus Driving. J. Urban Health 2010, 87, 969–993. [Google Scholar] [CrossRef]
- Stewart, O.T.; Moudon, A.V.; Saelens, B.E.; Lee, C.; Kang, B.; Doescher, M.P. Comparing Associations Between the Built Environment and Walking in Rural Small Towns and a Large Metropolitan Area. Environ. Behav. 2016, 48, 13–36. [Google Scholar] [CrossRef]
- Ek, K.; Wårell, L.; Andersson, L. Motives for walking and cycling when commuting—Differences in local contexts and attitudes. Eur. Transp. Res. Rev. 2021, 13, 46. [Google Scholar] [CrossRef] [PubMed]
- Beenackers, M.A.; Foster, S.; Kamphuis, C.B.; Titze, S.; Divitini, M.; Knuiman, M.; van Lenthe, F.J.; Giles-Corti, B. Taking Up Cycling After Residential Relocation. Am. J. Prev. Med. 2012, 42, 610–615. [Google Scholar] [CrossRef]
- Perchoux, C.; Kestens, Y.; Brondeel, R.; Chaix, B. Accounting for the daily locations visited in the study of the built environment correlates of recreational walking (the RECORD Cohort Study). Prev. Med. 2015, 81, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Zhou, J.; Sun, F. Built environment determinants of bicycle volume: A longitudinal analysis. J. Transp. Land Use 2017, 10, 655–674. [Google Scholar] [CrossRef]
- Charreire, H.; Weber, C.; Chaix, B.; Salze, P.; Casey, R.; Banos, A.; Badariotti, D.; Kesse-Guyot, E.; Hercberg, S.; Simon, C.; et al. Identifying built environmental patterns using cluster analysis and GIS: Relationships with walking, cycling and body mass index in French adults. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 59. [Google Scholar] [CrossRef]
- Kinnafick, F.E.; Thøgersen-Ntoumani, C. The effect of the physical environment and levels of activity on affective states. J. Environ. Psychol. 2014, 38, 241–251. [Google Scholar] [CrossRef]
- Calvey, J.C.; Shackleton, J.P.; Taylor, M.D.; Llewellyn, R. Engineering condition assessment of cycling infrastructure: Cyclists’ perceptions of satisfaction and comfort. Transp. Res. Part A Policy Pract. 2015, 78, 134–143. [Google Scholar] [CrossRef]
- Vos, J.D.; Mokhtarian, P.L.; Schwanen, T.; Acker, V.V.; Witlox, F. Travel mode choice and travel satisfaction: Bridging the gap between decision utility and experienced utility. Transportation 2016, 43, 771–796. [Google Scholar] [CrossRef]
- Campos Ferreira, M.; Costa, P.D.; Abrantes, D.; Hora, J.; Felício, S.; Coimbra, M.; Dias, T.G. Identifying the determinants and understanding their effect on the perception of safety, security, and comfort by pedestrians and cyclists: A systematic review. Transp. Res. Part F Traffic Psychol. Behav. 2022, 91, 136–163. [Google Scholar] [CrossRef]
- Völker, S.; Heiler, A.; Pollmann, T.; Claßen, T.; Hornberg, C.; Kistemann, T. Do perceived walking distance to and use of urban blue spaces affect self-reported physical and mental health? Urban For. Urban Green. 2018, 29, 1–9. [Google Scholar] [CrossRef]
- Song, Q.; Huang, Y.; Li, W.; Chen, F.; Qiu, W. Unraveling the effects of micro-level street environment on dockless bikeshare in Ithaca. Transp. Res. Part D. Transp. Environ. 2024, 132, 104256. [Google Scholar] [CrossRef]
- Wang, R.; Lu, T.; Wan, C.; Sun, X.; Jiang, W. Measuring the Effects of Streetscape Characteristics on Perceived Safety and Aesthetic Appreciation of Pedestrians. J. Urban Plan. Dev. 2023, 149, 5023020. [Google Scholar] [CrossRef]
- Annear, M.; Fristedt, S.; Laddawong, T. Walkability in Japan’s aging neighborhoods: A comparative audit analysis of pedestrian journeys in urban Tokyo. J. Transp. Health 2024, 35, 101755. [Google Scholar] [CrossRef]
- Karndacharuk, A.; Wilson, D.J.; Dunn, R. A Review of the Evolution of Shared (Street) Space Concepts in Urban Environments. Transp. Rev. 2014, 34, 190–220. [Google Scholar] [CrossRef]
- Ettema, D.; Friman, M.; Gärling, T.; Olsson, L.E. Travel Mode Use, Travel Mode Shift and Subjective Well-Being: Overview of Theories, Empirical Findings and Policy Implications; Springer: Berlin/Heidelberg, Germany, 2016; pp. 129–150. [Google Scholar] [CrossRef]
