A Review on Acoustic and Skid Resistance Solutions for Road Pavements
Abstract
:1. Introduction
2. Road Pavement Surface Properties
2.1. Texture
- The microtexture covers wavelengths that are of the same order as the texture of the aggregates with wavelengths below 0.5 mm;
- The macrotexture covers wavelengths of the same order of size as the tire tread elements (i.e., from 0.5 mm to 50 mm);
- Wavelengths over 50 mm correspond to the megatexture and unevenness.
2.2. Skid Resistance
2.3. Noise
3. Existing Pavement Solutions to Address Noise Pollution and Skid Resistance
3.1. Dense-Graded Hot Mix Asphalt
3.2. Open-Graded Friction Courses
3.3. Stone Mastic Asphalt (SMA)
3.4. Porous Elastic Road Surface (PERS)
3.5. Twin Layer Courses
3.6. High-Friction Surface Dressing (Nonbituminous)
3.7. Microsurfacings
4. High-Friction Acoustic Surface Pavements
4.1. HiFASP with Natural Aggregates
4.2. HiFASP with Artificial Aggregates
5. Conclusions
- Solutions for improving skid resistance and noise exist and are currently used in many roads worldwide. They require a specific design of the pavement texture to address one or both aspects;
- Aggregates are commonly natural and virgin, and for this reason, a careful selection is needed for their use in pavements, providing specific skid resistance and acoustic characteristics;
- Artificial aggregates can be engineered to the desired shape, size, and microtexture so that specific characteristics can be implemented into the pavement layers. In particular, their design can guarantee enhanced skid resistance and acoustic performance;
- HiFASPs represent a new solution that can make use of artificial engineered aggregates, bringing road safety, human health, and environmental advantages. These can also be seen as highly reproducible, thus providing spatial and time homogeneity to the quality of road pavements worldwide;
- Engineered aggregates can become a tool for the implementation of different smart paving solutions. In these terms, future pavements are very likely to be a pattern of engineered surfaces having different functions and characteristics for different locations and uses.
Author Contributions
Funding
Conflicts of Interest
References
- Plati, C.; Pomoni, M.; Georgouli, K. Quantification of skid resistance seasonal variation in asphalt pavements. J. Traffic Transp. Eng. 2019, 7, 237–248. [Google Scholar] [CrossRef]
- Afonso, M.L.; Dinis-Almeida, M.; Fael, C.S. Characterization of the Skid Resistance and Mean Texture Depth in a Permeable Asphalt Pavement. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 22029. [Google Scholar] [CrossRef]
- Sandberg, U.; Ejsmont, J.A. Tyre/Road Noise Reference Book, 1st ed.; INFORMEX Ejsmont and Sandberg Handelsbolag: Kisa, Sweden, 2002; ISBN 91-613-2610-9. [Google Scholar]
- Rado, Z.; Kane, M. An initial attempt to develop an empirical relation between texture and pavement friction using the HHT approach. Wear 2014, 309, 233–246. [Google Scholar] [CrossRef]
- Kogbara, R.B.; Masad, E.A.; Kassem, E.; Scarpas, A.; Anupam, K. A state-of-the-art review of parameters influencing measurement and modeling of skid resistance of asphalt pavements. Constr. Build. Mater. 2016, 114, 602–617. [Google Scholar] [CrossRef]
- Tsubota, T.; Fernando, C.; Yoshii, T.; Shirayanagi, H. Effect of Road Pavement Types and Ages on Traffic Accident Risks. Transp. Res. Procedia 2018, 34, 211–218. [Google Scholar] [CrossRef]
- Puzzo, L.; Loprencipe, G.; Tozzo, C.; D’Andrea, A. Three-dimensional survey method of pavement texture using photographic equipment. Measurement 2017, 111, 146–157. [Google Scholar] [CrossRef]
