Real-Time Road Hazard Information System
Abstract
:1. Introduction
2. Methods
2.1. System Overview
2.2. Object Detection
2.2.1. Convolutional Neural Network
2.2.2. YOLO Detector
3. Results
3.1. Data
3.2. Evaluation
3.3. YOLOv2
3.4. YOLOv3
3.5. Semantic Segmentation
3.6. Google Coral Dev Board
3.7. Single Shot Multibox Detector (SSD)
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
YOLO | You Only Look Once |
SSD | Single Shot Multibox Detector |
TPU | Tensor Processing Unit |
CPU | Central Processing Unit |
GPU | Graphics Processing Unit |
RAM | Random Access Memory |
VOC | Visual Object Classes |
ANN | Artificial Neural Network |
CNN | Convolutional Neural Network |
FPS | Frames Per Second |
IOU | Intersection Over Union |
mAP | mean Average Precision |
References
- 25,000 Crashes a Year Due to Vehicle-Related Road Debris. AAA Foundation Study Finds. Available online: https://www.businesswire.com/news/home/20040616005468/en/25000-Crashes-Year-Due-Vehicle-Related-Road-Debris (accessed on 16 June 2004).
- Tefft, B. The Prevalence of Motor Vehicle Crashes Involving Road Debris. 2016. Available online: http://mail.thenewspaper.com/rlc/docs/2016/aaadebris.pdf (accessed on 9 September 2020).
- National Highway Traffic Safety Administration. Traffic safety facts 2011 data–pedestrians. Ann. Emerg. Med. 2013, 62, 612. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.; Ryu, S. Pothole detection system using a black-box camera. Sensors 2015, 15, 29316–29331. [Google Scholar] [CrossRef] [PubMed]
- Eisenbach, M.; Stricker, R.; Seichter, D.; Amende, K.; Debes, K.; Sesselmann, M.; Ebersbach, D.; Stoeckert, U.; Gross, H.M. How to get pavement distress detection ready for deep learning? A systematic approach. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2039–2047. [Google Scholar]
- Zhang, L.; Yang, F.; Zhang, Y.D.; Zhu, Y.J. Road crack detection using deep convolutional neural network. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 3708–3712. [Google Scholar]
- Pauly, L.; Hogg, D.; Fuentes, R.; Peel, H. Deeper networks for pavement crack detection. In Proceedings of the 34th International Symposium in Automation and Robotics in Construction, Taipei, Taiwan, 28 June–1 July 2017; pp. 479–485. [Google Scholar]
- Pinggera, P.; Ramos, S.; Gehrig, S.; Franke, U.; Rother, C.; Mester, R. Lost and found: Detecting small road hazards for self-driving vehicles. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1099–1106. [Google Scholar]
- Godha, S. On-road obstacle detection system for driver assistance. Asia Pac. J. Eng. Sci. Technol. 2017, 3, 16–21. [Google Scholar]
- Wu, B.; Iandola, F.; Jin, P.H.; Keutzer, K. Squeezedet: Unified, small, low power fully convolutional neural networks for real-time object detection for autonomous driving. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 129–137. [Google Scholar]
- Creusot, C.; Munawar, A. Real-time small obstacle detection on highways using compressive RBM road reconstruction. In Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Korea, 28 June–1 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 162–167. [Google Scholar]
- Pinheiro, P.H.O.; Collobert, R. From image-level to pixel-level labeling with Convolutional Networks. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1713–1721. [Google Scholar]
- Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; Lecun, Y. OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks. arXiv 2014, arXiv:1312:6229. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 3213–3223. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Jégou, S.; Drozdzal, M.; Vazquez, D.; Romero, A.; Bengio, Y. The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 1175–1183. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.E.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Reaño, C.; Silla, F. Performance Evaluation of the NVIDIA Pascal GPU Architecture: Early Experiences. In Proceedings of the 2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Sydney, Australia, 12–14 December 2016; pp. 1234–1235. [Google Scholar]
- Google Coral. Available online: https://coral.ai/2020 (accessed on 1 August 2020).