- Forum, I.T. Zero Road Deaths and Serious Injuries: Leading a Paradigm Shift to a Safe System; OECD Publishing: Paris, France, 2016. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, Y.; Xing, L.; Wang, N.; Rao, L. Road Safety Evaluation Framework for Accessing Park Green Space Using Active Travel. Front. Environ. Sci. 2022, 10, 1–19. [Google Scholar] [CrossRef]
- Jing, J. Seeing Streetscapes as Social Infrastructure: A Paradigmatic Case Study of Hornsbergs Strand, Stockholm. Urban Plan. 2022, 7, 510–522. [Google Scholar] [CrossRef]
- Barton, J.; Pretty, J. What is the best dose of nature and green exercise for improving mental health—A multi-study analysis. Environ. Sci. Technol. 2010, 44, 3947–3955. [Google Scholar] [CrossRef] [PubMed]
- Forsyth, A.; Oakes, J.M. Cycling, the Built Environment, and Health: Results of a Midwestern Study. Int. J. Sustain. Transp. 2015, 9, 49–58. [Google Scholar] [CrossRef]
- Capitanio, M. Attractive streetscape making pedestrians walk longer routes: The case of Kunitachi in Tokyo. J. Archit. Urban. 2019, 43, 131–137. [Google Scholar] [CrossRef]
- Huang, D.; Jiang, B.; Yuan, L. Analyzing the effects of nature exposure on perceived satisfaction with running routes: An activity path-based measure approach. Urban For. Urban Green. 2022, 68, 127480. [Google Scholar] [CrossRef]
- INSEE. Bilan Démographique 2023 de l’Île-de-France: Des Naissances Toujours en Baisse, 2024. Report on Population Census. Available online: https://www.insee.fr/fr/statistiques/8062506 (accessed on 1 November 2024).
- L’observatoire Parisien des Mobilités. Le Bilan des Déplacements en 2022 à Paris. Mairie de Paris, Direction de la Voirie et des déPlacements. 2022. Available online: https://cdn.paris.fr/paris/2023/12/19/paris_ra2022-18-12-copie-web-ZmS8.pdf (accessed on 1 November 2024).
- Mendenhall, W.M.; Sincich, T.L. Statistics for Engineering and the Sciences, 6th ed.; CRC Press Taylor & Francis Group: Abingdon, UK, 2016. [Google Scholar]
- Yang, W.; Fei, J.; Li, Y.; Chen, H.; Liu, Y. Unraveling nonlinear and interaction effects of multilevel built environment features on outdoor jogging with explainable machine learning. Cities 2024, 147, 104813. [Google Scholar] [CrossRef]
- Bedimo-Rung, A.L.; Mowen, A.J.; Cohen, D.A. The Significance of Parks to Physical Activity and Public Health A Conceptual Model. Am. J. Prev. Med. 2005, 28, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Kamphuis, C.B.M.; Dijst, M.; Helbich, M. The role of the natural and built environment in cycling duration in the Netherlands. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 82. [Google Scholar] [CrossRef] [PubMed]
- Gkekas, F.; Bigazzi, A.; Gill, G. Perceived safety and experienced incidents between pedestrians and cyclists in a high-volume non-motorized shared space. Transp. Res. Interdiscip. Perspect. 2020, 4, 100094. [Google Scholar] [CrossRef]
- Sugiyama, T.; Neuhaus, M.; Cole, R.; Giles-Corti, B.; Owen, N. Destination and Route Attributes Associated with Adults’ Walking. Med. Sci. Sport. Exerc. 2012, 44, 1275–1286. [Google Scholar] [CrossRef]
- Boettge, B.; Hall, D.M.; Crawford, T. Assessing the bicycle network in St. Louis: A place-based user-centered approach. Sustainability 2017, 9, 241. [Google Scholar] [CrossRef]
- Smith, G.; Gidlow, C.; Davey, R.; Foster, C. What is my walking neighbourhood? A pilot study of English adults’ definitions of their local walking neighbourhoods. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 34. [Google Scholar] [CrossRef]
- Ashe, M.C.; Winters, M.; Hoppmann, C.A.; Dawes, M.G.; Gardiner, P.A.; Giangregorio, L.M.; Madden, K.M.; McAllister, M.M.; Wong, G.; Puyat, J.H.; et al. “Not just another walking program”: Everyday Activity Supports You (EASY) model-a randomized pilot study for a parallel randomized controlled trial. Pilot Feasibility Stud. 2015, 1, 4. [Google Scholar] [CrossRef] [PubMed]
- Fliess-Douer, O.; Woude, L.H.V.D.; Vanlandewijck, Y.C. Development of a new scale for perceived self-efficacy in manual wheeled mobility: A pilot study. J. Rehabil. Med. 2011, 43, 602–608. [Google Scholar] [CrossRef]