- Klüppel, M.; Heinrich, G. Rubber Friction on Self-Affine Road Tracks. Rubber Chem. Technol. 2000, 73, 578–606. [Google Scholar] [CrossRef]
- Edmondson, V.; Woodward, J.; Lim, M.; Kane, M.; Martin, J.; Shyha, I. Improved non-contact 3D field and processing techniques to achieve macrotexture characterisation of pavements. Constr. Build. Mater. 2019, 227, 116693. [Google Scholar] [CrossRef]
- Frei, P.; Mohler, E.; Röösli, M. Effect of nocturnal road traffic noise exposure and annoyance on objective and subjective sleep quality. Int. J. Hyg. Environ. Health 2014, 217, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Swinburn, T.K.; Hammer, M.S.; Neitzel, R.L. Valuing Quiet: An Economic Assessment of U.S. Environmental Noise as a Cardiovascular Health Hazard. Am. J. Prev. Med. 2015, 49, 345–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardillo Mayora, J.M.; Jurado Piña, R. An assessment of the skid resistance effect on traffic safety under wet-pavement conditions. Accid. Anal. Prev. 2009, 41, 881–886. [Google Scholar] [CrossRef]
- Woodward, W.D.; Woodside, A. Early and mid life SMA skid resistance. In Proceedings of the Safer Road Conference, Auckland, New Zealand, 2–4 May 2014; pp. 1–10. [Google Scholar]
- Haider, M.; Descornet, G.; Sandberg, U.; Pratico, F.G. Road Traffic Noise Emission: Recent Develpments and Future. In Proceedings of the 4th International SIIV Congress, Palermo, Italy, 12–14 September 2007. [Google Scholar]
- International Organization for Standardization. ISO Characterization of Pavement Texture by Use of Surface Profiles—Part. 3: Specification and Classification of Profilometers; ISO 13473-3; ISO: Vernier, Switzerland, 2002; p. 3. [Google Scholar]
- Praticò, F.; Vaiana, R. A study on the relationship between mean texture depth and mean profile depth of asphalt pavements. Constr. Build. Mater. 2015, 101, 72–79. [Google Scholar] [CrossRef]
- Rezaei, A.; Masad, E.; Chowdhury, A. Development of a Model for Asphalt Pavement Skid Resistance Based on Aggregate Characteristics and Gradation. J. Transp. Eng. 2012, 137, 863–873. [Google Scholar] [CrossRef]
- Roger, N.; Abbott, P.; Andersen, B.; Anfosso-Ledee, F.W.; Bendtsen, B.H.; van Blokland, G.D. Silvia-Sustainable Road Surface for Traffic Noise Control; Technical Report; Guy Descornet: Brussel, Belgium, 2006; ISBN 9789090204048. [Google Scholar]
- Vieira, T.; Sandberg, U.; Erlingsson, S. Negative texture, positive for the environment: Effects of horizontal grinding of asphalt pavements. Road Mater. Pavement Des. 2019, 22, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Knabben, R.M.; Trichês, G.; Gerges, S.N.; Vergara, E.F. Evaluation of sound absorption capacity of asphalt mixtures. Appl. Acoust. 2016, 114, 266–274. [Google Scholar] [CrossRef]
- Del Pizzo, A.; Teti, L.; Moro, A.; Bianco, F.; Fredianelli, L.; Licitra, G. Influence of texture on tyre road noise spectra in rubberized pavements. Appl. Acoust. 2020, 159, 107080. [Google Scholar] [CrossRef]
- Davies, B.R.; Cenek, D.P.; Henderson, J.R. The effect of skid resistance and texture on crash risk. In Proceedings of the International Surface Friction Conference, Christchurch, New Zealand, 1–4 May 2005; p. 17. [Google Scholar]
- Andriejauskas, T.; Vorobjovas, V.; Mielonas, V. Evaluation of skid resistance characteristics and measurement methods. In Proceedings of the 9th International Conference Environmental Engineering, Vilnius, Lithuania, 22–24 May 2014. [Google Scholar] [CrossRef] [Green Version]
- Wambold, J.C.; Henry, J.J. International PIARC experiment to compare and harmonize texture and skid resistance measurements. In Nordic Road and Transport Research; Swedish National Road and Transport Research Institute (VTI): Linköping, Sweden, 1994. [Google Scholar]