- Ginsburg, B.; Nikolaev, S.; Kiswani, A.; Wu, H.; Gholaminejad, A.; Kierat, S.; Houston, M.; Fit-Florea, A. Tensor Processing Using Low Precision Format. U.S. Patent Application 15/624,577, 28 December 2017. [Google Scholar]
- Graupe, D. Principles of Artificial Neural Networks; World Scientific: Singapore, 2013; Volume 7. [Google Scholar]
- Jain, A.K.; Mao, J.; Mohiuddin, K.M. Artificial neural networks: A tutorial. Computer 1996, 29, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Graves, A.; Mohamed, A.-r.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 6645–6649. [Google Scholar]
- Dahl, G.E.; Yu, D.; Deng, L.; Acero, A. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process. 2011, 20, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Sundermeyer, M.; Schlüter, R.; Ney, H. LSTM neural networks for language modeling. In Proceedings of the Thirteenth Annual Conference of the International Speech Communication Association, Portland, OR, USA, 9–13 September 2012. [Google Scholar]
- Mikolov, T.; Kombrink, S.; Burget, L.; Černockỳ, J.; Khudanpur, S. Extensions of recurrent neural network language model. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 5528–5531. [Google Scholar]
- Swain, M.; Dash, S.K.; Dash, S.; Mohapatra, A. An approach for iris plant classification using neural network. Int. J. Soft Comput. 2012, 3, 79. [Google Scholar] [CrossRef]
- Saeed, A.M. Intelligent handwritten digit recognition using artificial neural network. Int. J. Eng. Res. Appl. 2015, 5, 46–51. [Google Scholar]
- Liu, S.; Deng, W. Very deep convolutional neural network based image classification using small training sample size. In Proceedings of the 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), Kuala Lumpur, Malaysia, 3–6 November 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 730–734. [Google Scholar]
- Lipton, A.J.; Fujiyoshi, H.; Patil, R.S. Moving target classification and tracking from real-time video. In Proceedings of the Fourth IEEE Workshop on Applications of Computer Vision, Princeton, NJ, USA, 19–21 October 1988; IEEE: Piscataway, NJ, USA, 1998; pp. 8–14. [Google Scholar]
- Lin, Y.; Lv, F.; Zhu, S.; Yang, M.; Cour, T.; Yu, K.; Cao, L.; Huang, T. Large-scale image classification: Fast feature extraction and SVM training. In Proceedings of the CVPR 2011, Providence, RI, USA, 20–25 June 2011; pp. 1689–1696. [Google Scholar]
- Padilla, R.; Costa Filho, C.; Costa, M. Evaluation of haar cascade classifiers designed for face detection. World Acad. Sci. Eng. Technol. 2012, 64, 362–365. [Google Scholar]
- Wu, J. Introduction to Convolutional Neural Networks. 2017. Available online: https://cs.nju.edu.cn/wujx/paper/CNN.pdf (accessed on 9 September 2020).
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Redmon, J.; Divvala, S.K.; Girshick, R.B.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Maeda, H.; Sekimoto, Y.; Seto, T.; Kashiyama, T.; Omata, H. Road Damage Detection Using Deep Neural Networks with Images Captured Through a Smartphone. arXiv 2018, arXiv:1801.09454. [Google Scholar]
- Apple iPhone 7. Available online: https://support.apple.com/kb/SP743?locale=en_US (accessed on 1 September 2020).
- Everingham, M.; Gool, L.J.V.; Williams, C.K.I.; Winn, J.M.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef] [Green Version]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2013; Volume 112. [Google Scholar]
- Hung, J.; Carpenter, A. Applying faster R-CNN for object detection on malaria images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 56–61. [Google Scholar]
- Raschka, S. Model evaluation, model selection, and algorithm selection in machine learning. arXiv 2018, arXiv:1811.12808. [Google Scholar]
- Fuchs, K.; Grundmann, T.; Fleisch, E. Towards identification of packaged products via computer vision: Convolutional neural networks for object detection and image classification in retail environments. In Proceedings of the 9th International Conference on the Internet of Things, Bilbao, Spain, 22–25 October 2019; pp. 1–8. [Google Scholar]