- Ramezani, S.; Hasanzadeh, K.; Rinne, T.; Kajosaari, A.; Kyttä, M. Residential relocation and travel behavior change: Investigating the effects of changes in the built environment, activity space dispersion, car and bike ownership, and travel attitudes. Transp. Res. Part A Policy Pract. 2021, 147, 28–48. [Google Scholar] [CrossRef]
- Feuillet, T.; Salze, P.; Charreire, H.; Menai, M.; Enaux, C.; Perchoux, C.; Hess, F.; Kesse-Guyot, E.; Hercberg, S.; Simon, C.; et al. Built environment in local relation with walking: Why here and not there? J. Transp. Health 2016, 3, 500–512. [Google Scholar] [CrossRef]
- Beck, B.; Winters, M.; Nelson, T.; Pettit, C.; Leao, S.Z.; Saberi, M.; Thompson, J.; Seneviratne, S.; Nice, K.; Stevenson, M. Developing urban biking typologies: Quantifying the complex interactions of bicycle ridership, bicycle network and built environment characteristics. Environ. Plan. Urban Anal. City Sci. 2023, 50, 7–23. [Google Scholar] [CrossRef]
- Chan, E.T.H.; Schwanen, T.; Banister, D. The role of perceived environment, neighbourhood characteristics, and attitudes in walking behaviour: Evidence from a rapidly developing city in China. Transportation 2021, 48, 431–454. [Google Scholar] [CrossRef]
- Battistini, R.; Nalin, A.; Simone, A.; Lantieri, C.; Vignali, V. How do University Student Cyclists Ride? The Case of University of Bologna. Appl. Sci. 2022, 12, 11569. [Google Scholar] [CrossRef]
Walking (N = 58) | Cycling (N = 51) | |||
---|---|---|---|---|
GA (N = 22) | BA (N = 36) | GA (N = 14) | BA (N = 37) | |
Duration of living (years) * | 12.4 (14.4) | 20.2 (16.4) | 15.9 (16.9) | 21.9 (18.5) |
Age (years) * | 35.4 (15.9) | 43.4 (12.2) | 38.6 (15.1) | 45.2 (13.9) |
Gender (%) | ||||
Male | 40.9 | 66.7 | 35.7 | 70.3 |
Female | 59.1 | 33.3 | 64.3 | 29.7 |
Car ownership (unit) * | 0.6 (0.7) | 0.4 (0.5) | 0.4 (0.6) | 0.4 (0.6) |
Bicycle ownership (unit) * | No data | No data | 1.6 (1.7) | 2 (2) |
Active mobility frequency (days) * | 5.9 (1.6) | 6.4 (1.3) | 1.4 (2.3) | 3.2 (2.7) |
Active mobility purpose (%) | ||||
Utilitarian | 59.1 | 75 | 28.6 | 54.1 |
Recreational | 13.6 | 19.4 | 14.3 | 10.8 |
Physical activity | 27.3 | 5.6 | 0 | 5.4 |
No activity | 0 | 0 | 57.1 | 29.7 |
Walking (N = 58) | Cycling (N = 51) | |||
---|---|---|---|---|
GA (N = 7) | BA (N = 51) | GA (N = 10) | BA (N = 41) | |
Duration of living (years) * | 13.3 (14.4) | 17.8 (16.3) | 29.6 (15.7) | 18 (18.1) |
Age (years) * | 36.6 (17.3) | 40.8 (13.8) | 43 (13.7) | 43.5 (14.7) |
Gender (%) | ||||
Male | 42.9 | 58.8 | 50 | 63.4 |
Female | 57.1 | 41.2 | 50 | 36.6 |
Car ownership (unit) * | 0.7 (0.8) | 0.4 (0.6) | 0.3 (0.5) | 0.4 (0.7) |
Bicycle ownership (unit) * | No data | No data | 1.8 (2) | 1.9 (2) |
Active mobility frequency (days) * | 6.3 (1.5) | 6.2 (1.4) | 2.9 (3) | 2.7 (2.6) |
Active mobility purpose (%) | ||||
Utilitarian | 42.9 | 72.5 | 50 | 46.3 |
Recreational | 0 | 19.6 | 10 | 12.2 |
Physical activity | 57.1 | 7.8 | 0 | 4.9 |
No activity | 0 | 0 | 40 | 36.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sitohang, I.; Belaroussi, R.; Adelé, S.; Imine, H. The Effect of Access to Waterbodies and Parks on Walking and Cycling in Urban Areas. Infrastructures 2024, 9, 235. https://doi.org/10.3390/infrastructures9120235
Sitohang I, Belaroussi R, Adelé S, Imine H. The Effect of Access to Waterbodies and Parks on Walking and Cycling in Urban Areas. Infrastructures. 2024; 9(12):235. https://doi.org/10.3390/infrastructures9120235
Chicago/Turabian StyleSitohang, Irene, Rachid Belaroussi, Sonia Adelé, and Hocine Imine. 2024. "The Effect of Access to Waterbodies and Parks on Walking and Cycling in Urban Areas" Infrastructures 9, no. 12: 235. https://doi.org/10.3390/infrastructures9120235
APA StyleSitohang, I., Belaroussi, R., Adelé, S., & Imine, H. (2024). The Effect of Access to Waterbodies and Parks on Walking and Cycling in Urban Areas. Infrastructures, 9(12), 235. https://doi.org/10.3390/infrastructures9120235