- World Health Organization. A Road Safety Technical Package; WHO: Geneva, Switzerland, 2017; ISBN 9789241511704. [Google Scholar]
- Ivan, J.N.; Ravishanker, N.; Jackson, E.; Aronov, B.; Guo, S. A Statistical Analysis of the Effect of Wet-Pavement Friction on Highway Traffic Safety. J. Transp. Saf. Secur. 2012, 4, 116–136. [Google Scholar] [CrossRef]
- Fwa, T. Skid resistance determination for pavement management and wet-weather road safety. Int. J. Transp. Sci. Technol. 2017, 6, 217–227. [Google Scholar] [CrossRef]
- Singh, D.; Patel, H.; Habal, A.; Das, A.K.; Kapgate, B.P.; Rajkumar, K. Evolution of coefficient of friction between tire and pavement under wet conditions using surface free energy technique. Constr. Build. Mater. 2019, 204, 105–112. [Google Scholar] [CrossRef]
- Ueckermann, A.; Wang, D.; Oeser, M.; Steinauer, B. Calculation of skid resistance from texture measurements. J. Traffic Transp. Eng. 2015, 2, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.W.; Smith, K.L.; Titus-Glover, L.; Wambold, J.C.; Yager, T.J.; Rado, Z. Guide for Pavement Friction; Transportation Research Board: Washington, DC, USA, 2009. [Google Scholar]
- Kane, M.; Rado, Z.; Timmons, A. Exploring the texture–friction relationship: From texture empirical decomposition to pavement friction. Int. J. Pavement Eng. 2015, 16, 919–928. [Google Scholar] [CrossRef]
- Gabriel, P.; Thomas, A.; Busfield, J. Influence of interface geometry on rubber friction. Wear 2010, 268, 747–750. [Google Scholar] [CrossRef]
- European Comission. Report from the Commission to the European Parliament and the Council on the Implementation of the Environmental Noise Directive in Accordance with Article 11 of Directive 2002/49/EC; European Comission: Brussels, Belgium, 2017; Volume 151. [Google Scholar]
- Dzhambov, A.M.; Lercher, P. Road Traffic Noise Exposure and Birth Outcomes: An Updated Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2019, 16, 2522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzhambov, A.M.; Lercher, P. Road Traffic Noise Exposure and Depression/Anxiety: An Updated Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2019, 16, 4134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simões, M.R.L.; Souza, C.; De Alcantara, M.A.; Assunção, A. Ávila Precarious working conditions and health of metropolitan bus drivers and conductors in Minas Gerais, Brazil. Am. J. Ind. Med. 2019, 62, 996–1006. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Burden of Disease from Burden of Disease; WHO: Geneva, Switzerland, 2011; p. 126. [Google Scholar]
- Imagine Project. Available online: http://www.imagine-project.org/ (accessed on 20 December 2020).
- Ramussen, R.O.; Bernhard, R.J.; Sandberg, U.; Mun, E.P. The Little Book of Quieter Pavements; Federal Highway Administration and the Transtec Group: Washington, DC, USA, 2007; pp. 1–33.
- Paje, S.E.; Vazquez, V.F.; Teran, F.; Vinuela, U. Study of a road test track with and without crumb rubber: Solutions for noise pollution. Environ. Eng. Manag. J. 2014, 13, 2487–2495. [Google Scholar] [CrossRef]
- Vázquez, V.F.; Luong, J.; Bueno, M.; Terán, F.; Paje, S.E. Assessment of an action against environmental noise: Acoustic durability of a pavement surface with crumb rubber. Sci. Total. Environ. 2016, 542, 223–230. [Google Scholar] [CrossRef]
- Praticò, F.G. On the dependence of acoustic performance on pavement characteristics. Transp. Res. Part. D Transp. Environ. 2014, 29, 79–87. [Google Scholar] [CrossRef]