- Meyer, G.P.; Laddha, A.; Kee, E.; Vallespi-Gonzalez, C.; Wellington, C.K. Lasernet: An efficient probabilistic 3d object detector for autonomous driving. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 12677–12686. [Google Scholar]
- Refaeilzadeh, P.; Tang, L.; Liu, H. Cross-Validation. Encycl. Database Syst. 2009, 5, 532–538. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520. [Google Scholar]
Type | Filters | Size/Stride | Output |
---|---|---|---|
Convolutional | 32 | 3 × 3 | 224 × 224 |
Maxpool | 2 × | 112 × 112 | |
Convolutional | 64 | 3 × 3 | 112 × 112 |
Maxpool | 2 × | 56 × 56 | |
Convolutional | 128 | 3 × 3 | 56 × 56 |
Convolutional | 64 | 1 × 1 | 56 × 56 |
Convolutional | 128 | 3 × 3 | 56 × 56 |
Maxpool | 2 × | 28 × 28 | |
Convolutional | 256 | 3 × 3 | 28 × 28 |
Convolutional | 128 | 1 × 1 | 28 × 28 |
Convolutional | 256 | 3 × 3 | 28 × 28 |
Maxpool | 2 × | 14 × 14 | |
Convolutional | 512 | 3 × 3 | 14 × 14 |
Convolutional | 256 | 1 × 1 | 14 × 14 |
Convolutional | 512 | 3 × 3 | 14 × 14 |
Convolutional | 256 | 1 × 1 | 14 × 14 |
Convolutional | 512 | 3 × 3 | 14 × 14 |
Maxpool | 2 × | 7 × 7 | |
Convolutional | 1024 | 3 × 3 | 7 × 7 |
Convolutional | 512 | 1 × 1 | 7 × 7 |
Convolutional | 1024 | 3 × 3 | 7 × 7 |
Convolutional | 512 | 1 × 1 | 7 × 7 |
Convolutional | 1024 | 3 × 3 | 7 × 7 |
- | - | - | - |
Convolutional | 1000 | 1 × 1 | 7 × 7 |
Avgpool | Global | 1000 | |
Softmax |
mAP | ||
---|---|---|
Classes | YOLOv2 | YOLOv3 |
Longitudinal Crack | 59.62% | 99.71% |
Lateral Crack | 42.86% | 100.0% |
Manhole | 62.50% | 100.0% |
Alligator Crack | 18.75% | 98.54% |
Pothole | 90.00% | 98.82% |
Blurred Streed Line | 91.67% | 98.33% |
Blurred Crosswalk | 52.63% | 90.48% |
Type | Filters | Size/Stride | Output | |
---|---|---|---|---|
Convolutional | 32 | 3 × 3 | 256 × 256 | |
Convolutional | 64 | 3 × 3 | 128 × 128 | |
Convolutional | 32 | 1 × 1 | ||
1× | Convolutional | 64 | 3 × 3 | |
Residual | 128 × 128 | |||
Convolutional | 128 | 3 × | 64 × 64 | |
Convolutional | 64 | 1 × 1 | ||
2× | Convolutional | 128 | 3 × 3 | |
Residual | 64 × 64 | |||
Convolutional | 256 | 3 × | 32 × 32 | |
Convolutional | 128 | 1 × 1 | ||
8× | Convolutional | 256 | 3 × 3 | |
Residual | 32 × 32 | |||
Convolutional | 512 | 3 × | 16 × 16 | |
Convolutional | 256 | 1 × 1 | ||
8× | Convolutional | 512 | 3 × 3 | |
Residual | 16 × 16 | |||
Convolutional | 1024 | 3 × | 8 × 8 | |
Convolutional | 512 | 1 × 1 | ||
4× | Convolutional | 1024 | 3 × 3 | |
Residual | 8 × 8 | |||
Avgpool | Global | |||
Connected | 1000 | |||
Softmax |
Input | Operator | t | c | n | s |
---|---|---|---|---|---|
conv2d | - | 32 | 1 | 2 | |
bottleneck | 1 | 16 | 1 | 1 | |
bottleneck | 6 | 24 | 2 | 2 | |
bottleneck | 6 | 32 | 3 | 2 | |
bottleneck | 6 | 64 | 4 | 2 | |
bottleneck | 6 | 96 | 3 | 1 | |
bottleneck | 6 | 160 | 3 | 2 | |
bottleneck | 6 | 320 | 1 | 1 | |
conv2d 1 × 1 | - | 1280 | 1 | 1 | |
avgpool 7 × 7 | - | - | 1 | - | |
conv2d 1 × 1 | - | k | - |
Classes | mAP |
---|---|
Pothole | 45.10% |
Manhole | 47.14% |
Blurred Line | 47.78% |
Crack | 30.14% |
Alligator Crack | 39.00% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pena-Caballero, C.; Kim, D.; Gonzalez, A.; Castellanos, O.; Cantu, A.; Ho, J. Real-Time Road Hazard Information System. Infrastructures 2020, 5, 75. https://doi.org/10.3390/infrastructures5090075
Pena-Caballero C, Kim D, Gonzalez A, Castellanos O, Cantu A, Ho J. Real-Time Road Hazard Information System. Infrastructures. 2020; 5(9):75. https://doi.org/10.3390/infrastructures5090075
Chicago/Turabian StylePena-Caballero, Carlos, Dongchul Kim, Adolfo Gonzalez, Osvaldo Castellanos, Angel Cantu, and Jungseok Ho. 2020. "Real-Time Road Hazard Information System" Infrastructures 5, no. 9: 75. https://doi.org/10.3390/infrastructures5090075
APA StylePena-Caballero, C., Kim, D., Gonzalez, A., Castellanos, O., Cantu, A., & Ho, J. (2020). Real-Time Road Hazard Information System. Infrastructures, 5(9), 75. https://doi.org/10.3390/infrastructures5090075