- Umnova, O.; Attenborough, K.; Shin, H.-C.; Cummings, A. Deduction of tortuosity and porosity from acoustic reflection and transmission measurements on thick samples of rigid-porous materials. Appl. Acoust. 2005, 66, 607–624. [Google Scholar] [CrossRef]
- Kim, H.; Lee, H. Acoustic absorption modeling of porous concrete considering the gradation and shape of aggregates and void ratio. J. Sound Vib. 2010, 329, 866–879. [Google Scholar] [CrossRef]
- Siebert, D. How Wear Affects Road Surface Texture and Its Impact on Tire/Road Noise Texture; NTNU Norwegian University of Science and Technology: Trondheim, Norway, 2017. [Google Scholar]
- International Organization for Standardization. Acoustics—Measurement of the Influence of Road Surfaces on Traffic Noise—Part. 2: The Close-Proximity Method; ISO/DIS 11819-2; ISO: Vernier, Switzerland, 2014. [Google Scholar]
- American Society for Testing and Materials. Standard Practice for Calculating International Friction Index of a Pavement Surface; ASTM E1960-07; ASTM: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Li, W.; Han, S.; Huang, Q. Performance of Noise Reduction and Skid Resistance of Durable Granular Ultra-Thin Layer Asphalt Pavement. Materials 2020, 13, 4260. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, A.E.; Martin, A.E.; Estakhri, C.K.; Button, J.W.; Glover, C.J.; Jung, S.H. Synthesis of Current Practice on the Design, Construction, and Maintenance of Porous Friction Courses; Report No. FHWA/TxDOT 0-5262-1; Texas Transportation Institute: Bryan, TX, USA, 2006; Volume 7. [Google Scholar]
- Wu, H.; Yu, J.; Song, W.; Zou, J.; Song, Q.; Zhou, L. A critical state-of-the-art review of durability and functionality of open-graded friction course mixtures. Constr. Build. Mater. 2020, 237, 117759. [Google Scholar] [CrossRef]
- Aybike Ongel, J.; Harvey, T.; Kohler, E.; Lu, Q.; Steven, B.D. Investigation of Noise, Durability, Permeability, and Friction Performance Trends for Asphalt Pavement Surface Types: First- and Second-Year Results; University of California: Sacramento, CA, USA, 2008. [Google Scholar]
- Woodward, D.; Millar, P.; Lantieri, C.; Sangiorgi, C.; Vignali, V. The wear of Stone Mastic Asphalt due to slow speed high stress simulated laboratory trafficking. Constr. Build. Mater. 2016, 110, 270–277. [Google Scholar] [CrossRef]
- Tonin, R. Quiet Road Pavements: Design and Measurement—State of the Art. Acoust. Aust. 2016, 44, 235–247. [Google Scholar] [CrossRef]
- Praticò, F.; Mark, S. Quiet Pavement Technologies; PIARC-2013R10EN; PIARC: Paris, France, 2013. [Google Scholar]
- Wu, Y.; Parker, F.; Kandhal, P.S. Aggregate Toughness/Abrasion Resistance and Durability/Soundness Tests Related to Asphalt Concrete Performance in Pavements. Transp. Res. Rec. J. Transp. Res. Board 1998, 1638, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Wasilewska, M.; Gardziejczyk, W.; Gierasimiuk, P. Evaluation of Skid Resistance Using CTM, DFT and SRT-3 Devices. Transp. Res. Procedia 2016, 14, 3050–3059. [Google Scholar] [CrossRef] [Green Version]
- Ejsmont, J.; Świeczko-Żurek, B.; Owczarzak, W.; Sommer, S.; Ronowski, G. Tire/Road Noise on Poroelastic Road Surfaces. EuroNoise 2018, 2018, 2719–2724. [Google Scholar]
- Meiarashi, S. Porous Elastic Road Surface as Urban Highway Noise Measure. Transp. Res. Rec. J. Transp. Res. Board 2004, 1880, 151–157. [Google Scholar] [CrossRef]
- Goubert, L.; Bendtsen, H.; Bergiers, A.; Kalman, B.; Kokot, D. The Poroelastic Road Surface (PERS): Is the 10 dB Reducing Pavement within Reach? Mater. Infrastruct. 2016, 1, 253–268. [Google Scholar] [CrossRef]
- Persuade. Available online: http://persuade.fehrl.org (accessed on 22 January 2021).
- Morgan, P.A.; Stait, R.E.; Reeves, S.; Clifton, M. The Feasibility of Using Twin-Layer Porous Asphalt Surfaces on England’s Strategic Road Network; PPR433; Transport Research Laboratory: Berkshire, UK, 2007; p. 106. [Google Scholar]
- Bernhard, R.; Wayson, R.A. An Introduction to Tire/Pavement Noise of Asphalt pavement; Institute of Safe, Quiet and Durable Highways: West Lafayette, IN, USA, 2005; p. 26. [Google Scholar]
- Tang, G.Q.; Li, M.L.; Ji, T.J.; Liu, Z. Current Status of Research on Two-Layer Porous Asphalt. Appl. Mech. Mater. 2014, 716–717, 443–447. [Google Scholar] [CrossRef]
- Kragh, J.; Bendtsen, H. Performance of New Twin-Lay Drainage Asphalt Laid in Denmark. In Proceedings of the 29th International Congress and Exhibition on Noise Control Engineering, Nice, France, 27–30 August 2000; pp. 2–7. [Google Scholar]
- Liu, M.; Huang, X.; Xue, G. Effects of double layer porous asphalt pavement of urban streets on noise reduction. Int. J. Sustain. Built Environ. 2016, 5, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Woodward, D.; Friel, S. Predicting the Wear of High Friction Surfacing Aggregate. Coatings 2017, 7, 71. [Google Scholar] [CrossRef] [Green Version]
- Robati, M.; Carter, A.; Perraton, D. Evaluation of test methods and selection of aggregate grading for type III application of micro-surfacing. Int. J. Pavement Eng. Asph. Technol. 2013, 14, 11–35. [Google Scholar] [CrossRef]
- Karyawan, I.D.A.; Ahyudanari, E.; Ekaputri, J.J. Potential Use of Fly Ash Base-Geopolymeras Aggregate Substitution in Asphalt Concrete Mixtures. Int. J. Eng. Technol. 2017, 9, 3744–3752. [Google Scholar] [CrossRef] [Green Version]
- Sangiorgi, C.; Bitelli, G.; Lantieri, C.; Irali, F.; Girardi, F. A Study on Texture and Acoustic Properties of Cold Laid Microsurfacings. Procedia Soc. Behav. Sci. 2012, 53, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Grilli, A.; Graziani, A.; Carter, A.; Sangiorgi, C.; Specht, L.P.; Callai, S.C. Slurry surfacing: A review of definitions, descriptions and current practices. RILEM Tech. Lett. 2019, 4, 103–109. [Google Scholar] [CrossRef]
- Freitas, E.; Pereira, P.A.A.; Santos, L.P.; Santos, A.P.S. A Influência da Água no Ruído Produzido pelo Tráfego Rodoviário. Eng. Civ. 2006, 26, 5–15. [Google Scholar]
- Goubert, L. A new test track with the ultra noise reducing Poro-elastic Road Surface (PERS) in Gent, Belgium. In Proceedings of the INTER-NOISE—48th International Congress Exhibition on Noise Control Engeering, Madrid, Spain, 16–19 June 2019. [Google Scholar]
- Fujiwara, T.; Meiarashi, S.; Namikawa, Y.; Hasebe, M. Reduction of equivalent continuous A-weighted sound pressure levels by porous elastic road surfaces. Appl. Acoust. 2005, 66, 766–778. [Google Scholar] [CrossRef]
- Meiarashi, S.; Ishida, M.; Fujiwara, T.; Hasebe, M.; Nakatsuji, T. Noise reduction characteristics of porous elastic road surfaces. Appl. Acoust. 1996, 47, 239–250. [Google Scholar] [CrossRef]
- Friel, S. High Friction Surface Coating and Method of Making Thereof. U.S. Patent 9,739,017, 22 August 2017. [Google Scholar]
- Heitzman, M.; Turner, P.; Greer, M. High Friction Surface Treatment Alternative Aggregates Study; National Center for Asphalt Technology: Auburn, AL, USA, 2015. [Google Scholar]
- Nowoświat, A.; Sorociak, W.; Żuchowski, R. The impact of the application of thin emulsion mat microsurfacing on the level of noise in the environment. Constr. Build. Mater. 2020, 263, 120626. [Google Scholar] [CrossRef]
- Conférence Européenne des Directeurs des Routes. State of the Art in Managing Road Traffic Noise: Noise-Reducing Pavements Noise-Reducing; CEDR: Tucson, AZ, USA, 2017; ISBN 9791093321271. [Google Scholar]
- McIntosh, J.; Wong, F.; Macha, P.; Buret, M. Long term acoustic performance of different asphalt configurations. In Proceedings of the Acoustics 2019, Sound Decisions: Moving forward with Acoustics Annual Conference of the Australian Acoustical Society, Cape Schanck, Australia, 10–13 November 2019; pp. 1–10. [Google Scholar]
- Losa, M.; Leandri, P.; Bacci, R.; Information, R. Mechanical and Performance-Related Properties of Asphalt Mixes Containing Expanded Clay Aggregate. Transp. Res. Rec. J. Transp. Res. Board 2008, 2051, 23–30. [Google Scholar] [CrossRef]
- Tataranni, P.; Sangiorgi, C. Synthetic Aggregates for the Production of Innovative Low Impact Porous Layers for Urban Pavements. Infrastructures 2019, 4, 48. [Google Scholar] [CrossRef] [Green Version]
- Solouki, A.; Viscomi, G.; Tataranni, P.; Sangiorgi, C. Preliminary Evaluation of Cement Mortars Containing Waste Silt Optimized with the Design of Experiments Method. Materials 2021, 14, 528. [Google Scholar] [CrossRef] [PubMed]
- Gunasekara, C.; Setunge, S.; Law, D.W.; Willis, N.; Burt, T. Engineering Properties of Geopolymer Aggregate Concrete. J. Mater. Civ. Eng. 2018, 30, 1–11. [Google Scholar] [CrossRef]
- Solouki, A.; Viscomi, G.; Lamperti, R.; Tataranni, P. Quarry Waste as Precursors in Geopolymers for Civil Engineering Applications: A Decade in Review. Materials 2020, 13, 3146. [Google Scholar] [CrossRef] [PubMed]
- Birgin, H.B.; D’Alessandro, A.; Laflamme, S.; Ubertini, F. Hybrid Carbon Microfibers-Graphite Fillers for Piezoresistive Cementitious Composites. Sensors 2021, 21, 518. [Google Scholar] [CrossRef] [PubMed]
- Birgin, H.B.; D’Alessandro, A.; Laflamme, S.; Ubertini, F. Smart Graphite–Cement Composite for Roadway-Integrated Weigh-In-Motion Sensing. Sensors 2020, 20, 4518. [Google Scholar] [CrossRef]
Paving Solution | Friction (BPN) | Noise (dB(A)) | Reference |
---|---|---|---|
Dense-Graded Hot Mix Asphalt | 60–65 | >84 | [48,70] |
Open-Graded Friction Courses | 50–80 | 74–76 | [50,51,71] |
Stone Mastic Asphalt (SMA) | 50–65 | 76–80 | [53,54,55,56] |
Porous Elastic Road Surface (PERS) | 60 | −10 dB(A) reduction 1 | [57,59,72,73,74] |
Twin Layer Courses | Like open-graded courses | −6 dB(A) reduction 1 | [62,63] |
High-Friction Surface Dressing | Up to 90 | −5 dB(A) reduction 1 | [52,75,76] |
Microsurfacings | 54–72 | 69–75 | [68,77] |
Rock Type | PSV (EN 1097-8:2009) | Pendulum Test (PTN) (ASTM E303:1991) | Texture Depth (mm) (ISO 13473-1:2019) |
---|---|---|---|
Limestone A | 40 | 82 | 3.29 |
Limestone B | 54 | 89 | 3.35 |
Greywacke A | 65 | 81 | 3.32 |
Greywacke B | 68 | 85 | 3.26 |
Granite A | 55 | 87 | 3.47 |
Granite B | 55 | 84 | 3.18 |
Sandstone | 70 | 98 | 3.05 |
Quartzite | 58 | 91 | 3.10 |
Basalt | 53 | 95 | 3.74 |
Calcined Bauxite | 70+ | 89 | 3.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Copetti Callai, S.; Sangiorgi, C. A Review on Acoustic and Skid Resistance Solutions for Road Pavements. Infrastructures 2021, 6, 41. https://doi.org/10.3390/infrastructures6030041
Copetti Callai S, Sangiorgi C. A Review on Acoustic and Skid Resistance Solutions for Road Pavements. Infrastructures. 2021; 6(3):41. https://doi.org/10.3390/infrastructures6030041
Chicago/Turabian StyleCopetti Callai, Sergio, and Cesare Sangiorgi. 2021. "A Review on Acoustic and Skid Resistance Solutions for Road Pavements" Infrastructures 6, no. 3: 41. https://doi.org/10.3390/infrastructures6030041
APA StyleCopetti Callai, S., & Sangiorgi, C. (2021). A Review on Acoustic and Skid Resistance Solutions for Road Pavements. Infrastructures, 6(3), 41. https://doi.org/10.3390/infrastructures6030041